1
|
Ren J, He L, Li J, Wang N, Long X, Yang J, Li K. A General Medium-to-Large Sized Ring Synthesis Enabled by Copper-Catalyzed Difluoroalkylamidation Cyclization of Alkynes. Org Lett 2025; 27:5253-5259. [PMID: 40343464 DOI: 10.1021/acs.orglett.5c01459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
This paper describes a novel coordinating activation strategy that enables the synthesis of medium-to-large sized rings (11-17 members) via an unprecedented difluoroalkylamidation cyclization of alkynes. This method provides an efficient platform for accessing skeleton-diverse difluoroalkyl-containing cyclic enamides with complete regio- and stereoselectivity. The protocol features broad substrate compatibility, functional group tolerance, and ease of use at dilution concentrations (50 mM) that are not high. Moreover, the synthetic utility of this difunctional cyclization is underscored by its application in the late-stage modification of complex molecules. Additionally, the click reaction facilitates the derivation of alkynyl-substituted cyclization products, demonstrating the methodology's potential in biological sciences.
Collapse
Affiliation(s)
- Jing Ren
- Institute of Biopharmaceuticals, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China
| | - Linfeng He
- Department of Liver Transplantation Center and Institute of Organ Transplantation, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China
| | - Jinlong Li
- Institute of Biopharmaceuticals, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China
| | - Ning Wang
- Institute of Biopharmaceuticals, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China
| | - Xinyu Long
- Institute of Biopharmaceuticals, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China
| | - Jiayin Yang
- Department of Liver Transplantation Center and Institute of Organ Transplantation, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China
| | - Kaizhi Li
- Institute of Biopharmaceuticals, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, China
| |
Collapse
|
2
|
Tang L, Jia F, Lv G, Wang X, Zhou Q. Photoredox-Catalyzed Synthesis of 3,3-Difluoro-γ-lactams via 1,5-Hydrogen Atom Transfer-Involved Alkyne Difunctionalization and C-N Cleavage. Org Lett 2024. [PMID: 39513685 DOI: 10.1021/acs.orglett.4c03715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
This manuscript describes the application of a 1,5-hydrogen atom transfer strategy in photoredox-catalyzed hydrodifluoroalkylation of alkynes. The approach utilizes a sequential cascade process of difluoroalkylation, 1,5-hydrogen atom transfer, C(sp3)-N cleavage, and intramolecular condensation cyclization to accomplish efficient [3 + 2] cycloaddition of readily available propargylamines with halodifluoroacetates (or halodifluoroacetamides). The reaction allows for the selective construction of polysubstituted 3,3-difluoro-γ-lactams with good functional group tolerance, and further transformations of the resulting 3,3-difluoro-γ-lactams into different building blocks are also accomplished.
Collapse
Affiliation(s)
- Lin Tang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
- Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang 464000, China
| | - Fengjuan Jia
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Ge Lv
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Xiaoyu Wang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Qiuju Zhou
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
3
|
Huang T, Yin H, Li T, Yu C, Zhang K, Yao C. NHC catalyzed radical tandem cyclization: an efficient synthesis of α,α-difluoro-γ-lactam derivatives. Org Biomol Chem 2024; 22:6988-6998. [PMID: 39140215 DOI: 10.1039/d4ob01012d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Herein, an N-heterocyclic carbene (NHC) catalyzed radical tandem cyclization reaction of N-allylbromodifluoroacetamides and aldehydes has been developed. This method is an efficient protocol for synthesizing α,α-difluoro-γ-lactam derivatives in moderate to good yields (27 examples, up to 88% yield and 10 : 1 dr). This strategy features mild and metal-free conditions, high efficiency, and a broad substrate scope.
Collapse
Affiliation(s)
- Tianjiao Huang
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China.
| | - Huiping Yin
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China.
| | - Tuanjie Li
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China.
| | - Chenxia Yu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China.
| | - Kai Zhang
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China.
| | - Changsheng Yao
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, PR China.
| |
Collapse
|
4
|
Deeksha, Singh R. Heteroannulation of Arynes with α-Bromodifluorohydroxamates: An Efficient and General Approach to Access 2,2-Difluoro Indoxyls. Org Lett 2024; 26:5682-5688. [PMID: 38934600 DOI: 10.1021/acs.orglett.4c01720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Herein, we report the first general approach to access N-alkoxy-2,2-difluoro indoxyls, via formal 3 + 2 cycloaddition of aryne and (putative) fluorinated-aza-oxyallyl cation. This transition-metal/oxidant-free transformation occurs under mild reaction conditions with a short reaction time. Mechanistic investigation indicates the possible involvement of the closed form of fluorinated-aza-oxyallyl cation, viz., α-lactam, in the current transformation.
