1
|
Li X, Yuan Z, Liu Y, Yang H, Nie J, Wang G, Liu B. Nitrogen-Doped Carbon as a Highly Active Metal-Free Catalyst for the Selective Oxidative Dehydrogenation of N-Heterocycles. CHEMSUSCHEM 2022; 15:e202200753. [PMID: 35504842 DOI: 10.1002/cssc.202200753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 04/29/2022] [Indexed: 06/14/2023]
Abstract
N-heteroarenes represents one of the most important chemicals in pharmaceuticals and other bio-active molecules, which can be easily accessed from the oxidation of N-heterocycles over metal catalysts. Herein, the metal-free oxidative dehydrogenation of N-heterocycles into N-heteroarenes was developed using molecular oxygen as the terminal oxidant. The nitrogen-doped carbon materials were facilely prepared via the simple pyrolysis process using biomass (carboxymethyl cellulose sodium) and dicyandiamide as the carbon and nitrogen source, respectively, and they were discovered to be robust for the oxidative dehydrogenation of N-heterocycles into N-heteroarenes under mild conditions (80 °C under 1 bar O2 ) with water as the green solvent. Diverse N-heterocycles including 1,2,3,4-tetrahydroisoquinolines, indolines and 1,2,3,4-tetrahydroquinoxalines were smoothly converted into N-heteroarenes with high to excellent yields (76->99 %). Superoxide radical (⋅O2 - ) and hydroxyl radical (⋅OH) were probed as the reactive oxygen species for the oxidation of N-heterocycles into N-heteroarenes. More importantly, the nitrogen-doped carbon catalyst can be reused with a high stability. The method provides an environmentally friendly and economical route to access important N-hetero-aromatic commodities.
Collapse
Affiliation(s)
- Xun Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Ziliang Yuan
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, South-Central Minzu University, Wuhan, 430074, P. R. China
- Hubei Coal Conversion and New Carbon Materials Key Laboratory, College of Chemical Engineering and Technology, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
| | - Yi Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Hanmin Yang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Jiabao Nie
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Guanghui Wang
- Hubei Coal Conversion and New Carbon Materials Key Laboratory, College of Chemical Engineering and Technology, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
| | - Bing Liu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, South-Central Minzu University, Wuhan, 430074, P. R. China
| |
Collapse
|
2
|
Caputo S, Kovtun A, Bruno F, Ravera E, Lambruschini C, Melucci M, Moni L. Study and application of graphene oxide in the synthesis of 2,3-disubstituted quinolines via a Povarov multicomponent reaction and subsequent oxidation. RSC Adv 2022; 12:15834-15847. [PMID: 35733657 PMCID: PMC9135005 DOI: 10.1039/d2ra01752k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/09/2022] [Indexed: 01/25/2023] Open
Abstract
The carbocatalyzed synthesis of 2,3-disubstituted quinolines is disclosed. This process involved a three-component Povarov reaction of anilines, aldehydes and electron-enriched enol ethers, which gave the substrate for the subsequent oxidation. Graphene oxide (GO) was exploited as a heterogeneous, metal-free and sustainable catalyst for both transformations. The multicomponent reaction proceeded under simple and mild reaction conditions, exhibited good functional group tolerance, and could be easily scaled up to the gram level. A selection of tetrahydroquinolines obtained was subsequently aromatized to quinolines. The multistep synthesis could also be performed as a one-pot procedure. Investigation of the real active sites of GO was carried out by performing control experiments and a by full characterization of the carbon material by X-ray photoelectron spectroscopy (XPS) and solid-state nuclear magnetic resonance (ssNMR).
Collapse
Affiliation(s)
- Samantha Caputo
- Department of Chemistry and Industrial Chemistry, University of Genoa Via Dodecaneso 31 16146 GENOVA Italy
| | - Alessandro Kovtun
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività (CNR-ISOF) Via Gobetti 101 40129 BOLOGNA Italy
| | - Francesco Bruno
- Magnetic Resonance Center (CERM), University of Florence Via L. Sacconi 6 50019 Sesto Fiorentino Italy.,Department of Chemistry "Ugo Schiff", University of Florence Via della Lastruccia 3 50019 Sesto Fiorentino Italy.,Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP) Via L. Sacconi 6 50019 Sesto Fiorentino Italy
| | - Enrico Ravera
- Magnetic Resonance Center (CERM), University of Florence Via L. Sacconi 6 50019 Sesto Fiorentino Italy.,Department of Chemistry "Ugo Schiff", University of Florence Via della Lastruccia 3 50019 Sesto Fiorentino Italy.,Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP) Via L. Sacconi 6 50019 Sesto Fiorentino Italy.,Florence Data -scienze, University of Florence Italy
| | - Chiara Lambruschini
- Department of Chemistry and Industrial Chemistry, University of Genoa Via Dodecaneso 31 16146 GENOVA Italy
| | - Manuela Melucci
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività (CNR-ISOF) Via Gobetti 101 40129 BOLOGNA Italy
| | - Lisa Moni
- Department of Chemistry and Industrial Chemistry, University of Genoa Via Dodecaneso 31 16146 GENOVA Italy
| |
Collapse
|
3
|
Salman MS, Rambhujun N, Pratthana C, Srivastava K, Aguey-Zinsou KF. Catalysis in Liquid Organic Hydrogen Storage: Recent Advances, Challenges, and Perspectives. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c03970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Muhammad Saad Salman
- MERLin, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Nigel Rambhujun
- MERLin, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Chulaluck Pratthana
- MERLin, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Kshitij Srivastava
