1
|
Maiti S, Parui N, Halder J, Dash J. Synthesis of triazole-fused tetracyclic spirooxindole derivatives via metal-free Huisgen cycloaddition. Chem Commun (Camb) 2024; 60:10009-10012. [PMID: 39177038 DOI: 10.1039/d4cc02534b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
We report an efficient, metal free method for synthesizing tetracyclic spirooxindole derivatives from N-protected isatins and propargyl bromide via Huisgen cycloaddition. This simple and practicle method provides access to spirooxindoles containing five-, six-, or seven-membered rings fused to a triazole ring.
Collapse
Affiliation(s)
- Sandip Maiti
- School of Chemical Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata-7000032, India.
| | - Nabin Parui
- School of Chemical Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata-7000032, India.
| | - Joydev Halder
- School of Chemical Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata-7000032, India.
| | - Jyotirmayee Dash
- School of Chemical Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata-7000032, India.
| |
Collapse
|
2
|
Wang K, Zhou W, Jia J, Ye J, Yuan M, Yang J, Qi Y, Chen R. Substrate-Controlled Diversity-Oriented Synthesis of Novel Polycyclic Frameworks via [4 + 2] and [3 + 2] Annulations of Ninhydrin-Derived MBH Adducts with 3,4-Dihydroisoquinolines. Molecules 2023; 28:6761. [PMID: 37836604 PMCID: PMC10574269 DOI: 10.3390/molecules28196761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Substrate-controlled diversity-oriented synthesis of polycyclic frameworks via [4 + 2] and [3 + 2] annulations between ninhydrin-derived Morita-Baylis-Hillman (MBH) adducts and 3,4-dihydroisoquinolines under similar reaction conditions have been developed. The reaction provides diversity-oriented synthesis of a series of novel and structurally complex spiro multi heterocyclic skeletons in good yields (up to 87% and 90%, respectively) with excellent diastereoselectivities (up to >25:1 dr). In particular, the switchable [4 + 2] and [3 + 2] annulation reactions are controlled by tuning the hydroxyl protecting group on the ninhydrin-derived MBH adduct to deliver structural diverse spiro[indene-2,2'-[1,3]oxazino[2,3-a]isoquinoline] and spiro[indene-2,1'-pyrrolo[2,1-a]isoquinoline], respectively. Furthermore, the relative configuration and chemical structure of two kinds of cycloadducts were confirmed through X-ray diffraction analysis.
Collapse
Affiliation(s)
- Kaikai Wang
- School of Pharmacy, Xinxiang University, Xinxiang 453000, China; (K.W.); (W.Z.); (J.Y.); (M.Y.); (Y.Q.)
| | - Wenwen Zhou
- School of Pharmacy, Xinxiang University, Xinxiang 453000, China; (K.W.); (W.Z.); (J.Y.); (M.Y.); (Y.Q.)
| | - Jun Jia
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130012, China;
| | - Junwei Ye
- School of Pharmacy, Xinxiang University, Xinxiang 453000, China; (K.W.); (W.Z.); (J.Y.); (M.Y.); (Y.Q.)
| | - Mengxin Yuan
- School of Pharmacy, Xinxiang University, Xinxiang 453000, China; (K.W.); (W.Z.); (J.Y.); (M.Y.); (Y.Q.)
| | - Jie Yang
- School of Chemistry & Materials Engineering, Xinxiang University, Xinxiang 453000, China
| | - Yonghua Qi
- School of Pharmacy, Xinxiang University, Xinxiang 453000, China; (K.W.); (W.Z.); (J.Y.); (M.Y.); (Y.Q.)
| | - Rongxiang Chen
- School of Pharmacy, Xinxiang University, Xinxiang 453000, China; (K.W.); (W.Z.); (J.Y.); (M.Y.); (Y.Q.)
