1
|
Jo HY, Lee JM, Pietrasiak E, Lee E, Rhee YH, Park J. Generation of N-H Imines from α-Azidocarboxylic Acids through Ru-Catalyzed Decarboxylation. J Org Chem 2021; 86:17409-17417. [PMID: 34752090 DOI: 10.1021/acs.joc.1c01841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new method for the synthesis of N-H imines from α-azidocarboxylic acids was developed, which proceeds through decarboxylative C-C bond cleavage catalyzed by a commercial diruthenium complex ([CpRu(CO)2]2) under visible light irradiation at room temperature within several minutes. The reactive products undergo condensation, which forms cyclic trimers (2,4,6-trialkylhexahydro-1,3,5-triazines) or linear N,N'-bis(arylmethylidene)arylmethanediamines in quantitative yields. Alternatively, the N-H imines can be trapped with benzylamine and 2-(aminomethyl)aniline, providing stable N-benylimines and tetrahydroquinazolines, respectively. Subsequent oxidation of tetrahydroquinazolines produced quinazolines.
Collapse
Affiliation(s)
- Hwi Yul Jo
- Department of Chemistry, POSTECH, (Pohang University of Science and Technology), Pohang 37673, Republic of Korea
| | - Jeong Min Lee
- Department of Chemistry, POSTECH, (Pohang University of Science and Technology), Pohang 37673, Republic of Korea
| | - Ewa Pietrasiak
- Department of Chemistry, POSTECH, (Pohang University of Science and Technology), Pohang 37673, Republic of Korea
| | - Eunsung Lee
- Department of Chemistry, POSTECH, (Pohang University of Science and Technology), Pohang 37673, Republic of Korea
| | - Young Ho Rhee
- Department of Chemistry, POSTECH, (Pohang University of Science and Technology), Pohang 37673, Republic of Korea
| | - Jaiwook Park
- Department of Chemistry, POSTECH, (Pohang University of Science and Technology), Pohang 37673, Republic of Korea
| |
Collapse
|
2
|
Ardiansah B, Tanimoto H, Tomohiro T, Morimoto T, Kakiuchi K. Sulfonium ion-promoted traceless Schmidt reaction of alkyl azides. Chem Commun (Camb) 2021; 57:8738-8741. [PMID: 34374377 DOI: 10.1039/d1cc02770k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Schmidt reaction by sulfonium ions is described. General primary, secondary, and tertiary alkyl azides were converted to the corresponding carbonyl or imine compounds without any trace of the activators. This bond scission reaction through 1,2-migration of C-H and C-C bonds was accessible to the one-pot substitution reaction.
Collapse
Affiliation(s)
- Bayu Ardiansah
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | | | | | | | | |
Collapse
|
3
|
Lupidi G, Palmieri A, Petrini M. Enantioselective Catalyzed Synthesis of Amino Derivatives Using Electrophilic Open‐Chain
N
‐Activated Ketimines. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gabriele Lupidi
- School of Science and Technology, Chemistry Division Università di Camerino via S.Agostino, 1 I-62032 Camerino Italy
| | - Alessandro Palmieri
- School of Science and Technology, Chemistry Division Università di Camerino via S.Agostino, 1 I-62032 Camerino Italy
| | - Marino Petrini
- School of Science and Technology, Chemistry Division Università di Camerino via S.Agostino, 1 I-62032 Camerino Italy
| |
Collapse
|
4
|
Cai L, Seiple IB, Li Q. Modular Chemical Synthesis of Streptogramin and Lankacidin Antibiotics. Acc Chem Res 2021; 54:1891-1908. [PMID: 33792282 DOI: 10.1021/acs.accounts.0c00894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Continued, rapid development of antimicrobial resistance has become worldwide health crisis and a burden on the global economy. Decisive and comprehensive action is required to slow down the spread of antibiotic resistance, including increased investment in antibiotic discovery, sustainable policies that provide returns on investment for newly launched antibiotics, and public education to reduce the overusage of antibiotics, especially in livestock and agriculture. Without significant changes in the current antibiotic pipeline, we are in danger of entering a post-antibiotic era.In this Account, we summarize our recent efforts to develop next-generation streptogramin and lankacidin antibiotics that overcome bacterial resistance by means of modular chemical synthesis. First, we describe our highly modular, scalable route to four natural group A streptogramins antibiotics in 6-8 steps from seven simple chemical building blocks. We next describe the application of this route to the synthesis of a novel library of streptogramin antibiotics informed by in vitro and in vivo biological evaluation and high-resolution cryo-electron microscopy. One lead compound showed excellent inhibitory activity in vitro and in vivo against a longstanding streptogramin-resistance mechanism, virginiamycin acetyltransferase. Our results demonstrate that the combination of rational design and modular chemical synthesis can revitalize classes of antibiotics that are limited by naturally arising resistance mechanisms.Second, we recount our modular approaches toward lankacidin antibiotics. Lankacidins are a group of polyketide natural products with activity against several strains of Gram-positive bacteria but have not been deployed as therapeutics due to their chemical instability. We describe a route to several diastereomers of 2,18-seco-lankacidinol B in a linear sequence of ≤8 steps from simple building blocks, resulting in a revision of the C4 stereochemistry. We next detail our modular synthesis of several diastereoisomers of iso-lankacidinol that resulted in the structural reassignment of this natural product. These structural revisions raise interesting questions about the biosynthetic origin of lankacidins, all of which possessed uniform stereochemistry prior to these findings. Finally, we summarize the ability of several iso- and seco-lankacidins to inhibit the growth of bacteria and to inhibit translation in vitro, providing important insights into structure-function relationships for the class.