- MERLin, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | | |
Collapse
|
4
|
Shang S, Li Y, Lv Y, DAI WEN. Metal‐free Heterogeneous Catalytic Aromatization of N‐Heterocycles and Hydrocarbons by Carbocatalyst. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sensen Shang
- Chinese Academy of Sciences Dalian Institute of Chemical Physics Fine Chemicals CHINA
| | - Yingguang Li
- Chinese Academy of Sciences Dalian Institute of Chemical Physics Fine Chemicals CHINA
| | - Ying Lv
- Chinese Academy of Sciences Dalian Institute of Chemical Physics Fine Chemicals CHINA
| | - WEN DAI
- Chinese Academy of Sciences Dalian Institute of Chemical Physics Fine Chemicals 457 Zhongshan Road 116023 Dalian CHINA
| |
Collapse
|
5
|
Gao F, Zhang S, Lv Q, Yu B. Recent advances in graphene oxide catalyzed organic transformations. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Murugan S, Zhong HJ, Wu CY, Pan HW, Chen C, Lee GH. Camphorsulfonic Acid-Mediated One-Pot Tandem Consecutive via the Ugi Four-Component Reaction for the Synthesis of Functionalized Indole and 2-Quinolone Derivatives by Switching Solvents. ACS OMEGA 2022; 7:5713-5729. [PMID: 35224332 PMCID: PMC8867550 DOI: 10.1021/acsomega.1c05460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
A camphorsulfonic acid-mediated one-pot tandem consecutive approach was developed to synthesize functionalized indole and 2-quinolone derivatives from the Ugi four-component reaction by switching solvents. A reaction of the Ugi adduct in an aprotic solvent undergoes 5-exo-trig cyclization to form an indole ring. In a protic solvent, however, the Ugi adduct undergoes an alkyne-carbonyl metathesis reaction to form a 2-quinolone ring.
Collapse
Affiliation(s)
- Sivan
Perumal Murugan
- Department
of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974301, Taiwan
| | - Hong-Jie Zhong
- Department
of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974301, Taiwan
| | - Chih-Yu Wu
- Department
of Nursing, Tzu Chi University of Science
and Technology, Hualien 970302, Taiwan
| | - Hao-Wei Pan
- Department
of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974301, Taiwan
| | - Chinpiao Chen
- Department
of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974301, Taiwan
- Department
of Nursing, Tzu Chi University of Science
and Technology, Hualien 970302, Taiwan
| | - Gene-Hsian Lee
- Instrumentation
Center, College of Science, National Taiwan
University, Taipei 10617, Taiwan
| |
Collapse
|
7
|
Llopis N, Gisbert P, Baeza A, Correa-Campillo J. Dehydrogenation of N‐Heterocyclic Compounds Using H2O2 and Mediated by Polar Solvents. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Liu JJ, Guo FH, Cui FJ, Zhu JH, Liu XY, Ullah A, Wang XC, Quan ZJ. A biomass-derived N-doped porous carbon catalyst for the aerobic dehydrogenation of nitrogen heterocycles. NEW J CHEM 2022. [DOI: 10.1039/d1nj05411b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
N-doped porous carbon (NC) was synthesized from sugar cane bagasse, which is a sustainable and widely available biomass waste.
Collapse
Affiliation(s)
- Jing-Jiang Liu
- Gansu International Scientific and Technological Cooperation Base of Water Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
- Gansu Police Vocational College, Lanzhou, Gansu 730046, China
| | - Fu-Hu Guo
- Gansu International Scientific and Technological Cooperation Base of Water Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Fu-Jun Cui
- Gansu Police Vocational College, Lanzhou, Gansu 730046, China
| | - Ji-Hua Zhu
- College of Chemistry and Chemical Engineering, Qinghai Normal University, Xining, Qinghai, 810016, China
| | - Xiao-Yu Liu
- Gansu International Scientific and Technological Cooperation Base of Water Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Arif Ullah
- Gansu International Scientific and Technological Cooperation Base of Water Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Xi-Cun Wang
- Gansu International Scientific and Technological Cooperation Base of Water Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Zheng-Jun Quan
- Gansu International Scientific and Technological Cooperation Base of Water Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| |
Collapse
|
9
|
Han Q, Xu K, Tian F, Huang S, Zeng C. A Practical Transamidation Strategy for the N-Deacylation of Amides. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202112007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Bera A, Bera S, Banerjee D. Recent advances in the synthesis of N-heteroarenes via catalytic dehydrogenation of N-heterocycles. Chem Commun (Camb) 2021; 57:13042-13058. [PMID: 34781335 DOI: 10.1039/d1cc04919d] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bio-active molecules having N-heteroarene core are widely used for numerous medicinal applications and as lifesaving drugs. In this direction, dehydrogenation of partially saturated aromatic N-heterocycles shows utmost importance for the synthesis of heterocycles. This feature article highlights the recent advances, from 2009 to April 2021, on the dehydrogenation of N-heteroaromatics. Notable features considering the development of newer catalysis for dehydrogenations are: (i) approaches based on precious metal catalysis, (ii) newer strategies and catalyst development technology using non-precious metal-catalysts for N-heterocycles having one or more heteroatoms, (iii) Synthesis of five or six-membered N-heterocycles using photocatalysis, electrocatalytic, and organo-catalytic approaches using different homogeneous and heterogeneous conditions' (iv) metal free (base and acid-promoted) dehydrogenation along with I2, N-hydroxyphthalimide (NHPI) and bio catalyzed miscellaneous examples have also been discussed, (v) mechanistic studies for various dehydrogenation reactions and (vi) synthetic applications of various bio-active molecules including post-drug derivatization are discussed.