| |
Collapse
|
3
|
Wang K, Li Y, Chen R, Sun A, Wang Z, Zhao Y, Wang M, Sheng S. Substrate‐Controlled Regioselectivity Switch in a Three‐Component 1,3‐Dipolar Cycloaddition Reaction to Access 3,3′‐Pyrrolidinyl‐Spirooxindoles Derivatives. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Kai‐Kai Wang
- School of Pharmacy Xinxiang University Xinxiang 453000 People's Republic of China
- Key Laboratory of Nano-carbon Modified Film Technology Engineering of Henan Province Xinxiang 453000 People's Republic of China
| | - Yan‐Li Li
- Medical College Xinxiang University Xinxiang 453000 People's Republic of China
| | - Rong‐Xiang Chen
- School of Pharmacy Xinxiang University Xinxiang 453000 People's Republic of China
| | - Ai‐Li Sun
- Key Laboratory of Nano-carbon Modified Film Technology Engineering of Henan Province Xinxiang 453000 People's Republic of China
| | - Zhan‐Yong Wang
- School of Pharmacy Xinxiang University Xinxiang 453000 People's Republic of China
| | - Ying‐Chao Zhao
- School of Pharmacy Xinxiang University Xinxiang 453000 People's Republic of China
| | - Ming‐Yue Wang
- School of Pharmacy Xinxiang University Xinxiang 453000 People's Republic of China
| | - Shi Sheng
- School of Pharmacy Xinxiang University Xinxiang 453000 People's Republic of China
| |
Collapse
|
4
|
Shaw P, Hassell-Hart SJ, Douglas GE, Malcolm AG, Kennedy AR, White GV, Paterson LC, Kerr WJ. Oxygenated Cyclopentenones via the Pauson-Khand Reaction of Silyl Enol Ether Substrates. Org Lett 2022; 24:2750-2755. [PMID: 35377671 PMCID: PMC9016766 DOI: 10.1021/acs.orglett.2c00856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
![]()
We report here the
application of silyl enol ether moieties as
efficient alkene coupling partners within cobalt-mediated intramolecular
Pauson–Khand reactions. This cyclization strategy delivers
synthetically valuable oxygenated cyclopentenone products in yields
of ≤93% from both ketone- and aldehyde-derived silyl enol ethers,
incorporates both terminal and internal alkyne partners, and delivers
a variety of decorated systems, including more complex tricyclic structures.
Facile removal of the silyl protecting group reveals oxygenated sites
for potential further elaboration.
Collapse
Affiliation(s)
- Paul Shaw
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, U.K
| | - Storm J Hassell-Hart
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, U.K.,Medicines Research Centre, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, England, U.K
| | - Gayle E Douglas
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, U.K
| | - Andrew G Malcolm
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, U.K
| | - Alan R Kennedy
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, U.K
| | - Gemma V White
- Medicines Research Centre, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, England, U.K
| | - Laura C Paterson
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, U.K
| | - William J Kerr
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland, U.K
| |
Collapse
|
5
|
Li K, Sun X, Zhao S, Li T, Zha Z, Wang Z. Zn-Catalyzed enantioselective allylation and allenylation of isatins by virtue of a proline-derived chiral ligand. Chem Commun (Camb) 2022; 58:2156-2159. [PMID: 35060568 DOI: 10.1039/d1cc06563g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
An asymmetric allylation and allenylation of isatins with facile organoboron reagents was developed under the catalysis of a Lewis acid. A series of optically pure 3-allyl-3-hydroxyoxindoles and 3-allenyl-3-hydroxyoxindoles can be obtained in excellent yields (up to 99% yield) and high enantioselectivities (up to 97% ee). The possible transition state was supported by DFT calculation and the corresponding mechanism was proposed. A gram scale experiment and further functionalization of these chiral 3-hydroxyoxindoles are established.
