1
|
Verspeek D, Ahrens S, Wen X, Yang Y, Li YW, Junge K, Beller M. A manganese-based catalyst system for general oxidation of unactivated olefins, alkanes, and alcohols. Org Biomol Chem 2024; 22:2630-2642. [PMID: 38456330 DOI: 10.1039/d4ob00155a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Non-noble metal-based catalyst systems consisting of inexpensive manganese salts, picolinic acid and various heterocycles enable epoxidation of the challenging (terminal) unactivated olefins, selective C-H oxidation of unactivated alkanes, and O-H oxidation of secondary alcohols with aqueous hydrogen peroxide. In the presence of the in situ generated optimal manganese catalyst, epoxides are generated with up to 81% yield from alkenes and ketone products with up to 51% yield from unactivated alkanes. This convenient protocol allows the formation of the desired products under ambient conditions (room temperature, 1 bar) by employing only a slight excess of hydrogen peroxide with 2,3-butadione as a sub-stoichiometric additive.
Collapse
Affiliation(s)
- Dennis Verspeek
- Leibniz-Institute für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany.
| | - Sebastian Ahrens
- Leibniz-Institute für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany.
| | - Xiandong Wen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd, Huairou District, Beijing, 101400, China
| | - Yong Yang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd, Huairou District, Beijing, 101400, China
| | - Yong-Wang Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd, Huairou District, Beijing, 101400, China
| | - Kathrin Junge
- Leibniz-Institute für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany.
| | - Matthias Beller
- Leibniz-Institute für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany.
| |
Collapse
|
2
|
He Q, Pu MP, Jiang Z, Wang H, Feng X, Liu X. Asymmetric Epoxidation of Alkenes Catalyzed by a Cobalt Complex. J Am Chem Soc 2023. [PMID: 37406347 DOI: 10.1021/jacs.3c05476] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Asymmetric epoxidation of alkenes catalyzed by nonheme chiral Mn-O and Fe-O catalysts has been well established, but chiral Co-O catalysts for the purpose remain virtually undeveloped due to the oxo wall. Herein is first reported a chiral cobalt complex to realize the enantioselective epoxidation of cyclic and acyclic trisubstituted alkenes by using PhIO as the oxidant in acetone, wherein the tetra-oxygen-based chiral N,N'-dioxide with sterically hindered amide subunits plays a crucial role in supporting the formation of the Co-O intermediate and enantioselective electrophilic oxygen transfer. Mechanistic studies, including HRMS measurements, UV-vis absorption spectroscopy, magnetic susceptibility, as well as DFT calculations, were carried out, confirming the formation of Co-O species as a quartet Co(III)-oxyl tautomer. The mechanism and the origin of enantioselectivity were also elucidated based on control experiments, nonlinear effects, kinetic studies, and DFT calculations.
Collapse
Affiliation(s)
- Qianwen He
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Mao-Ping Pu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zheng Jiang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Hongyu Wang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
3
|
Zhang K, Li C, Jia Y, Zhao W. Asymmetric Oxidative Lactonization of Enynyl Boronates. Angew Chem Int Ed Engl 2022; 61:e202209004. [DOI: 10.1002/anie.202209004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Kezhuo Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics Advanced Catalytic Engineering Research Center of the Ministry of Education College of Chemistry and Chemical Engineering Hunan University 410082 Changsha Hunan P. R. China
| | - Chenchen Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics Advanced Catalytic Engineering Research Center of the Ministry of Education College of Chemistry and Chemical Engineering Hunan University 410082 Changsha Hunan P. R. China
| | - Yining Jia
- State Key Laboratory of Chemo/Biosensing and Chemometrics Advanced Catalytic Engineering Research Center of the Ministry of Education College of Chemistry and Chemical Engineering Hunan University 410082 Changsha Hunan P. R. China
| | - Wanxiang Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics Advanced Catalytic Engineering Research Center of the Ministry of Education College of Chemistry and Chemical Engineering Hunan University 410082 Changsha Hunan P. R. China
| |
Collapse
|
4
|
Zhang K, Li C, Jia Y, Zhao W. Asymmetric Oxidative Lactonization of Enynyl Boronates. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | - Wanxiang Zhao
- Hunan University chemistry Yuelushan, Changsha 410082 changsha CHINA
| |
Collapse
|
5
|
Ogino E, Kuwano S, Arai T. Chiral Aminomethylbinaphthol‐Catalyzed Diastereo‐ and Enantioselective Epoxidation of Trisubstituted Acrylonitriles. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Eri Ogino