Collapse
Affiliation(s)
- Atanu Bera
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Sourajit Bera
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Debasis Banerjee
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| |
Collapse
|
11
|
Mollar-Cuni A, Ventura-Espinosa D, Martín S, García H, Mata JA. Reduced Graphene Oxides as Carbocatalysts in Acceptorless Dehydrogenation of N-Heterocycles. ACS Catal 2021; 11:14688-14693. [PMID: 34970466 PMCID: PMC8711125 DOI: 10.1021/acscatal.1c04649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/17/2021] [Indexed: 11/29/2022]
Abstract
The catalytic properties of graphene-derived materials are evaluated in acceptorless dehydrogenation of N-heterocycles. Among them, reduced graphene oxides (rGOs) are active (quantitative yields in 23 h) under mild conditions (130 °C) and act as efficient heterogeneous carbocatalysts. rGO exhibits reusability and stability at least during eight consecutive runs. Mechanistic investigations supported by experimental evidence (i.e., organic molecules as model compounds, purposely addition of metal impurities and selective functional group masking experiments) suggest a preferential contribution of ketone carbonyl groups as active sites for this transformation.
Collapse
Affiliation(s)
- Andrés Mollar-Cuni
- Institute
of Advanced Materials (INAM), Centro de Innovación en Química
Avanzada (ORFEO−CINQA), Universitat
Jaume I, Avda. Sos Baynat s/n, 12006, Castellón, Spain
| | - David Ventura-Espinosa
- Institute
of Advanced Materials (INAM), Centro de Innovación en Química
Avanzada (ORFEO−CINQA), Universitat
Jaume I, Avda. Sos Baynat s/n, 12006, Castellón, Spain
| | - Santiago Martín
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
- Departamento
de Química Física, Universidad
de Zaragoza, 50009 Zaragoza, Spain
- Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, Edificio I+D+i, 50018 Zaragoza, Spain
| | - Hermenegildo García
- Instituto
de Tecnología Química, Consejo
Superior de Investigaciones Científicas-Universitat Politècnica
de València, Avda. Los Naranjos s/n, 46022, Valencia, Spain
| | - Jose A. Mata
- Institute
of Advanced Materials (INAM), Centro de Innovación en Química
Avanzada (ORFEO−CINQA), Universitat
Jaume I, Avda. Sos Baynat s/n, 12006, Castellón, Spain
| |
Collapse
|
12
|
Li H, Peng X, Nie L, Zhou L, Yang M, Li F, Hu J, Yao Z, Liu L. Graphene oxide-catalyzed trifluoromethylation of alkynes with quinoxalinones and Langlois' reagent. RSC Adv 2021; 11:38667-38673. [PMID: 35493205 PMCID: PMC9044184 DOI: 10.1039/d1ra07014b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
The direct C–H trifluoromethylation of alkynes and quinoxalinones has been achieved using a graphene oxide/Langlois' reagent system. This multi-component tandem reaction using graphene oxide as the catalyst and Langlois' reagent as the robust CF3 radical source results in the formation of olefinic C–CF3 to access a series of 3-trifluoroalkylated quinoxalin-2(1H)-ones. The direct C–H trifluoromethylation of alkynes and quinoxalinones using a graphene oxide/Langlois' reagent system.![]()
Collapse
Affiliation(s)
- Hong Li
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University Ganzhou Jiangxi 341000 P. R. China
| | - Xiangjun Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University Ganzhou 341000 P. R. China
| | - Liang Nie
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University Ganzhou Jiangxi 341000 P. R. China
| | - Lin Zhou
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University Ganzhou Jiangxi 341000 P. R. China
| | - Ming Yang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University Ganzhou Jiangxi 341000 P. R. China
| | - Fan Li
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University Ganzhou Jiangxi 341000 P. R. China
| | - Jian Hu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University Ganzhou 341000 P. R. China
| | - Zhiyang Yao
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University Ganzhou 341000 P. R. China
| | - Liangxian Liu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University Ganzhou Jiangxi 341000 P. R. China
| |
Collapse
|
13
|
Yoo HS, Yang YS, Kim SL, Son SH, Jang YH, Shin JW, Kim NJ. Syntheses of 1H-Indoles, Quinolines, and 6-Membered Aromatic N-Heterocycle-Fused Scaffolds via Palladium(II)-Catalyzed Aerobic Dehydrogenation under Alkoxide-Free Conditions. Chem Asian J 2021; 16:3469-3475. [PMID: 34494376 DOI: 10.1002/asia.202100861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/25/2021] [Indexed: 12/14/2022]
Abstract
Aromatic N-heterocycle-fused scaffolds such as indoles and quinolines are important core structures found in various bioactive natural products and synthetic compounds. Recently, various dehydrogenation methods with the help of alkoxides, known to significantly promote dihydro- or tetrahydro-heterocycles to be oxidized, were developed for the heterocycle synthesis. However, these approaches are sometimes unsuitable due to resulting undesired side reactions such as reductive dehalogenation. Herein, expedient syntheses of 1H-indoles, quinolines, and 6-membered N-heterocycle-fused scaffolds from their hydrogenated forms through palladium(II)-catalyzed aerobic dehydrogenation under alkoxide-free conditions are reported. A total of 48 compounds were successfully synthesized with a wide range of functional groups including halogens (up to 99% yield). These methodologies provide facile routes for various privileged structures possessing aromatic N-heterocycles without the help of alkoxides, in highly efficient manners.