Collapse
Affiliation(s)
- Kuiliang Li
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry & Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences, Collaborative Innovation Center of Suzhou Nano Science and Technology & School of Chemistry and Materials Science in University of Science and Technology of China, Hefei, 230026, P. R. China.
| | - Xiang Sun
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry & Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences, Collaborative Innovation Center of Suzhou Nano Science and Technology & School of Chemistry and Materials Science in University of Science and Technology of China, Hefei, 230026, P. R. China.
| | - Shuangshuang Zhao
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry & Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences, Collaborative Innovation Center of Suzhou Nano Science and Technology & School of Chemistry and Materials Science in University of Science and Technology of China, Hefei, 230026, P. R. China.
| | - Tong Li
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry & Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences, Collaborative Innovation Center of Suzhou Nano Science and Technology & School of Chemistry and Materials Science in University of Science and Technology of China, Hefei, 230026, P. R. China.
| | - Zhenggen Zha
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry & Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences, Collaborative Innovation Center of Suzhou Nano Science and Technology & School of Chemistry and Materials Science in University of Science and Technology of China, Hefei, 230026, P. R. China.
| | - Zhiyong Wang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry & Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences, Collaborative Innovation Center of Suzhou Nano Science and Technology & School of Chemistry and Materials Science in University of Science and Technology of China, Hefei, 230026, P. R. China.
| |
Collapse
|
6
|
Králová P, Soural M. Reagent-Based Diversity-Oriented Synthesis of Triazolo[1,5- a][1,4]diazepine Derivatives from Polymer-Supported Homoazidoalanine. J Org Chem 2021; 86:7963-7974. [PMID: 34060832 DOI: 10.1021/acs.joc.1c00293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we report the synthesis of skeletally different triazolo[1,5-a][1,4]diazepines starting from immobilized homoazidoalanine. After sulfonylation with 2/4-nitrobenzenesulfonyl chlorides and Mitsunobu alkylation with various alkynols, the corresponding N-substituted nitrobenzenesulfonamides were obtained. Their catalyst-free Huisgen cycloaddition provided immobilized and functionalized triazolo[1,5-a][1,4]diazepines as the key intermediates for further modification. Using the concept of diversity-oriented, reagent-based synthesis, the key intermediates were subsequently converted to heterocycles bearing [5 + 7 + 5], [5 + 7 + 6], and [5 + 7 + 7] scaffolds. Furthermore, the synthesis of spirocyclic triazolodiazepines was developed.
Collapse
Affiliation(s)
- Petra Králová
- Department of Organic Chemistry, Faculty of Science, Palacký University, Olomouc 779 00, Czech Republic
| | - Miroslav Soural
- Department of Organic Chemistry, Faculty of Science, Palacký University, Olomouc 779 00, Czech Republic.,Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, Olomouc 779 00, Czech Republic
| |
Collapse
|
7
|
Abstract
This review summaries recent synthetic developments towards spirocyclic oxindoles and applications as valuable medicinal and synthetic targets.
Collapse
Affiliation(s)
- Alexander J. Boddy
- Department of Chemistry
- Imperial College London
- Molecular Sciences Research Hub
- London W12 0BZ
- UK
| | - James A. Bull
- Department of Chemistry
- Imperial College London
- Molecular Sciences Research Hub
- London W12 0BZ
- UK
| |
Collapse
|
8
|
Xing S, Xia H, Wang C, Wang Y, Hao L, Wang K, Zhu B. A Stepwise Synthesis of Spiroindoline Compounds via Ring Opening of Aziridines and C−H Activation/Cyclization. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Siyang Xing
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 People's Republic of China
| | - Hanyu Xia
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 People's Republic of China
| | - Chenyu Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 People's Republic of China
| | - Yuhan Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 People's Republic of China
| | - Lu Hao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 People's Republic of China
| | - Kui Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 People's Republic of China
| | - Bolin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 People's Republic of China
| |
Collapse
|
9
|
Kang Z, Shou J, Xing D, Hu W. Rh(II)/Ag(I)-Cocatalyzed Three-Component Reaction via S N1/S N1'-Type Trapping of Oxonium Ylide with the Nicholas Intermediate. J Org Chem 2020; 85:9850-9862. [PMID: 32618194 DOI: 10.1021/acs.joc.0c01162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A Rh(II)/Ag(I)-cocatalyzed three-component reaction of propargylic alcohol-Co2(CO)6 complexes with diazo compounds and benzyl alcohols is described, which represents the first trapping process of oxonium ylides with carbocations via the SN1/SN1'-type pathway. This transformation provides an efficient approach for construction of dicobalt hexacarbonyl-complexed 3,3-disubstituted oxindoles. Further derivatization of the product, initiated by the deprivation of the dicobalt species, gives the 3,3-disubstituted oxindoles with the ene alkynyl group and the privileged spirooxindole-vinyldihydropyran structure.