Collapse
Affiliation(s)
- Deeksha
- Department of Chemistry, Central University of Rajasthan, Ajmer, Rajasthan 305817, India
| | - Ritesh Singh
- Department of Chemistry, Central University of Rajasthan, Ajmer, Rajasthan 305817, India
| |
Collapse
|
5
|
Li LX, Li CR, Guo X, Zhang Z. Photoredox/Copper-Catalyzed One-Pot Aminoalkylation/Cyclization of Alkenes with Primary Amines to Synthesize Polysubstituted γ-Lactams. Org Lett 2024; 26:845-849. [PMID: 38251862 DOI: 10.1021/acs.orglett.3c03974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Visible-light-driven chemical transformation has emerged as a powerful tool for the synthesis of γ-lactams. However, during this transformation, the α-bromoimides need to be pre-prepared. Herein, we report a photoreodox/copper-catalyzed one-pot three-component reaction of alkenes with primary amines for the construction of γ-lactams. In this transformation, the orthoquinones were generated via a photocatalytic pathway, followed by attack by Cu-amido complexes and intramolecular cyclization to give the γ-lactams. This method represents a simple synthetic route displaying broad functional group tolerance, including substrates bearing alcohols, ketones, heterocycles, esters, halides, alkynes, nitriles, ethers, etc.
Collapse
Affiliation(s)
- Li-Xin Li
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou 450046, China
| | - Chen-Rui Li
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xu Guo
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhenqiang Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou 450046, China
| |
Collapse
|
6
|
Zhu F, Li Z, Wu XF. Nickel-Catalyzed Aminofluoroalkylative Cyclization of Styrenes with Ethyl Fluoroacetate and Anilines toward Fluoro-γ-Lactams. Org Lett 2023; 25:8535-8539. [PMID: 37985463 DOI: 10.1021/acs.orglett.3c03589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
A novel method for the nickel-catalyzed multicomponent aminofluoroalkylation/cyclization of styrenes with ethyl fluoroacetate and anilines has been developed. This protocol provides general and efficient access to a diverse range of fluoro-γ-lactams from simple and readily available starting materials. Control experiments prove the involvement of radical intermediates and excluded the presence of 2-fluoro-N-phenylacetamide.
Collapse
Affiliation(s)
- Fengxiang Zhu
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Ziyan Li
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Xiao-Feng Wu
- Institution Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Leibniz-Institut für Katalyse e.V., Rostock 18059, Germany
| |
Collapse
|
7
|
Zhang Y, Jiang B, Liu P, Liu X. Et 2Zn-Mediated Radical (3 + 2) Cycloaddition of Vinyl Azides with Ethyl Iododifluoroacetate to Access 3,3-Difluoro-γ-lactams. J Org Chem 2023; 88:14634-14639. [PMID: 37788008 DOI: 10.1021/acs.joc.3c01620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
A diethylzinc-mediated radical (3 + 2) cycloaddition of vinyl azides with ethyl iododifluoroacetate is presented. The developed reaction features good functional group tolerance, broad substrate scope, and operational simplicity, enabling efficient assembly of a wide range of 3,3-difluoro-γ-lactam derivatives bearing an O-substituted quaternary carbon center in moderate to good yields. The utility of the method is showcased by a scaled-up reaction, conversion of the product, and late-stage structural modifications of a variety of pharmaceutical compounds.
Collapse
Affiliation(s)
- Yifei Zhang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Bin Jiang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Peijun Liu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, P. R. China
| | - Xiaozu Liu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, P. R. China
| |
Collapse
|
8
|
Treacy SM, Vaz DR, Noman S, Tard C, Rovis T. Coupling of α-bromoamides and unactivated alkenes to form γ-lactams through EDA and photocatalysis. Chem Sci 2023; 14:1569-1574. [PMID: 36794189 PMCID: PMC9906710 DOI: 10.1039/d2sc05973h] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/15/2023] [Indexed: 01/22/2023] Open
Abstract
γ-Lactams are prevalent in small-molecule pharmaceuticals and provide useful precursors to highly substituted pyrrolidines. Despite numerous methods for the synthesis of this valuable motif, previous redox approaches to γ-lactam synthesis from α-haloamides and olefins require additional electron withdrawing functionality as well as N-aryl substitution to promote electrophilicity of the intermediate radical and prevent competitive O-nucleophilicity about the amide. Using α-bromo imides and α-olefins, our strategy enables the synthesis of monosubstituted protected γ-lactams in a formal [3 + 2] fashion. These species are poised for further derivatization into more complex heterocyclic scaffolds, complementing existing methods. C-Br bond scission occurs through two complementary approaches, the formation of an electron donor-acceptor complex between the bromoimide and a nitrogenous base which undergoes photoinduced electron transfer, or triplet sensitization with photocatalyst, to furnish an electrophilic carbon-centered radical. The addition of Lewis acids allows for further increased electrophilicity of the intermediate carbon-centered radical, enabling tertiary substituted α-Br-imides to be used as coupling partners as well as internal olefins.