Collapse
Affiliation(s)
- Hyung-Seok Yoo
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Yo-Sep Yang
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Soo Lim Kim
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Seung Hwan Son
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Yoon Hu Jang
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Jeong-Won Shin
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Nam-Jung Kim
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.,Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| |
Collapse
|
14
|
Shibata K, Takao KI, Ogura A. Diaryliodonium Salt-Based Synthesis of N-Alkoxyindolines and Further Insights into the Ishikawa Indole Synthesis. J Org Chem 2021; 86:10067-10087. [PMID: 34197104 DOI: 10.1021/acs.joc.1c00820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A diaryliodonium salt-based strategy enabled the first systematic synthesis of rarely accessible N-alkoxyindolines. Mechanistic analyses suggested that the reaction likely involves reductive elimination of iodobenzene from iodaoxazepine via a four-membered transition state, followed by Meisenheimer rearrangement. Substrates with N-carbamate protection afforded indole in a manner similar to that of the Ishikawa indole synthesis. Preinstallation of a stannyl group as an iodonium salt precursor greatly expanded the substrate scope, and further mechanistic insights are discussed.
Collapse
Affiliation(s)
- Kouhei Shibata
- Department of Applied Chemistry, Keio University, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Ken-Ichi Takao
- Department of Applied Chemistry, Keio University, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Akihiro Ogura
- Department of Applied Chemistry, Keio University, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
15
|
Zhou J, Li M, Li T, Li C, Hu X, Jin L, Sun N, Hu B, Shen Z. Ultraviolet-light-induced aerobic oxidation of benzylic C(sp3)-H of alkylarenes under catalyst- and additive-free conditions. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.131947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Enders L, Casadio DS, Aikonen S, Lenarda A, Wirtanen T, Hu T, Hietala S, Ribeiro LS, Pereira MFR, Helaja J. Air oxidized activated carbon catalyst for aerobic oxidative aromatizations of N-heterocycles. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00878a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Air oxidized activated carbon offers a robust, efficient, metal-free and recyclable catalyst for aromatizations of N-heterocycles, O2 being the terminal oxidant.
Collapse
Affiliation(s)
- Lukas Enders
- Department of Chemistry, University of Helsinki, A. I. Virtasen aukio 1, P.O. Box 55, 00014 Finland
| | - David S. Casadio
- Department of Chemistry, University of Helsinki, A. I. Virtasen aukio 1, P.O. Box 55, 00014 Finland
| | - Santeri Aikonen
- Department of Chemistry, University of Helsinki, A. I. Virtasen aukio 1, P.O. Box 55, 00014 Finland
| | - Anna Lenarda
- Department of Chemistry, University of Helsinki, A. I. Virtasen aukio 1, P.O. Box 55, 00014 Finland
| | - Tom Wirtanen
- Department of Chemistry, University of Helsinki, A. I. Virtasen aukio 1, P.O. Box 55, 00014 Finland
| | - Tao Hu
- Research Unit of Sustainable Chemistry, Faculty of Technology, University of Oulu, 90014 Oulu, Finland
| | - Sami Hietala
- Department of Chemistry, University of Helsinki, A. I. Virtasen aukio 1, P.O. Box 55, 00014 Finland
| | - Lucília S. Ribeiro
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Manuel Fernando R. Pereira
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Juho Helaja
- Department of Chemistry, University of Helsinki, A. I. Virtasen aukio 1, P.O. Box 55, 00014 Finland
| |
Collapse
|
17
|
Huang J, Xi J, Chen W, Bai Z. Graphene-derived Materials for Metal-free Carbocatalysis of Organic Reactions. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21070340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Abstract
Quinoxalines are observed in several bioactive molecules and have been widely employed in designing molecules for DSSC's, optoelectronics, and sensing applications. Therefore, developing newer synthetic routes as well as novel ways for their functionalization is apparent.