Collapse
Affiliation(s)
- Lingchao Cai
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, Jiangsu China
| | - Ian B. Seiple
- Department of Pharmaceutical Chemistry and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California 94158, United States
| | - Qi Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
5
|
Peng H, Zhang Y, Zhu Y, Deng G. Silver(I)-Catalyzed Domino Cyclization/Cyclopropanation/Ring-Cleavage/Nucleophilic Substitution Reaction of Enynones with Enamines: Synthesis of 4-(Furan-2-yl)-3,4-dihydro-2H-pyrrol-2-one. J Org Chem 2020; 85:13290-13297. [DOI: 10.1021/acs.joc.0c01711] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Haiyun Peng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Yu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Yang Zhu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Guisheng Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
6
|
Abstract
Lankacidins are a class of polyketide natural products isolated from Streptomyces spp. that show promising antimicrobial activity. Owing to their complex molecular architectures and chemical instability, structural assignment and derivatization of lankacidins are challenging tasks. Herein we describe three fully synthetic approaches to lankacidins that enable access to new structural variability within the class. We use these routes to systematically generate stereochemical derivatives of both cyclic and acyclic lankacidins. Additionally, we access a new series of lankacidins bearing a methyl group at the C4 position, a modification intended to increase chemical stability. In the course of this work, we discovered that the reported structures for two natural products of the lankacidin class were incorrect, and we determine the correct structures of 2,18-seco-lankacidinol B and iso-lankacidinol. We also evaluate the ability of several iso- and seco-lankacidins to inhibit the growth of bacteria and to inhibit translation in vitro. This work grants insight into the rich chemical complexity of this class of antibiotics and provides an avenue for further structural derivatization.
Collapse
Affiliation(s)
- Lingchao Cai
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jinagsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing, 210037 Jiangsu, China
- Department of Pharmaceutical Chemistry and Cardiovascular Research Institute, University of California at San Francisco, San Francisco, California 94158, United States
| | - Yanmin Yao
- Department of Pharmaceutical Chemistry and Cardiovascular Research Institute, University of California at San Francisco, San Francisco, California 94158, United States
| | - Seul Ki Yeon
- Department of Pharmaceutical Chemistry and Cardiovascular Research Institute, University of California at San Francisco, San Francisco, California 94158, United States
| | - Ian B Seiple
- Department of Pharmaceutical Chemistry and Cardiovascular Research Institute, University of California at San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
7
|
Lee JM, Bae DY, Park JY, Jo HY, Lee E, Rhee YH, Park J. Concurrent Formation of N–H Imines and Carbonyl Compounds by Ruthenium-Catalyzed C–C Bond Cleavage of β-Hydroxy Azides. Org Lett 2020; 22:4608-4613. [DOI: 10.1021/acs.orglett.0c01145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jeong Min Lee
- Department of Chemistry, POSTECH, (Pohang University of Science and Technology), Pohang 37673, Republic of Korea
| | - Dae Young Bae
- Department of Chemistry, POSTECH, (Pohang University of Science and Technology), Pohang 37673, Republic of Korea
| | - Jin Yong Park
- Department of Chemistry, POSTECH, (Pohang University of Science and Technology), Pohang 37673, Republic of Korea
| | - Hwi Yul Jo
- Department of Chemistry, POSTECH, (Pohang University of Science and Technology), Pohang 37673, Republic of Korea
| | - Eunsung Lee
- Department of Chemistry, POSTECH, (Pohang University of Science and Technology), Pohang 37673, Republic of Korea
| | - Young Ho Rhee
- Department of Chemistry, POSTECH, (Pohang University of Science and Technology), Pohang 37673, Republic of Korea
| | - Jaiwook Park
- Department of Chemistry, POSTECH, (Pohang University of Science and Technology), Pohang 37673, Republic of Korea
| |
Collapse
|
8
|
Zhao B, Shang R, Wang GZ, Wang S, Chen H, Fu Y. Palladium-Catalyzed Dual Ligand-Enabled Alkylation of Silyl Enol Ether and Enamide under Irradiation: Scope, Mechanism, and Theoretical Elucidation of Hybrid Alkyl Pd(I)-Radical Species. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04699] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Bin Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Rui Shang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Guang-Zu Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shaohong Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hui Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|