- Soft Molecular Activation Research Center (SMARC) Chiba Iodine Resource Innovation Center (CIRIC) Molecular Chirality Research Center (MCRC) Department of Chemistry Graduate School of Science Chiba University 1-33 Yayoi Inage, Chiba 263–8522 Japan
| | - Satoru Kuwano
- Soft Molecular Activation Research Center (SMARC) Chiba Iodine Resource Innovation Center (CIRIC) Molecular Chirality Research Center (MCRC) Department of Chemistry Graduate School of Science Chiba University 1-33 Yayoi Inage, Chiba 263–8522 Japan
| | - Takayoshi Arai
- Soft Molecular Activation Research Center (SMARC) Chiba Iodine Resource Innovation Center (CIRIC) Molecular Chirality Research Center (MCRC) Department of Chemistry Graduate School of Science Chiba University 1-33 Yayoi Inage, Chiba 263–8522 Japan
| |
Collapse
|
6
|
Beller M, Mao S, Budweg S, Spannenberg A, Wen X, Yang Y, Li YW, Junge K. Iron‐Catalyzed Epoxidation of Linear α‐Olefins with Hydrogen Peroxide. ChemCatChem 2021. [DOI: 10.1002/cctc.202101668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Matthias Beller
- Leibniz-Institut für Katalyse Homogeneous Catalysis Albert-Einstein-Straße 29a 18059 Rostock GERMANY
| | - Shuxin Mao
- Leibniz-Institut für Katalyse eV: Leibniz-Institut fur Katalyse eV Angewandte Homogenkatalyse GERMANY
| | - Svenja Budweg
- Leibniz-Institut für Katalyse eV: Leibniz-Institut fur Katalyse eV Angewandte Homogenkatalyse GERMANY
| | - Anke Spannenberg
- Leibniz-Institut für Katalyse eV: Leibniz-Institut fur Katalyse eV Analytik GERMANY
| | - Xiaodong Wen
- Chinese Academy of Sciences Institute of Coal Chemistry CHINA
| | - Yong Yang
- Chinese Academy of Sciences Katalyse CHINA
| | - Yong-Wang Li
- Chinese Academy of Sciences Institute of Coal Chemistry CHINA
| | - Kathrin Junge
- Leibniz-Institut für Katalyse eV: Leibniz-Institut fur Katalyse eV Angewandte Homogenkatalyse GERMANY
| |
Collapse
|
7
|
Nam DG, Shim SY, Jeong H, Ryu DH. Catalytic Asymmetric Darzens‐Type Epoxidation of Diazoesters: Highly Enantioselective Synthesis of Trisubstituted Epoxides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Dong Guk Nam
- Department of Chemistry Sungkyunkwan University 300 Cheoncheon-dong, Jangan-gu Suwon 16419 Korea
| | - Su Yong Shim
- Department of Chemistry Sungkyunkwan University 300 Cheoncheon-dong, Jangan-gu Suwon 16419 Korea
- Present address: Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Hye‐Min Jeong
- Department of Chemistry Sungkyunkwan University 300 Cheoncheon-dong, Jangan-gu Suwon 16419 Korea
| | - Do Hyun Ryu
- Department of Chemistry Sungkyunkwan University 300 Cheoncheon-dong, Jangan-gu Suwon 16419 Korea
| |
Collapse
|
8
|
Nam DG, Shim SY, Jeong HM, Ryu DH. Catalytic Asymmetric Darzens-Type Epoxidation of Diazoesters: Highly Enantioselective Synthesis of Trisubstituted Epoxides. Angew Chem Int Ed Engl 2021; 60:22236-22240. [PMID: 34350688 DOI: 10.1002/anie.202108454] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/19/2021] [Indexed: 12/24/2022]
Abstract
Highly enantioselective Darzens-type epoxidation of diazoesters with glyoxal derivatives was accomplished using a chiral boron-Lewis acid catalyst, which facilitated asymmetric synthesis of trisubstituted α,β-epoxy esters. In the presence of a chiral oxazaborolidinium ion catalyst, the reaction proceeded in high yield (up to 99 %) with excellent enantio- and diastereoselectivity (up to >99 % ee and >20:1 dr, respectively). The synthetic potential of this method was illustrated by conversion of the products to various compounds such as epoxy γ-butyrolactone, tertiary β-hydroxy ketone and epoxy diester.
Collapse
Affiliation(s)
- Dong Guk Nam
- Department of Chemistry, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon, 16419, Korea
| | - Su Yong Shim
- Department of Chemistry, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon, 16419, Korea.,Present address: Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Hye-Min Jeong
- Department of Chemistry, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon, 16419, Korea
| | - Do Hyun Ryu
- Department of Chemistry, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon, 16419, Korea
| |
Collapse
|
9
|
He Q, Zhang D, Zhang F, Liu X, Feng X. Asymmetric Catalytic Epoxidation of Terminal Enones for the Synthesis of Triazole Antifungal Agents. Org Lett 2021; 23:6961-6966. [PMID: 34424719 DOI: 10.1021/acs.orglett.1c02588] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
An enantioselective epoxidation of α-substituted vinyl ketones was realized to construct the key epoxide intermediates for the synthesis of various triazole antifungal agents. The reaction proceeded efficiently in high yields with good enantioselectivities by employing a chiral N,N'-dioxide/ScIII complex as the chiral catalyst and 35% aq. H2O2 as the oxidant. It enabled the facile transformation for optically active isavuconazole, efinaconazole, and other potential antifungal agents.