Collapse
Affiliation(s)
- Zhenghui Kang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jiayi Shou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Dong Xing
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Wenhao Hu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| |
Collapse
|
10
|
Laroche B, Bouvarel T, Louis-Sylvestre M, Nay B. Diversity-oriented synthesis of 17-spirosteroids. Beilstein J Org Chem 2020; 16:880-887. [PMID: 32461769 PMCID: PMC7214869 DOI: 10.3762/bjoc.16.79] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/17/2020] [Indexed: 01/04/2023] Open
Abstract
A diversity-oriented synthesis (DOS) approach has been used to functionalize 17-ethynyl-17-hydroxysteroids through a one-pot procedure involving a ring-closing enyne metathesis (RCEYM) and a Diels–Alder reaction on the resulting diene, under microwave irradiations. Taking advantage of the propargyl alcohol moiety present on commercially available steroids, this classical strategy was applied to mestranol and lynestrenol, giving a collection of new complex 17-spirosteroids.
Collapse
Affiliation(s)
- Benjamin Laroche
- Unité Molécules de Communication et Adaptations des Micro-organismes (MCAM), Muséum National d'Histoire Naturelle, CNRS, Paris, France
| | - Thomas Bouvarel
- Unité Molécules de Communication et Adaptations des Micro-organismes (MCAM), Muséum National d'Histoire Naturelle, CNRS, Paris, France
| | - Martin Louis-Sylvestre
- Laboratoire de Synthèse Organique, Ecole Polytechnique, CNRS, ENSTA, Institut Polytechnique de Paris, Palaiseau Cedex, France
| | - Bastien Nay
- Unité Molécules de Communication et Adaptations des Micro-organismes (MCAM), Muséum National d'Histoire Naturelle, CNRS, Paris, France.,Laboratoire de Synthèse Organique, Ecole Polytechnique, CNRS, ENSTA, Institut Polytechnique de Paris, Palaiseau Cedex, France
| |
Collapse
|
11
|
Tanaka F, Pasha M, Sohail M. Intramolecular Oxa-Michael Reactions of Aldols Generated from Enones and Isatins to Afford Spirooxindole Tetrahydropyrans. HETEROCYCLES 2020. [DOI: 10.3987/com-19-s(f)26] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Nallasivam JL, Chakraborty TK. Titanocene(III)-Mediated 5-exo-trig Radical Cyclization: En Route to Spirooxindole-Based Tetrahydrofuran and Bicyclic Lactone. J Org Chem 2019; 84:16124-16138. [PMID: 31793298 DOI: 10.1021/acs.joc.9b02608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The isatin core system is of immense importance due to the highly reactive prochiral C-3 position, which paves an easy way to construct large arrays of spirooxindole heterocyclic motifs. Herein, we depict an isatin-derived and 3,3'-disubstituted oxindole-appended epoxy-acrylate undergoing Cp2Ti(III)Cl-mediated reductive oxirane-ring opening with concomitant intramolecular 5-exo-trig radical cyclization leading to tetrahydrofuran-based oxa-spirooxindole systems. The fused spirooxindole structural feature is embedded in many natural products and tends to exhibit a wide spectrum of biological activities. The presence of more than one quaternary center and the availability of multiple functional groups like hydroxyl, ester, or lactone in the resultant products expand the scope of synthetic applications of the newly acquired oxa-spirooxindole molecules.