Collapse
Affiliation(s)
- Gauravi Yashwantrao
- Department of Speciality Chemicals Technology
- Institute of Chemical Technology
- Mumbai-400019
- India
| | - Satyajit Saha
- Department of Speciality Chemicals Technology
- Institute of Chemical Technology
- Mumbai-400019
- India
| |
Collapse
|
19
|
Shen Z, Zhao Z, Ren Y, Liu W, Tian X, Zheng X, Zhao B. Nitric‐Acid‐Catalyzed Aerobic Conversion of Benzyl Ethers to Benzaldehydes at Room Temperature. ChemistrySelect 2020. [DOI: 10.1002/slct.202003714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Zhenpeng Shen
- College of Science Henan Agricultural University Zhengzhou Henan 450002 P.R. China
- School of Chemical Engineering & Pharmaceutics Henan University of Science and Technology Luoyang Henan 471003 P. R. China
| | - Zhe Zhao
- College of Science Henan Agricultural University Zhengzhou Henan 450002 P.R. China
- School of Chemical Engineering & Pharmaceutics Henan University of Science and Technology Luoyang Henan 471003 P. R. China
| | - Yun‐Lai Ren
- College of Science Henan Agricultural University Zhengzhou Henan 450002 P.R. China
| | - Wenbo Liu
- College of Science Henan Agricultural University Zhengzhou Henan 450002 P.R. China
| | - Xinzhe Tian
- College of Science Henan Agricultural University Zhengzhou Henan 450002 P.R. China
| | - Xin Zheng
- College of Science Henan Agricultural University Zhengzhou Henan 450002 P.R. China
| | - Bo Zhao
- School of Chemical Engineering & Pharmaceutics Henan University of Science and Technology Luoyang Henan 471003 P. R. China
| |
Collapse
|
20
|
Du L, Shi L, Liu Y, Ling Y, Zhang Y, Zhou C, Xiong B. Nanonickel Oxides Prepared by Atomic Layer Deposition as Efficient Catalyst for the Dehydrogenation of N‐Heterocycles. ChemistrySelect 2020. [DOI: 10.1002/slct.202003410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Liyong Du
- School of Chemical and Material Engineering Jiangnan University 1800 Lihu Road Wuxi Jiangsu Province 214122 China
| | - Li Shi
- School of Pharmacy Nantong University 19 Qixiu Road Nantong Jiangsu Province 226001 China
| | - Yunxiao Liu
- School of Pharmacy Nantong University 19 Qixiu Road Nantong Jiangsu Province 226001 China
| | - Yong Ling
- School of Pharmacy Nantong University 19 Qixiu Road Nantong Jiangsu Province 226001 China
| | - Yanan Zhang
- School of Pharmacy Nantong University 19 Qixiu Road Nantong Jiangsu Province 226001 China
| | - Changjian Zhou
- School of Chemistry and Chemical Engineering Yancheng Institute of Technology Yancheng Jiangsu Province 224051 China
| | - Biao Xiong
- School of Pharmacy Nantong University 19 Qixiu Road Nantong Jiangsu Province 226001 China
| |
Collapse
|
21
|
Construction of Novel Metal-Free Graphene Oxide/Graphitic Carbon Nitride Nanohybrids: A 2D–2D Amalgamation for the Effective Dedyeing of Waste Water. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01728-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Chen W, Tang H, Wang W, Fu Q, Luo J. Catalytic Aerobic Dehydrogenatin of
N
‐Heterocycles by
N
‐Hydoxyphthalimide. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000767] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Weidong Chen
- School of Materials Science and Chemical Engineering Ningbo University Ningbo Zhejiang 315211 People's Republic of China
| | - Hao Tang
- School of Materials Science and Chemical Engineering Ningbo University Ningbo Zhejiang 315211 People's Republic of China
| | - Weilin Wang
- School of Materials Science and Chemical Engineering Ningbo University Ningbo Zhejiang 315211 People's Republic of China
| | - Qiang Fu
- School of Pharmacy Southwest Medical University Luzhou 610041 People's Republic of China
| | - Junfei Luo
- School of Materials Science and Chemical Engineering Ningbo University Ningbo Zhejiang 315211 People's Republic of China
| |
Collapse
|
23
|
Rai VK, Mahata S, Kashyap H, Singh M, Rai A. Bio-reduction of Graphene Oxide: Catalytic Applications of (Reduced) GO in Organic Synthesis. Curr Org Synth 2020; 17:164-191. [PMID: 32538718 DOI: 10.2174/1570179417666200115110403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/28/2019] [Accepted: 12/07/2019] [Indexed: 11/22/2022]
Abstract
This work is based on various bio-reduction of graphene oxide into reduced graphene oxide and their applications in organic synthesis and group transformations. Graphene oxide, with abundant oxygencontaining functional groups on its basal plane, provides potential advantages, including excellent dispersibility in solvents and the good heterogeneous catalyst. This manuscript reviews various methods of synthesis of graphene and graphene oxide and a comparative study on their advantages and disadvantages, how to overcome disadvantages and covers extensive relevant literature review. In the last few years, investigation based on replacing the chemical reduction methods by some bio-compatible, chemical/impurity-free rGO including flash photo reductions, hydrothermal dehydration, solvothermal reduction, electrochemical approach, microwave-assisted reductions, light and radiation-induced reductions has been reported. Particularly, plant extracts have been applied significantly as an efficient reducing agent due to their huge bioavailability and low cost for bio-reduction of graphene oxide. These plant extracts mainly contain polyphenolic compounds, which readily get oxidized to the corresponding unreactive quinone form, which are the driving force for choosing them as bio-compatible catalyst. Currently, efforts are being made to develop biocompatible methods for the reduction of graphene oxide. The reduction abilities of such phytochemicals have been reported in the synthesis and stabilization of various nanoparticles viz. Ag, Au, Fe and Pd. Various part of plant extract has been applied for the green reduction of graphene oxide. Furthermore, the manuscript describes the catalytic applications of graphene oxide and reduced graphene oxide nanosheets as efficient carbo-catalysts for valuable organic transformations. Herein, important works dedicated to exploring graphene-based materials as carbocatalysts, including GO and rGO for organic synthesis including various functional group transformations, oxidation, reduction, coupling reaction and a wide number of multicomponent reactions have been highlighted. Finally, the aim of this study is to provide an outlook on future trends and perspectives for graphene-based materials in metal-free carbo-catalysis in green synthesis of various pharmaceutically important moieties.