Collapse
Affiliation(s)
- Sean M. Treacy
- Department of Chemistry, Columbia UniversityNew YorkNY10027USA
| | - Daniel R. Vaz
- Department of Chemistry, Columbia UniversityNew YorkNY10027USA
| | - Syed Noman
- Laboratoire de Chimie Moléculaire (LCM), CNRS, École Polytechnique, Institut Polytechnique de Paris91120 PalaiseauFrance
| | - Cédric Tard
- Laboratoire de Chimie Moléculaire (LCM), CNRS, École Polytechnique, Institut Polytechnique de Paris91120 PalaiseauFrance
| | - Tomislav Rovis
- Department of Chemistry, Columbia University New York NY 10027 USA
| |
Collapse
|
9
|
Sun B, Zhuang X, Yin J, Zhang K, Zhao H, Jin C. Photoredox-Catalyzed Tandem Radical Cyclization/Hydroxylation for the Synthesis of 4-Hydroxyalkyl-3,3-difluoro-γ-lactams. J Org Chem 2022; 87:14177-14185. [PMID: 36173277 DOI: 10.1021/acs.joc.2c01710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The photoredox-catalyzed radical difluoroalkylation/cyclization/hydroxylation cascade reaction of various 2-bromo-2,2-difluoro-N-arylacetamides containing unactivated alkene moieties has been developed, providing green and efficient access to various 4-hydroxyalkyl-3,3-difluoro-γ-lactams. Control experiments confirmed a radical process, and inexpensive air acted as the sole hydroxy resource. In addition, the highlights of this protocol include good tolerance for a variety functional groups, lower photocatalyst loading, and ease of operation.
Collapse
Affiliation(s)
- Bin Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Xiaohui Zhuang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Jieli Yin
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Kesheng Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Haiyun Zhao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Can Jin
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China.,College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| |
Collapse
|
10
|
Lu D, Li Y, Wang P, Wang Z, Yang D, Gong Y. Cu-Catalyzed C (sp3)–N Coupling and Alkene Carboamination Enabled by Ligand-Promoted Selective Hydrazine Transfer to Alkyl Radicals. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Dengfu Lu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan, Hubei 430074, China
| | - Yadong Li
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan, Hubei 430074, China
| | - Peng Wang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan, Hubei 430074, China
| | - Zijie Wang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan, Hubei 430074, China
| | - Daoyi Yang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan, Hubei 430074, China
| | - Yuefa Gong
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan, Hubei 430074, China
| |
Collapse
|
11
|
Affiliation(s)
- Cai Zhang
- Department of Safety Supervision and Management Chongqing Vocational Institute of Safety Technology Chongqing People's Republic of China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang People's Republic of China
| |
Collapse
|
12
|
Lv Y, Han W, Pu W, Xie J, Wang A, Zhang M, Wang J, Lai J. Copper-Catalyzed Regioselective 1,4-Sulfonylcyanation of 1,3-Enynes with Sulfonyl Chlorides and TMSCN. Org Chem Front 2022. [DOI: 10.1039/d2qo00486k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel and practical copper-catalyzed reaction for the 1,4-sulfonylcyanation of 1,3-enynes under mild conditions is described. This protocol provides efficient and straightforward access to a variety of 5-sulfonylpenta-2,3-dienenitrile derivatives with...
Collapse
|
13
|
Fu C, Zhang ZS, Li Y, Gao D, Cui ZN, Li Z. Diversity-Oriented Synthesis of Fluoroalkylated Amines via Palladium-Catalyzed Divergent Fluoroalkylamination of 1,3-Dienes. Chem Commun (Camb) 2022; 58:5614-5617. [DOI: 10.1039/d2cc00983h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we reported the first versatile and expeditious protocol for the diversity-oriented synthesis (DOS) of fluoroalkylated amines via the photoinduced palladium-catalyzed cross coupling of 1,3-dienes, amines and fluoroalkyl iodides, which...
Collapse
|
14
|
Chen N, Lei J, Wang Z, Liu Y, Sun K, Tang S. Construction of Fluoro-containing Heterocycles Mediated by Free Radicals. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202109033] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Yuan JW, Shen L, Ma M, Feng S, Yang W, Yang L, Xiao YM, Zhang S, Qu L. Visible-Light-Induced Tandem Difluoroalkylated Spirocyclization of N-Arylpropiolamides: Access to C3-Difluoroacetylated Spiro[4,5]trienones. NEW J CHEM 2022. [DOI: 10.1039/d2nj00131d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visible-light-catalyzed difluoroacetylated spirocyclization of N-arylpropiolamides with ethyl bromodifluoroacetate as a CF2CO2Et radical precursor is described. This approach allows the formation of two carbon-carbon bonds and one carbon-oxygen bond in...
Collapse
|
16
|
Ye ZP, Liu F, Duan XY, Gao J, Guan JP, Xiao JA, Xiang HY, Chen K, Yang H. Visible Light-Promoted Radical Relay Cyclization/C-C Bond Formation of N-Allylbromodifluoroacetamides with Quinoxalin-2(1 H)-ones. J Org Chem 2021; 86:17173-17183. [PMID: 34743511 DOI: 10.1021/acs.joc.1c02285] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A visible light-promoted radical relay of N-allylbromodifluoroacetamide with quinoxalin-2(1H)-ones was developed in which 5-exo-trig cyclization and C-C bond formation were involved. This protocol was performed under mild conditions to facilely offer a variety of hybrid molecules bearing both quinoxalin-2(1H)-one and 3,3-difluoro-γ-lactam motifs. These prepared novel skeletons would expand the accessible chemical space for structurally complex heterocycles with potential biological activities.