Collapse
|
13
|
Song J, Li Z, Wang G, Zhang N, Chen C, Chen J, Ren H, Pan W. Controllable Synthesis of Polyheterocyclic Spirooxindoles and 3,3‐Bistryptophol Oxindoles via Fe(ClO
4
)
3
⋅ 6H
2
O‐Promoted Hetero‐Pictet‐Spengler Reaction. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jun‐Rong Song
- State key Laboratory of Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang 550014 People's Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences / Guizhou Provincial Engineering Research Center for Natural Drugs Guiyang 550014 People's Republic of China
| | - Zhi‐Yao Li
- Guizhou University Huaxi Avenue South Guiyang 550025 People's Republic of China
| | - Guang‐Di Wang
- Guizhou University Huaxi Avenue South Guiyang 550025 People's Republic of China
| | - Ni Zhang
- State key Laboratory of Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang 550014 People's Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences / Guizhou Provincial Engineering Research Center for Natural Drugs Guiyang 550014 People's Republic of China
| | - Chao Chen
- State key Laboratory of Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang 550014 People's Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences / Guizhou Provincial Engineering Research Center for Natural Drugs Guiyang 550014 People's Republic of China
| | - Juan Chen
- State key Laboratory of Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang 550014 People's Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences / Guizhou Provincial Engineering Research Center for Natural Drugs Guiyang 550014 People's Republic of China
| | - Hai Ren
- State key Laboratory of Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang 550014 People's Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences / Guizhou Provincial Engineering Research Center for Natural Drugs Guiyang 550014 People's Republic of China
| | - Weidong Pan
- State key Laboratory of Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang 550014 People's Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences / Guizhou Provincial Engineering Research Center for Natural Drugs Guiyang 550014 People's Republic of China
- Guizhou University Huaxi Avenue South Guiyang 550025 People's Republic of China
| |
Collapse
|
14
|
Sridevi B, Reddy Kandimalla S, Subba Reddy BV. Oxidative sp 3
C-H Functionalization of Methyl Substituted Aza-Aromatics: An Easy Access to N
-Fused Polyheterocycles. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Bhima Sridevi
- Fluoro-Agrochemicals; CSIR-Indian Institute of Chemical Technology; Hyderabad 500-007 India
- Academy of Scientific and Innovative Research; New Delhi 110025 India
| | - Satheeshkumar Reddy Kandimalla
- Fluoro-Agrochemicals; CSIR-Indian Institute of Chemical Technology; Hyderabad 500-007 India
- Academy of Scientific and Innovative Research; New Delhi 110025 India
| | - B. V. Subba Reddy
- Fluoro-Agrochemicals; CSIR-Indian Institute of Chemical Technology; Hyderabad 500-007 India
- Academy of Scientific and Innovative Research; New Delhi 110025 India
| |
Collapse
|
15
|
Muthusamy S, Prabu A, Suresh E. Copper-catalyzed synthesis of spiro-indolofurobenzopyrans: tandem reactions of diazoamides and O-propargyl salicylaldehydes. Org Biomol Chem 2019; 17:8088-8093. [PMID: 31455951 DOI: 10.1039/c9ob01275c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An atom-economical synthesis of spiro-indolofurobenzopyrans was developed from diazoamides and O-propargyl salicylaldehydes in the presence of copper(i) thiophene-2-carboxylate in a diastereoselective manner. This methodology involves the preparation of carbonyl ylide intermediates followed by 1,3-dipolar cycloaddition with internal/external alkynes, offering a great potential for constructing biologically significant spiro-indolofurobenzopyrans, as thermodynamically controlled products, in a tandem manner.
Collapse
Affiliation(s)
| | - Ammasi Prabu
- School of Chemistry, Bharathidasan University, Tiruchirappalli-620 024, India.