Collapse
Affiliation(s)
- Vijai K Rai
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.)-495009, India
| | - Suhasini Mahata
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.)-495009, India
| | - Hemant Kashyap
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.)-495009, India
| | - Manorama Singh
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.)-495009, India
| | - Ankita Rai
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110027, India
| |
Collapse
|
24
|
Yang R, Yue S, Tan W, Xie Y, Cai H. DMSO/ t-BuONa/O 2-Mediated Aerobic Dehydrogenation of Saturated N-Heterocycles. J Org Chem 2020; 85:7501-7509. [PMID: 32368910 DOI: 10.1021/acs.joc.9b03447] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Aromatic N-heterocycles such as quinolines, isoquinolines, and indolines are synthesized via sodium tert-butoxide-promoted oxidative dehydrogenation of the saturated heterocycles in DMSO solution. This reaction proceeds under mild reaction conditions and has a good functional group tolerance. Mechanistic studies suggest a radical pathway involving hydrogen abstraction of dimsyl radicals from the N-H bond or α-C-H of the substrates and subsequent oxidation of the nitrogen or α-aminoalkyl radicals.
Collapse
Affiliation(s)
- Ruchun Yang
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China.,Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Nanchang, Jiangxi 330013, China
| | - Shusheng Yue
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Wei Tan
- Clinic Laboratory, People's Hospital of Yichun City, Yichun, Jiangxi 336000, China
| | - Yongfa Xie
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Hu Cai
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| |
Collapse
|
25
|
Zhao F, Masci D, Ferla S, Varricchio C, Brancale A, Colonna S, Black GW, Turner NJ, Castagnolo D. Monoamine Oxidase (MAO-N) Biocatalyzed Synthesis of Indoles from Indolines Prepared via Photocatalytic Cyclization/Arylative Dearomatization. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01351] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Fei Zhao
- School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 9NH, United Kingdom
| | - Domiziana Masci
- School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 9NH, United Kingdom
| | - Salvatore Ferla
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, United Kingdom
| | - Carmine Varricchio
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, United Kingdom
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, United Kingdom
| | - Serena Colonna
- School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 9NH, United Kingdom
| | - Gary W. Black
- Department of Applied Sciences, Northumbria University, Ellison Place, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Nicholas J. Turner
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Daniele Castagnolo
- School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 9NH, United Kingdom
| |
Collapse
|
26
|
Graphene oxide as a carbo-catalyst for the synthesis of tri-substituted 1,3,5-triazines using biguanides and alcohols. CATAL COMMUN 2020. [DOI: 10.1016/j.catcom.2020.105933] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
27
|
Tuo X, Chen S, Jiang P, Ni P, Wang X, Deng GJ. Iodine-catalyzed convergent aerobic dehydro-aromatization toward benzazoles and benzazines. RSC Adv 2020; 10:8348-8351. [PMID: 35497844 PMCID: PMC9049994 DOI: 10.1039/c9ra10964a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/15/2020] [Indexed: 02/02/2023] Open
Abstract
An iodine-catalyzed aerobic dehydro-aromatization has been developed, providing straightforward and efficient access to various benzoazoles and benzoazines. The present transition-metal-free protocol enables the dehydro-aromatization of tetrahydrobenzazoles and tetrahydroquinolines with molecular oxygen as the green oxidant, along with some other N-heterocycles. Hence, a broad range of heteroaromatic compounds are generated in moderate to good yields under facile reaction conditions. An iodine-catalyzed aerobic dehydro-aromatization has been developed, providing a straightforward and efficient access to various benzoazoles and benzoazines.![]()
Collapse
Affiliation(s)
- Xiaolong Tuo
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| | - Shanping Chen
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| | - Pingyu Jiang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| | - Penghui Ni
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| | - Xiaodong Wang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| | - Guo-Jun Deng
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| |
Collapse
|
28
|
Tian X, Ren Y, Cheng X, Lu W. Aerobic Oxidative C(CO)–C Bond Cleavage under Catalyst‐Free and Additive‐Free Conditions. ChemistrySelect 2019. [DOI: 10.1002/slct.201903197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Xinzhe Tian
- College of ScienceHenan Agricultural University, Zhengzhou Henan 450002 P.R. China
- College of Chemistry and Chemical EngineeringLanzhou University Lanzhou 730000, Gansu P. R. China
| | - Yun‐Lai Ren
- College of ScienceHenan Agricultural University, Zhengzhou Henan 450002 P.R. China
| | - Xinqiang Cheng
- School of Chemical Engineering & PharmaceuticsHenan University of Science and Technology, Luoyang Henan 471003 P. R. China
| | - Weiwei Lu
- College of ScienceHenan Agricultural University, Zhengzhou Henan 450002 P.R. China
| |
Collapse
|
29
|
Recent advances in heterogeneous catalytic hydrogenation and dehydrogenation of N-heterocycles. CHINESE JOURNAL OF CATALYSIS 2019. [DOI: 10.1016/s1872-2067(19)63336-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Wan XM, Liu ZL, Liu WQ, Cao XN, Zhu X, Zhao XM, Song B, Hao XQ, Liu G. NNN pincer Ru(II)-catalyzed dehydrogenative coupling of 2-aminoarylmethanols with nitriles for the construction of quinazolines. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.03.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
31
|
Tong Q, Liu Y, Gao X, Fan Z, Liu T, Li B, Su D, Wang Q, Cheng M. A Deoximation Method for Deprotection of Ketones and Aldhydes Using a Graphene‐Oxide‐Based Co‐catalysts System. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Qiaolin Tong
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical EngineeringShenyang Pharmaceutical University Shenyang 110016 People's Republic of China
| | - Yang Liu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical EngineeringShenyang Pharmaceutical University Shenyang 110016 People's Republic of China
| | - Xuezhi Gao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical EngineeringShenyang Pharmaceutical University Shenyang 110016 People's Republic of China
| | - Zhanfang Fan
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical EngineeringShenyang Pharmaceutical University Shenyang 110016 People's Republic of China
| | - Tianfu Liu
- Institute of Metal ResearchChinese Academy of Science Shenyang 110016 People's Republic of China
| | - Bo Li
- Institute of Metal ResearchChinese Academy of Science Shenyang 110016 People's Republic of China
| | - Dangsheng Su
- Institute of Metal ResearchChinese Academy of Science Shenyang 110016 People's Republic of China
- Dalian Institute of Chemical PhysicsChinese Academy of Science Dalian 116023 People's Republic of China
| | - Qinghe Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical EngineeringShenyang Pharmaceutical University Shenyang 110016 People's Republic of China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical EngineeringShenyang Pharmaceutical University Shenyang 110016 People's Republic of China
| |
Collapse
|
32
|
Manna S, Prabhu KR. Visible-Light-Mediated Direct Decarboxylative Acylation of Electron-Deficient Heteroarenes Using α-Ketoacids. J Org Chem 2019; 84:5067-5077. [PMID: 30933509 DOI: 10.1021/acs.joc.9b00004] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Acylation of electron-deficient heteroaromatic compounds has been developed using visible light. α-Ketoacids have been used as an efficient source of acyl radicals under photoredox conditions. The in situ generated acyl radicals from α-ketoacids have been coupled to a wide variety of electron-deficient heteroaromatic compounds in a Minisci type reaction. This method would be attractive to access biologically attractive molecules.