Collapse
Affiliation(s)
- Zhi-Peng Ye
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Fang Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Xin-Yu Duan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jie Gao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jian-Ping Guan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jun-An Xiao
- College of Chemistry and Materials Science, Nanning Normal University, Nanning 530001, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
17
|
Zhang M, Li H, Zhao J, Li Y, Zhang Q. Copper-catalyzed [3 + 1] cyclization of cyclopropenes/diazo compounds and bromodifluoroacetamides: facile synthesis of α,α-difluoro-β-lactam derivatives. Chem Sci 2021; 12:11805-11809. [PMID: 34659719 PMCID: PMC8442724 DOI: 10.1039/d1sc02930d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/29/2021] [Indexed: 01/10/2023] Open
Abstract
We have developed a novel copper-catalyzed cyclization of cyclopropenes/diazo compounds and bromodifluoroacetamides, efficiently synthesizing a series of α,α-difluoro-β-lactams in moderate to excellent yields under mild reaction conditions. This reaction represents the first example of [3 + 1] cyclization for the synthesis of β-lactams utilizing a metal carbene intermediate as the C1 synthon. A copper-catalyzed [3 + 1] cyclization of cyclopropenes and bromodifluoroacetamides/diazo compounds has been successfully developed, efficiently synthesizing a wide range of α,α-difluoro-β-lactams.![]()
Collapse
Affiliation(s)
- Mengru Zhang
- Department of Chemistry, Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University Changchun 130024 China
| | - Hexin Li
- Department of Chemistry, Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University Changchun 130024 China
| | - Jinbo Zhao
- Department of Chemistry, Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University Changchun 130024 China .,Department of Chemistry, Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Changchun University of Technology Changchun 130012 China
| | - Yan Li
- Department of Chemistry, Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University Changchun 130024 China
| | - Qian Zhang
- Department of Chemistry, Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University Changchun 130024 China .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
18
|
Mkrtchyan S, Jakubczyk M, Lanka S, Pittelkow M, Iaroshenko VO. Cu-Catalyzed Arylation of Bromo-Difluoro-Acetamides by Aryl Boronic Acids, Aryl Trialkoxysilanes and Dimethyl-Aryl-Sulfonium Salts: New Entries to Aromatic Amides. Molecules 2021; 26:2957. [PMID: 34065691 PMCID: PMC8156957 DOI: 10.3390/molecules26102957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 11/28/2022] Open
Abstract
We describe a mechanism-guided discovery of a synthetic methodology that enables the preparation of aromatic amides from 2-bromo-2,2-difluoroacetamides utilizing a copper-catalyzed direct arylation. Readily available and structurally simple aryl precursors such as aryl boronic acids, aryl trialkoxysilanes and dimethyl-aryl-sulfonium salts were used as the source for the aryl substituents. The scope of the reactions was tested, and the reactions were insensitive to the electronic nature of the aryl groups, as both electron-rich and electron-deficient aryls were successfully introduced. A wide range of 2-bromo-2,2-difluoroacetamides as either aliphatic or aromatic secondary or tertiary amides were also reactive under the developed conditions. The described synthetic protocols displayed excellent efficiency and were successfully utilized for the expeditious preparation of diverse aromatic amides in good-to-excellent yields. The reactions were scaled up to gram quantities.
Collapse
Affiliation(s)
- Satenik Mkrtchyan
- Laboratory of Homogeneous Catalysis and Molecular Design at the Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łodź, Poland; (M.J.); (S.L.)
| | - Michał Jakubczyk
- Laboratory of Homogeneous Catalysis and Molecular Design at the Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łodź, Poland; (M.J.); (S.L.)
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Suneel Lanka
- Laboratory of Homogeneous Catalysis and Molecular Design at the Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łodź, Poland; (M.J.); (S.L.)
- Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Michael Pittelkow
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark;
| | - Viktor O. Iaroshenko
- Laboratory of Homogeneous Catalysis and Molecular Design at the Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łodź, Poland; (M.J.); (S.L.)
- Dipartimento di Chimica e Biologia “A. Zambelli” Università di Salerno, Via Giovanni Paolo II, 84084 Fisciano (SA), Italy
- Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1, 00014 Helsinki, Finland
| |
Collapse
|
19
|
Sun B, Shi X, Zhuang X, Huang P, Shi R, Zhu R, Jin C. Photoinduced EDA Complexes Enabled Radical Tandem Cyclization/Arylation of Unactivated Alkene with 2-Amino-1,4-naphthoquinones. Org Lett 2021; 23:1862-1867. [DOI: 10.1021/acs.orglett.1c00268] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Bin Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiayue Shi
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiaohui Zhuang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Panyi Huang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Rongcheng Shi
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Rui Zhu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Can Jin
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
20
|
Zhuang X, Shi X, Zhu R, Sun B, Su W, Jin C. Photocatalytic intramolecular radical cyclization involved synergistic SET and HAT: synthesis of 3,3-difluoro-γ-lactams. Org Chem Front 2021. [DOI: 10.1039/d0qo01188f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A mild and metal-free protocol for visible-light induced intramolecular radical cyclization of N-allyl(propargyl)-2-bromo-2,2-difluoro-N-arylacetamide has been developed.