| | - Eringathodi Suresh
- CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar-364 002, India
| |
Collapse
|
16
|
Li Y, Huang JH, Wang JL, Song GT, Tang DY, Yao F, Lin HK, Yan W, Li HY, Xu ZG, Chen ZZ. Diversity-Oriented Synthesis of Imidazo-Dipyridines with Anticancer Activity via the Groebke–Blackburn–Bienaymé and TBAB-Mediated Cascade Reaction in One Pot. J Org Chem 2019; 84:12632-12638. [DOI: 10.1021/acs.joc.9b01385] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yong Li
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Jiu-Hong Huang
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Juan-Li Wang
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Gui-Ting Song
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Dian-Yong Tang
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Fang Yao
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Hui-kuan Lin
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Wei Yan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Hong-yu Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Zhi-Gang Xu
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Zhong-Zhu Chen
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| |
Collapse
|
17
|
Wang B, Wang XH, Huang W, Zhou J, Zhu HP, Peng C, Han B. Protecting Group-Directed Diastereodivergent Synthesis of Chiral Tetrahydronaphthalene-Fused Spirooxindoles via Bifunctional Tertiary Amine Catalysis. J Org Chem 2019; 84:10349-10361. [DOI: 10.1021/acs.joc.9b01501] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Biao Wang
- Key Laboratory of Characteristic Chinese Resource in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiao-Hui Wang
- Department of Pharmacy, Naval Authorities Clinic, Beijing 100841, China
| | - Wei Huang
- Key Laboratory of Characteristic Chinese Resource in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jin Zhou
- Key Laboratory of Characteristic Chinese Resource in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hong-Ping Zhu
- Key Laboratory of Characteristic Chinese Resource in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- Key Laboratory of Characteristic Chinese Resource in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Bo Han
- Key Laboratory of Characteristic Chinese Resource in Southwest China, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
18
|
Balaboina R, Thirukovela N, Kankala S, Balasubramanian S, Bathula SR, Vadde R, Jonnalagadda SB, Vasam CS. Synergistic Catalysis of Ag(I) and Organo‐
N
‐heterocyclic Carbenes: One‐Pot Synthesis of New Anticancer Spirooxindole‐1,4‐dihydropyridines. ChemistrySelect 2019. [DOI: 10.1002/slct.201803507] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ramesh Balaboina
- Department of ChemistryKakatiya University Warangal- 506009, Telangana State India
| | | | - Shravankumar Kankala
- Department of ChemistryKakatiya University Warangal- 506009, Telangana State India
| | - Sridhar Balasubramanian
- X-ray Crystallography DivisionCSIR–Indian Institute of Chemical Technology Hyderabad- 500007, Telangana State India
| | - Surendar Reddy Bathula
- Division of Natural Product ChemistryCSIR-Indian Institute of Chemical Technology Hyderabad- 500007, Telangana State India
| | - Ravinder Vadde
- Department of ChemistryKakatiya University Warangal- 506009, Telangana State India
| | - Sreekantha B Jonnalagadda
- School of Chemistry and PhysicsUniversity of Kwazulu-NatalWestville Campus, Chiltern Hills, Durban- 4000, South Africa
| | - Chandra Sekhar Vasam
- Department of Pharmaceutical ChemistryTelangana University Nizamabad- 503322, Telangana State India
| |
Collapse
|
19
|
Yagnam S, Rami Reddy E, Trivedi R, Krishna NV, Giribabu L, Rathod B, Prakasham RS, Sridhar B. 1,2,3-Triazole derivatives of 3-ferrocenylidene-2-oxindole: Synthesis, characterization, electrochemical and antimicrobial evaluation. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4817] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Swetha Yagnam
- Catalysis and Fine Chemicals Division; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 Telangana India
- Academy of Scientific and Innovative Research, AcSIR CSIR-IICT Campus; Hyderabad 500007 Telangana India
| | - Eda Rami Reddy
- Catalysis and Fine Chemicals Division; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 Telangana India
| | - Rajiv Trivedi
- Catalysis and Fine Chemicals Division; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 Telangana India
- Academy of Scientific and Innovative Research, AcSIR CSIR-IICT Campus; Hyderabad 500007 Telangana India
| | - Narra Vamshi Krishna