Collapse
Affiliation(s)
- Sabyasachi Manna
- Department of Organic Chemistry , Indian Institute of Science , Bangalore 560012 , Karnataka , India
| | - Kandikere Ramaiah Prabhu
- Department of Organic Chemistry , Indian Institute of Science , Bangalore 560012 , Karnataka , India
| |
Collapse
|
33
|
Tian X, Cheng X, Yang X, Ren YL, Yao K, Wang H, Wang J. Aerobic conversion of benzylic sp3 C–H in diphenylmethanes and benzyl ethers to CO bonds under catalyst-, additive- and light-free conditions. Org Chem Front 2019. [DOI: 10.1039/c9qo00004f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalyst-, additive- and light-free aerobic conversion of benzylic C–H to CO bonds is, for the first time, reported.
Collapse
Affiliation(s)
- Xinzhe Tian
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
- School of Chemical Engineering & Pharmaceutics
| | - Xinqiang Cheng
- School of Chemical Engineering & Pharmaceutics
- Henan University of Science and Technology
- Luoyang
- P. R. China
| | - Xinzheng Yang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Yun-Lai Ren
- School of Chemical Engineering & Pharmaceutics
- Henan University of Science and Technology
- Luoyang
- P. R. China
| | - Kaisheng Yao
- School of Chemical Engineering & Pharmaceutics
- Henan University of Science and Technology
- Luoyang
- P. R. China
| | - Huiyong Wang
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
- P. R. China
| | - Jianji Wang
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
- P. R. China
| |
Collapse
|
34
|
Gao S, Zheng J, Ge G, Luo J. Cu–Catalyzed Tandem Oxidation of
N
‐Substituted Indolines to Isatins. ChemistrySelect 2018. [DOI: 10.1002/slct.201803312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Shanshan Gao
- School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 P. R. China
| | - Junliang Zheng
- School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 P. R. China
| | - Guoping Ge
- School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 P. R. China
| | - Junfei Luo
- School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 P. R. China
| |
Collapse
|
35
|
CO2-Catalyzed Efficient Dehydrogenation of Amines with Detailed Mechanistic and Kinetic Studies. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03059] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
36
|
Tan Z, Liang Y, Yang J, Cao L, Jiang H, Zhang M. Site-Specific Oxidative C–H Chalcogenation of (Hetero)Aryl-Fused Cyclic Amines Enabled by Nanocobalt Oxides. Org Lett 2018; 20:6554-6558. [DOI: 10.1021/acs.orglett.8b02889] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhenda Tan
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, People’s Republic of China
| | - Yantang Liang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, People’s Republic of China
| | - Jian Yang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, People’s Republic of China
| | - Liang Cao
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, People’s Republic of China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, People’s Republic of China
| | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry & Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, People’s Republic of China
| |
Collapse
|
37
|
Investigation of active sites for C H functionalization on carbon-based catalyst: Effect of nitrogen-containing functional groups and radicals. J Catal 2018. [DOI: 10.1016/j.jcat.2018.07.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
38
|
Ma J, Zhang J, Zhou X, Wang J, Gong H. N-formylation of amine using graphene oxide as a sole recyclable metal-free carbocatalyst. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1471-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
39
|
Zhou W, Tao Q, Sun F, Cao X, Qian J, Xu J, He M, Chen Q, Xiao J. Additive-free aerobic oxidative dehydrogenation of N-heterocycles under catalysis by NiMn layered hydroxide compounds. J Catal 2018. [DOI: 10.1016/j.jcat.2018.01.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
40
|
Synthesis of a molecularly defined single-active site heterogeneous catalyst for selective oxidation of N-heterocycles. Nat Commun 2018; 9:1465. [PMID: 29654230 PMCID: PMC5899140 DOI: 10.1038/s41467-018-03834-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/15/2018] [Indexed: 11/09/2022] Open
Abstract
Generally, a homogeneous catalyst exhibits good activity and defined active sites but it is difficult to recycle. Meanwhile, a heterogeneous catalyst can easily be reused but its active site is difficult to reveal. It is interesting to bridge the gap between homogeneous and heterogeneous catalysis via controllable construction of a heterogeneous catalyst containing defined active sites. Here, we report that a molecularly defined, single-active site heterogeneous catalyst has been designed and prepared via the oxidative polymerization of maleimide derivatives. These polymaleimide derivatives can be active catalysts for the selective oxidation of heterocyclic compounds to quinoline and indole via the recycling of -C=O and -C-OH groups, which was confirmed by tracing the reaction with GC-MS using maleimide as the catalyst and by FT-IR analysis with polymaleimide as the catalyst. These results might promote the development of heterogeneous catalysts with molecularly defined single active sites exhibiting a comparable activity to homogeneous catalysts.