Collapse
Affiliation(s)
- Xiaohui Zhuang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
- Zhejiang University of Technology
- Hangzhou
- PR China
| | - Xiayue Shi
- College of Pharmaceutical Sciences
- Zhejiang University of Technology
- Hangzhou
- PR China
| | - Rui Zhu
- College of Pharmaceutical Sciences
- Zhejiang University of Technology
- Hangzhou
- PR China
| | - Bin Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
- Zhejiang University of Technology
- Hangzhou
- PR China
| | - WeiKe Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
- Zhejiang University of Technology
- Hangzhou
- PR China
- College of Pharmaceutical Sciences
| | - Can Jin
- College of Pharmaceutical Sciences
- Zhejiang University of Technology
- Hangzhou
- PR China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
| |
Collapse
|
21
|
Wang X, Lei J, Li G, Meng J, Li C, Li J, Sun K. Synthetic methods for compounds containing fluoro-lactam units. Org Biomol Chem 2020; 18:9762-9774. [PMID: 33237116 DOI: 10.1039/d0ob02168g] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
In recent years, considerable attention has been devoted to the exploration of novel synthetic methods for fluoro-lactams due to their significant biological and pharmaceutical activities. This review summarizes recently established strategies for synthesizing fluorine-substituted lactams, including fluoro-β-lactams, fluoro-γ-lactams, and fluoro-δ-lactams. Additionally, the reaction scopes, limitations, and mechanisms are discussed.
Collapse
Affiliation(s)
- Xin Wang
- School of Chemistry and Chemical Engineering, YanTai University, Yantai, 264005, Shandong, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
22
|
Kennedy-Ellis JJ, Boldt ED, Chemler SR. Synthesis of Benzylureas and Related Amine Derivatives via Copper-Catalyzed Three-Component Carboamination of Styrenes. Org Lett 2020; 22:8365-8369. [PMID: 33074005 DOI: 10.1021/acs.orglett.0c02988] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A direct assembly of secondary benzylureas and related amine derivatives via copper-catalyzed carboamination of styrenes with potassium alkyltrifluoroborates and ureas, anilines, or an amide is reported. Terminal and 1,2-disubstituted alkenes, as well as dienes, participate in this three-component coupling reaction. The reaction mechanism likely involves the addition of an alkyl radical to the styrene, followed by metal-mediated oxidative coupling of the resulting benzylic radical with the amine derivative. Factors that impact substrate reactivity and regioselectivity are discussed.
Collapse
Affiliation(s)
- Jonathan J Kennedy-Ellis
- Chemistry Department, State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Erik D Boldt
- Chemistry Department, State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Sherry R Chemler
- Chemistry Department, State University of New York at Buffalo, Buffalo, New York 14260, United States
| |
Collapse
|
23
|
Construction of Boronated
γ
‐Lactams via Palladium‐Catalyzed Intramolecular Boryldifluoroalkylation of Alkenes. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000786] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Sahharova LT, Gordeev EG, Eremin DB, Ananikov VP. Pd-Catalyzed Synthesis of Densely Functionalized Cyclopropyl Vinyl Sulfides Reveals the Origin of High Selectivity in a Fundamental Alkyne Insertion Step. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02053] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Liliya T. Sahharova
- Zelinsky institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| | - Evgeniy G. Gordeev
- Zelinsky institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| | - Dmitry B. Eremin
- Zelinsky institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
- The Bridge@USC, University of Southern California, 1002 Childs Way, Los Angeles, California 90089-3502, United States
| | - Valentine P. Ananikov
- Zelinsky institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| |
Collapse
|
25
|
Ye ZP, Xia PJ, Liu F, Hu YZ, Song D, Xiao JA, Huang P, Xiang HY, Chen XQ, Yang H. Visible-Light-Induced, Catalyst-Free Radical Cross-Coupling Cyclization of N-Allylbromodifluoroacetamides with Disulfides or Diselenides. J Org Chem 2020; 85:5670-5682. [PMID: 32240591 DOI: 10.1021/acs.joc.9b03490] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A visible-light-induced, catalyst-free radical cross-coupling cyclization of diselenides or disulfides with N-allylbromodifluoroacetamide has been developed. This developed protocol exhibits good functional group tolerance and affords a variety of 4-thio- and 4-seleno-substituted 3,3-difluoro-γ-lactams in moderate to good yields. Based on control experiments, a plausible radical-radical cross-coupling pathway is proposed.