- Polymer and Functional Materials Division; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 Telangana India
| | - Lingamallu Giribabu
- Polymer and Functional Materials Division; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 Telangana India
- Academy of Scientific and Innovative Research, AcSIR CSIR-IICT Campus; Hyderabad 500007 Telangana India
| | - Balaji Rathod
- Organic Synthesis and Process Chemistry; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 Telangana India
| | - Reddy Shetty Prakasham
- Organic Synthesis and Process Chemistry; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 Telangana India
- Academy of Scientific and Innovative Research, AcSIR CSIR-IICT Campus; Hyderabad 500007 Telangana India
| | - Balasubramanian Sridhar
- Centre for X-ray Crystallography; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 Telangana India
- Academy of Scientific and Innovative Research, AcSIR CSIR-IICT Campus; Hyderabad 500007 Telangana India
| |
Collapse
|
20
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2017. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Kerr WJ, McLaughlin M, Paterson LC, Pearson CM. Total synthesis 2-epi-α-cedren-3-one via a cobalt-catalysed Pauson-Khand reaction. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.06.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
22
|
Yadav A, Banerjee J, Arupula SK, Mobin SM, Samanta S. Lewis-Base-Catalyzed Domino Reaction of Morita-Baylis-Hillman Carbonates of Isatins with Enolizable Cyclic Carbonyl Compounds: Stereoselective Access to Spirooxindole-Pyrans. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800240] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Anubha Yadav
- Discipline of Chemistry; Indian Institute of Technology Indore; Simrol 453552 Indore India
| | - Joyanta Banerjee
- Discipline of Chemistry; Indian Institute of Technology Indore; Simrol 453552 Indore India
| | - Sanjeeva K. Arupula
- Discipline of Chemistry; Indian Institute of Technology Indore; Simrol 453552 Indore India
| | - Shaikh M. Mobin
- Discipline of Chemistry; Indian Institute of Technology Indore; Simrol 453552 Indore India
| | - Sampak Samanta
- Discipline of Chemistry; Indian Institute of Technology Indore; Simrol 453552 Indore India
| |
Collapse
|
23
|
Zhou G, Wei QD, Wang GL, Gong Y, Liu HH, Liu XL, Chen L, Zhou Y. Molecular hybridization-guided annulation reactions of isatins with 4-methylpent-3-en-2-one: A direct access to spirooxindole tetrahydropyranones. SYNTHETIC COMMUN 2018. [DOI: 10.1080/00397911.2018.1433300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Gen Zhou
- Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic Medicine, Guizhou University, Guiyang, China
| | - Qi-Di Wei
- Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic Medicine, Guizhou University, Guiyang, China
| | - Guan-Lian Wang
- Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic Medicine, Guizhou University, Guiyang, China
| | - Yi Gong
- Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic Medicine, Guizhou University, Guiyang, China
| | - Huan-Huan Liu
- Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic Medicine, Guizhou University, Guiyang, China
| | - Xiong-Li Liu
- Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic Medicine, Guizhou University, Guiyang, China
| | - Lin Chen
- College of Chemistry and Chemical Engineering, Guizhou Normal University, Guiyang, China
| | - Ying Zhou
- School of Pharmacy, Guiyang College of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
24
|
Pawar TJ, Jiang H, Vázquez MA, Villegas Gómez C, Cruz Cruz D. Aminocatalytic Privileged Diversity-Oriented Synthesis (ApDOS): An Efficient Strategy to Populate Relevant Chemical Spaces. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800273] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tushar J. Pawar
- Departamento de Química; División de Ciencias Naturales y Exactas; Universidad de Guanajuato; Noria Alta S/N 36050 Guanajuato Gto. México
| | - Hao Jiang
- Departamento de Química; División de Ciencias Naturales y Exactas; Universidad de Guanajuato; Noria Alta S/N 36050 Guanajuato Gto. México
| | - Miguel A. Vázquez
- Departamento de Química; División de Ciencias Naturales y Exactas; Universidad de Guanajuato; Noria Alta S/N 36050 Guanajuato Gto. México
| | - Clarisa Villegas Gómez
- Departamento de Química; División de Ciencias Naturales y Exactas; Universidad de Guanajuato; Noria Alta S/N 36050 Guanajuato Gto. México
| | - David Cruz Cruz
- Departamento de Química; División de Ciencias Naturales y Exactas; Universidad de Guanajuato; Noria Alta S/N 36050 Guanajuato Gto. México
| |
Collapse
|