Collapse
|
41
|
Zhou W, Chen D, Sun F, Qian J, He M, Chen Q. Aerobic oxidative dehydrogenation of N-heterocycles catalyzed by cobalt porphyrin. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.01.094] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
42
|
Fang J, Peng Z, Yang Y, Wang J, Guo J, Gong H. Graphene-Oxide-Promoted Direct Dehydrogenative Coupling Reaction of Aromatics. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201700673] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jingxian Fang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province; The Key Laboratory of Environmentally Friendly Chemistry and Application of the Ministry of Education, College of Chemistry; Xiangtan University; Xiangtan 411105 P. R. China
| | - Zhiyong Peng
- Chengda Pharmaceuticals Co., Ltd.; Huanghe Road 36, Economic Development Zone, Jiashan Zhejiang 314100 P. R. China
| | - Yun Yang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province; The Key Laboratory of Environmentally Friendly Chemistry and Application of the Ministry of Education, College of Chemistry; Xiangtan University; Xiangtan 411105 P. R. China
| | - Jiawei Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province; The Key Laboratory of Environmentally Friendly Chemistry and Application of the Ministry of Education, College of Chemistry; Xiangtan University; Xiangtan 411105 P. R. China
| | - Jiaying Guo
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province; The Key Laboratory of Environmentally Friendly Chemistry and Application of the Ministry of Education, College of Chemistry; Xiangtan University; Xiangtan 411105 P. R. China
| | - Hang Gong
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province; The Key Laboratory of Environmentally Friendly Chemistry and Application of the Ministry of Education, College of Chemistry; Xiangtan University; Xiangtan 411105 P. R. China
| |
Collapse
|
43
|
Yi R, Li X, Wan B. Ring-opening and cyclization of aziridines with aryl azides: metal-free synthesis of 6-(triflyloxy)quinolines. Org Chem Front 2018. [DOI: 10.1039/c8qo00984h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A metal-free synthesis of 6-(triflyloxy)quinolines has been developed via the ring-opening and cyclization of 2-aryl-1-tosylaziridines with 2-azidobenzaldehydes in the presence of TfOH.
Collapse
Affiliation(s)
- Ruxia Yi
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
- University of Chinese Academy of Sciences
| | - Xincheng Li
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Boshun Wan
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| |
Collapse
|
44
|
Zhang J, Li S, Deng GJ, Gong H. Metal-Free, Oxidant-Free, and Controllable Graphene Oxide Catalyzed Direct Iodination of Arenes and Ketones. ChemCatChem 2017. [DOI: 10.1002/cctc.201701182] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jingyu Zhang
- The Key Laboratory of Environmentally Friendly Chemistry, and Application of the Ministry of Education; College of Chemistry; Xiangtan University; Xiangtan 411105 P.R. China
| | - Shiguang Li
- The Key Laboratory of Environmentally Friendly Chemistry, and Application of the Ministry of Education; College of Chemistry; Xiangtan University; Xiangtan 411105 P.R. China
| | - Guo-Jun Deng
- The Key Laboratory of Environmentally Friendly Chemistry, and Application of the Ministry of Education; College of Chemistry; Xiangtan University; Xiangtan 411105 P.R. China
| | - Hang Gong
- The Key Laboratory of Environmentally Friendly Chemistry, and Application of the Ministry of Education; College of Chemistry; Xiangtan University; Xiangtan 411105 P.R. China
| |
Collapse
|
45
|
Zhang J, Yang Y, Fang J, Deng GJ, Gong H. Metal-Free, Initiator-Free Graphene Oxide-Catalyzed Trifluoromethylation of Arenes. Chem Asian J 2017; 12:2524-2527. [PMID: 28748656 DOI: 10.1002/asia.201700939] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/23/2017] [Indexed: 11/10/2022]
Abstract
The direct C-H trifluoromethylation of arenes catalyzed by graphene oxide (GO) under safe conditions is described. This strategy is metal-free, initiator-free, safe, and scalable. It employs a readily available CF3 source and the reaction can be easily controlled to obtain a mono-trifluorinated product. This method opens a new avenue for GO-catalyzed chemistry.
Collapse
Affiliation(s)
- Jingyu Zhang
- The Key Laboratory of Environmentally Friendly Chemistry and, Application of the Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Yun Yang
- The Key Laboratory of Environmentally Friendly Chemistry and, Application of the Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Jingxian Fang
- The Key Laboratory of Environmentally Friendly Chemistry and, Application of the Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Guo-Jun Deng
- The Key Laboratory of Environmentally Friendly Chemistry and, Application of the Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Hang Gong
- The Key Laboratory of Environmentally Friendly Chemistry and, Application of the Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| |
Collapse
|