Collapse
Affiliation(s)
- Zhi-Peng Ye
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Peng-Ju Xia
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Fang Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yuan-Zhuo Hu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Dan Song
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jun-An Xiao
- College of Chemistry and Materials Science, Guangxi Teachers Education University, Nanning, Guangxi 530001, P. R. China
| | - Ping Huang
- Technology Center of Hunan Provincial Tobacco Company, 386 Labor Middle Road, Changsha 410019, China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Xiao-Qing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.,Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.,Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
26
|
Hu L, Deng Q, Zhou Y, Zhang X, Xiong Y. Cu2O-catalyzed phosphonyldifluoromethylation of allylic alcohols through a radical 1,2-aryl migration. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.130949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Fantinati A, Zanirato V, Marchetti P, Trapella C. The Fascinating Chemistry of α-Haloamides. ChemistryOpen 2020; 9:100-170. [PMID: 32025460 PMCID: PMC6996577 DOI: 10.1002/open.201900220] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/19/2019] [Indexed: 12/17/2022] Open
Abstract
The aim of this review is to highlight the rich chemistry of α-haloamides originally mainly used to discover new C-N, C-O and C-S bond forming reactions, and later widely employed in C-C cross-coupling reactions with C(sp3), C(sp2) and C(sp) coupling partners. Radical-mediated transformations of α-haloamides bearing a suitable located unsaturated bond has proven to be a straightforward alternative to access diverse cyclic compounds by means of either radical initiators, transition metal redox catalysis or visible light photoredox catalysis. On the other hand, cycloadditions with α-halohydroxamate-based azaoxyallyl cations have garnered significant attention. Moreover, in view of the important role in life and materials science of difluoroalkylated compounds, a wide range of catalysts has been developed for the efficient incorporation of difluoroacetamido moieties into activated as well as unactivated substrates.
Collapse
Affiliation(s)
- Anna Fantinati
- Department of Chemical and Pharmaceutical SciencesUniversity of Ferrara, Via Fossato di Mortara 1744121FerraraItaly E-mail: V. Zanirato
| | - Vinicio Zanirato
- Department of Chemical and Pharmaceutical SciencesUniversity of Ferrara, Via Fossato di Mortara 1744121FerraraItaly E-mail: V. Zanirato
| | - Paolo Marchetti
- Department of Chemical and Pharmaceutical SciencesUniversity of Ferrara, Via Fossato di Mortara 1744121FerraraItaly E-mail: V. Zanirato
| | - Claudio Trapella
- Department of Chemical and Pharmaceutical SciencesUniversity of Ferrara, Via Fossato di Mortara 1744121FerraraItaly E-mail: V. Zanirato
| |
Collapse
|
28
|
Li C, Zhao Y, Zhou J, Wang X, Hou J, Song Y, Liu W, Han G. Synthesis of difluoroalkylated 2-azaspiro[4.5]decane derivatives via copper-catalyzed difluoroalkylation/dearomatization of N-benzylacrylamides. Org Biomol Chem 2020; 18:8376-8380. [DOI: 10.1039/d0ob01833c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A copper-catalyzed synthesis of difluoroalkylated spiro-azacycles from N-benzylacrylamides is presented. The reaction involves the β-difluoroalkylation of acrylamide, 5-exo cyclization, and dearomatization.
Collapse
Affiliation(s)
- Chengwen Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- P. R. China
| | - Yilin Zhao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- P. R. China
| | - Jiaxin Zhou
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- P. R. China
| | - Xue Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- P. R. China
| | - Jingli Hou
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- P. R. China
| | - Yuguang Song
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- P. R. China
| | - Wenjuan Liu
- Jiangsu Duxingzhiyuan New Material Technology Co. Ltd
- Nantong
- 226300
- P. R. China
| | - Guifang Han
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- P. R. China
| |
Collapse
|
29
|
Lv Y, Wang Y, Pu W, Zhu X, Wu N, Zhao Y. Copper-catalyzed 1,1-alkynylalkylation of alkynes: access toward conjugated enynes. Org Chem Front 2020. [DOI: 10.1039/d0qo00826e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A copper-catalyzed 1,1-alkynylalkylation of alkynes with α-haloacetamides for the construction of conjugated enynes has been developed.
Collapse
Affiliation(s)
- Y. Lv
- College of Chemistry and Chemical Engineering
- Anyang Normal University
- Anyang
- P. R. China
| | - Y. Wang
- College of Chemistry and Chemical Engineering
- Anyang Normal University
- Anyang
- P. R. China
| | - W. Pu
- College of Chemistry and Chemical Engineering
- Anyang Normal University
- Anyang
- P. R. China
| | - X. Zhu
- College of Chemistry
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - N. Wu
- College of Chemistry and Chemical Engineering
- Anyang Normal University
- Anyang
- P. R. China
| | - Y. Zhao
- College of Chemistry and Chemical Engineering
- Anyang Normal University
- Anyang
- P. R. China
| |
Collapse
|
30
|
Liu C, Yang YJ, Dong JY, Zhou MD, Li L, Wang H. Copper/B 2pin 2-Catalyzed Difluoroalkylation of Methylenecyclopropanes with Bromodifluorinated Acetates and Acetamides: One-Pot Synthesis of CF 2-Containing Dihydronaphthalene Derivatives. J Org Chem 2019; 84:9937-9945. [PMID: 31347848 DOI: 10.1021/acs.joc.9b01106] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Novel copper/B2pin2-catalyzed difluoroalkylation of methylenecyclopropanes with bromodifluorinated acetates and acetamides via a tandem radical process involving ring-opening/intramolecular cyclization has been reported. This protocol is not only tolerated to a diverse range of substrates but also applicable to the synthesis of useful difluoromethylated compounds. Moreover, the reaction could be performed on a gram scale with a high yield, which opens up the possibility for practical applications.