Collapse
Affiliation(s)
- Qianwen He
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Dong Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Fengcai Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
10
|
Ogino E, Nakamura A, Kuwano S, Arai T. Chiral C2-Symmetric Aminomethylbinaphthol as Synergistic Catalyst for Asymmetric Epoxidation of Alkylidenemalononitriles: Easy Access to Chiral Spirooxindoles. Org Lett 2021; 23:1980-1985. [DOI: 10.1021/acs.orglett.0c04245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Eri Ogino
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Synthetic Organic Chemistry, Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
| | - Ayu Nakamura
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Synthetic Organic Chemistry, Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
| | - Satoru Kuwano
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Synthetic Organic Chemistry, Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
| | - Takayoshi Arai
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Synthetic Organic Chemistry, Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
| |
Collapse
|
11
|
Shen B, He Q, Dong S, Liu X, Feng X. A chiral cobalt(ii) complex catalyzed enantioselective aza-Piancatelli rearrangement/Diels-Alder cascade reaction. Chem Sci 2020; 11:3862-3867. [PMID: 34122854 PMCID: PMC8152720 DOI: 10.1039/d0sc00542h] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A chiral N,N′-dioxide/cobalt(ii) complex catalyzed highly diastereoselective and enantioselective tandem aza-Piancatelli rearrangement/intramolecular Diels–Alder reaction has been disclosed. Various valuable hexahydro-2a,5-epoxycyclopenta[cd]isoindoles bearing six contiguous stereocenters have been obtained in good yields with excellent diastereo- and enantio-selectivities from a wide range of both readily available 2-furylcarbinols and N-(furan-2-ylmethyl)anilines. An asymmetric aza-Piancatelli rearrangement/Diels–Alder cascade reaction between 2-furylcarbinols and N-(furan-2-ylmethyl)anilines was realized by using a chiral N,N′-dioxide/cobalt(ii) complex catalyst.![]()
Collapse
Affiliation(s)
- Bin Shen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Qianwen He
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| |
Collapse
|
12
|
Zhang H, Luo Y, Li D, Yao Q, Dong S, Liu X, Feng X. Enantioselective Synthesis of 4-Hydroxy-dihydrocoumarins via Catalytic Ring Opening/Cycloaddition of Cyclobutenones. Org Lett 2019; 21:2388-2392. [PMID: 30900904 DOI: 10.1021/acs.orglett.9b00670] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A highly diastereo- and enantioselective ring-opening/cycloaddition reaction of cyclobutenones with 2-hydroxyacetophenones or salicylaldehyde was achieved by employing a chiral N,N'-dioxide-scandium(III) complex as the catalyst. It provided various 3-phenylvinyl-4-hydroxy-dihydrocoumarins in good yields (up to 92%), high enantioselectivities (up to 93% ee), and excellent diastereoselectivities (>19:1 dr). Moreover, a possible catalytic cycle was proposed based on the control experiments and previous reports.
Collapse
Affiliation(s)
- Hang Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Yao Luo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Dawei Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Qian Yao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| |
Collapse
|
13
|
Kokel A, Schäfer C, Török B. Organic Synthesis Using Environmentally Benign Acid Catalysis. Curr Org Synth 2019; 16:615-649. [PMID: 31984932 PMCID: PMC7432199 DOI: 10.2174/1570179416666190206141028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/28/2018] [Accepted: 01/11/2019] [Indexed: 11/22/2022]
Abstract
Recent advances in the application of environmentally benign acid catalysts in organic synthesis are reviewed. The work includes three main parts; (i) description of environmentally benign acid catalysts, (ii) synthesis with heterogeneous and (iii) homogeneous catalysts. The first part provides a brief overview of acid catalysts, both solid acids (metal oxides, zeolites, clays, ion-exchange resins, metal-organic framework based catalysts) and those that are soluble in green solvents (water, alcohols) and at the same time could be regenerated after reactions (metal triflates, heteropoly acids, acidic organocatalysts etc.). The synthesis sections review a broad array of the most common and practical reactions such as Friedel-Crafts and related reactions (acylation, alkylations, hydroxyalkylations, halogenations, nitrations etc.), multicomponent reactions, rearrangements and ring transformations (cyclizations, ring opening). Both the heterogeneous and homogeneous catalytic synthesis parts include an overview of asymmetric acid catalysis with chiral Lewis and Brønsted acids. Although a broad array of catalytic processes are discussed, emphasis is placed on applications with commercially available catalysts as well as those of sustainable nature; thus individual examples are critically reviewed regarding their contribution to sustainable synthesis.
Collapse
Affiliation(s)
- Anne Kokel
- Department of Chemistry, University of Massachusetts Boston, 100 Morissey Blvd., Boston, MA02125, USA
| | - Christian Schäfer
- Department of Chemistry, University of Massachusetts Boston, 100 Morissey Blvd., Boston, MA02125, USA
| | - Béla Török
- Department of Chemistry, University of Massachusetts Boston, 100 Morissey Blvd., Boston, MA02125, USA
| |
Collapse
|
14
|
|