Collapse
Affiliation(s)
- Chuang Liu
- School of Chemistry and Materials Science , Liaoning Shihua University , Fushun 113001 , P. R. China
| | - Yan-Jie Yang
- School of Chemistry and Materials Science , Liaoning Shihua University , Fushun 113001 , P. R. China
| | - Jun-Ying Dong
- School of Chemistry and Materials Science , Liaoning Shihua University , Fushun 113001 , P. R. China
| | - Ming-Dong Zhou
- School of Chemistry and Materials Science , Liaoning Shihua University , Fushun 113001 , P. R. China
| | - Lei Li
- School of Chemistry and Materials Science , Liaoning Shihua University , Fushun 113001 , P. R. China
| | - He Wang
- School of Chemistry and Materials Science , Liaoning Shihua University , Fushun 113001 , P. R. China
| |
Collapse
|
31
|
Lv Y, Pu W, Shi L. Copper-Catalyzed Regio- and Stereoselective 1,1-Dicarbofunctionalization of Terminal Alkynes. Org Lett 2019; 21:6034-6039. [DOI: 10.1021/acs.orglett.9b02190] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yunhe Lv
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
- Jilin Provincial Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University, Changchun, Jilin 130024, China
| | - Weiya Pu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Lihan Shi
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| |
Collapse
|
32
|
Sun K, Wang S, Feng R, Zhang Y, Wang X, Zhang Z, Zhang B. Copper-Catalyzed Radical Selenodifluoromethylation of Alkenes: Access to CF 2-Containing γ-Lactams. Org Lett 2019; 21:2052-2055. [PMID: 30896184 DOI: 10.1021/acs.orglett.9b00240] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, a practical Cu-catalyzed selenodifluoromethylation protocol was developed, using readily available diselenides as the selenium source under external-oxidant-free conditions. Various structurally diverse 4-seleno-substituted α,α-difluoro-γ-lactams were obtained in moderate to excellent yields. Easy scaleup and the potential for product derivatization make this method attractive for the preparation of other valuable fIuorinated γ-lactams. Mechanistic studies suggest that the catalytic system may involve a radical pathway.
Collapse
Affiliation(s)
- Kai Sun
- College of Chemistry and Chemical Engineering , Anyang Normal University , Anyang 455000 , People's Republic of China
| | - Songnan Wang
- School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , 453007 , People's Republic of China
| | - Ranran Feng
- College of Chemistry and Chemical Engineering , Anyang Normal University , Anyang 455000 , People's Republic of China
| | - Yixiao Zhang
- College of Chemistry and Chemical Engineering , Anyang Normal University , Anyang 455000 , People's Republic of China
| | - Xin Wang
- College of Chemistry and Chemical Engineering , Anyang Normal University , Anyang 455000 , People's Republic of China
| | - Zhiguo Zhang
- School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , 453007 , People's Republic of China
| | - Bing Zhang
- College of Chemistry and Energy , Zhengzhou University , Zhengzhou 450001 , People's Republic of China
| |
Collapse
|
33
|
Mai WP, Wang F, Zhang XF, Wang SM, Duan QP, Lu K. Nickel-catalysed radical tandem cyclisation/arylation: practical synthesis of 4-benzyl-3,3-difluoro-γ-lactams. Org Biomol Chem 2019; 16:6491-6498. [PMID: 30155541 DOI: 10.1039/c8ob01389f] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enabled by nickel catalysis, a practical access to the synthesis of 4-benzyl-3,3-difluoro-γ-lactams has been developed via radical tandem cyclisation/arylation. This method features a nickel catalyst, high reaction efficiency, and good substrate tolerance and scope. This protocol proceeds through an intramolecular radical addition to form a primary alkyl radical followed by intermolecular Suzuki-type coupling.
Collapse
Affiliation(s)
- Wen-Peng Mai
- School of Materials and Chemical Engineering, Henan University of Engineering, Zhengzhou, 450006, China.
| | | | | | | | | | | |
Collapse
|
34
|
Zhang X, Li Z, Ding Q, Li X, Fan X, Zhang G. Alkylamino-Directed One-Pot Reaction of N
-Alkyl Anilines with CO, Amines and Aldehydes Leading to 2,3-Dihydroquinazolin-4(1H
)-ones. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801267] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xiaopeng Zhang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang 453007 People's Republic of China
| | - Zhengwei Li
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang 453007 People's Republic of China
| | - Qianqian Ding
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang 453007 People's Republic of China
| | - Xiaochuan Li
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang 453007 People's Republic of China
| | - Xuesen Fan
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang 453007 People's Republic of China
| | - Guisheng Zhang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang 453007 People's Republic of China
| |
Collapse
|
35
|
Pu W, Sun D, Fan W, Pan W, Chai Q, Wang X, Lv Y. Cu-Catalyzed atom transfer radical addition reactions of alkenes with α-bromoacetonitrile. Chem Commun (Camb) 2019; 55:4821-4824. [PMID: 30946406 DOI: 10.1039/c9cc01988j] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A practical, simple, and efficient copper-catalyzed atom transfer radical addition reaction of alkenes with α-bromoacetonitrile is realized. With this methodology, various γ-bromonitriles and β,γ-unsaturated nitriles were efficiently constructed.
Collapse
Affiliation(s)
- Weiya Pu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
36
|
El Bouakher A, Martel A, Comesse S. α-Halogenoacetamides: versatile and efficient tools for the synthesis of complex aza-heterocycles. Org Biomol Chem 2019; 17:8467-8485. [DOI: 10.1039/c9ob01683j] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review presents the use of α-alkyl- and α-alkoxy-halogenoacetamides as powerful partners for domino and 1,3-dipolar cycloaddition reactions resulting in a ring closure.
Collapse
Affiliation(s)
| | - Arnaud Martel
- IMMM
- UMR 6283 CNRS
- Le Mans Université
- 72085 Le Mans
- France
| | | |
Collapse
|
37
|
Ma JW, Wang Q, Wang XG, Liang YM. Palladium-Catalyzed Cascade Difluoroalkylation/Cyclization of N-Propargylamides: Synthesis of Oxazoles and Oxazolines. J Org Chem 2018; 83:13296-13307. [DOI: 10.1021/acs.joc.8b02111] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jun-Wei Ma
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China
| | - Qiang Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xin-Gang Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|
38
|
Wu M, Zhao X, Liu Y, Cao S. Synthesis of difluoromethylated enynes by the reaction of α-(trifluoromethyl)styrenes with terminal alkynes. Org Biomol Chem 2018; 16:6909-6917. [PMID: 30225511 DOI: 10.1039/c8ob02117a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A novel and efficient method for the synthesis of difluoromethylated enynes by the reaction of α-(trifluoromethyl)styrenes with terminal alkynes with the assistance of NaOtBu was described. The mechanism of the reaction might involve the SN2' reaction of α-(trifluoromethyl)styrenes and a subsequent 1,3-H shift. Isomerization (E → Z) of 1-difluoromethyl-1,3-enynes in the presence of ZrCl4 was also developed.
Collapse
Affiliation(s)
- Mingsheng Wu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai 200237, China.
| | | | | | | |
Collapse
|
39
|
Wang X, Li M, Yang Y, Guo M, Tang X, Wang G. One-pot Construction of Difluorinated Pyrrolizidine and Indolizidine Scaffolds via Copper-Catalyzed Radical Cascade Annulation. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201701643] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Xiaoyang Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science; Department of Chemistry; School of Science; Tianjin University; Tianjin 300072 People's Republic of China
| | - Miao Li
- Tianjin Key Laboratory of Molecular Optoelectronic Science; Department of Chemistry; School of Science; Tianjin University; Tianjin 300072 People's Republic of China
| | - Yanyan Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Science; Department of Chemistry; School of Science; Tianjin University; Tianjin 300072 People's Republic of China
| | - Minjie Guo
- Institute for Molecular Design and Synthesis; School of Pharmaceutical Science and Technology; Tianjin University; Tianjin 300072 People's Republic of China
| | - Xiangyang Tang
- Tianjin Key Laboratory of Molecular Optoelectronic Science; Department of Chemistry; School of Science; Tianjin University; Tianjin 300072 People's Republic of China
| | - Guangwei Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science; Department of Chemistry; School of Science; Tianjin University; Tianjin 300072 People's Republic of China
| |
Collapse
|
40
|
Lv Y, Pu W, Zhu X, Zhao T, Lin F. Copper-Catalyzed Cross-Coupling of Secondary α-Haloamides with Terminal Alkynes: Access to Diverse 2,3-Allenamides. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201701556] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Yunhe Lv
- College of Chemistry and Chemical Engineering; Anyang Normal University; Anyang 455000 People's Republic of China
- Henan Province Key Laboratory of New Opto-Electronic Functional Materials; Anyang 455000 People's Republic of China
| | - Weiya Pu
- College of Chemistry and Chemical Engineering; Anyang Normal University; Anyang 455000 People's Republic of China
| | - Xueli Zhu
- College of Chemistry and Chemical Engineering; Anyang Normal University; Anyang 455000 People's Republic of China
| | - Tiantian Zhao
- College of Chemistry and Chemical Engineering; Anyang Normal University; Anyang 455000 People's Republic of China
| | - Feifei Lin
- College of Chemistry and Chemical Engineering; Anyang Normal University; Anyang 455000 People's Republic of China
| |
Collapse
|
41
|
Chen H, Wang X, Guo M, Zhao W, Tang X, Wang G. Highly efficient and versatile synthesis of α,α-difluoro-γ-lactams via aminodifluoroalkylation of alkenes. Org Chem Front 2017. [DOI: 10.1039/c7qo00611j] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient approach to α,α-difluoro-γ-lactam derivatives was developed using a copper/amine catalyst via a tandem radical cyclization pathway.
Collapse
Affiliation(s)
- Hongtai Chen
- Department of Chemistry
- School of Science
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Xiaoyang Wang
- Department of Chemistry
- School of Science
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Minjie Guo
- Institute for Molecular Design and Synthesis
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Wentao Zhao
- Department of Chemistry
- School of Science
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Xiangyang Tang
- Department of Chemistry
- School of Science
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Guangwei Wang
- Department of Chemistry
- School of Science
- Tianjin University
- Tianjin 300072
- P. R. China
| |
Collapse
|