1
|
Ma G, Wei KF, Song M, Dang YL, Yue Y, Han B, Su H, Shen WB. Recent advances in transition-metal-catalyzed Büchner reaction of alkynes. Org Biomol Chem 2023. [PMID: 37325882 DOI: 10.1039/d3ob00654a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Medium-sized ring-containing organic molecules, especially seven-membered rings, are significant structural motifs. However, such frameworks are considered difficult structures to access owing to entropic effects and transannular interactions. Compared to the construction of five and six-membered rings, the synthesis of seven-membered rings can be more challenging through traditional cyclization pathways. Büchner reactions are particularly attractive and efficient synthetic strategies to construct functionalized seven-membered ring products from the benzenoid double bond with carbene. In recent years, the field of transition-metal-catalyzed Büchner ring expansion reactions of alkynes has experienced a speedy development and a diverse array of efficient synthetic procedures have been disclosed under mild experimental conditions, as the synthesis of synthetically challenging seven-membered rings is easily achieved. In this review, we will focus on the recent progress in the transition-metal-catalyzed Büchner reaction of alkynes and the mechanistic rationale is depicted where possible, with the reactions being sorted according to the type of catalyst.
Collapse
Affiliation(s)
- Guang Ma
- College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China.
| | - Kua-Fei Wei
- College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China.
| | - Man Song
- College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China.
| | - Yu-Li Dang
- College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China.
| | - Yang Yue
- College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China.
| | - Bing Han
- College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China.
| | - Hui Su
- College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China.
| | - Wen-Bo Shen
- College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China.
| |
Collapse
|
2
|
Dong K, Liu M, Xu X. Recent Advances in Catalytic Alkyne Transformation via Copper Carbene Intermediates. Molecules 2022; 27:3088. [PMID: 35630567 PMCID: PMC9144650 DOI: 10.3390/molecules27103088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023] Open
Abstract
As one of the abundant and inexpensive metals on the earth, copper has demonstrated broad applications in synthetic chemistry and catalysis. Among these copper-catalyzed advances, copper carbenes are versatile and reactive intermediates that can mediate a variety of transformations, which have attracted much attention in the past decades. The present review summarizes two different reaction models that take place between a copper carbene intermediate and alkyne species, including the cross-coupling reaction of copper carbene intermediate with terminal alkyne, and the addition of copper carbene intermediate onto the C-C triple bond. This article will cover the profile from 2010 to 2021 by placing emphasis on the detailed catalytic models and highlighting the synthetic applications offered by these practical and mild methods.
Collapse
Affiliation(s)
- Kuiyong Dong
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Mengting Liu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China;
| | - Xinfang Xu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China;
| |
Collapse
|
3
|
Peil S, Gutiérrez González A, Leutzsch M, Fürstner A. C-H Insertion via Ruthenium Catalyzed gem-Hydrogenation of 1,3-Enynes. J Am Chem Soc 2022; 144:4158-4167. [PMID: 35170941 PMCID: PMC8915261 DOI: 10.1021/jacs.1c13446] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
gem-Hydrogenation of an internal alkyne with the
aid of [Cp*RuCl]4 as the precatalyst is a highly unorthodox
transformation, in which one C atom of the triple bond is transformed
into a methylene group, whereas the second C atom gets converted into
a ruthenium carbene. In the case of 1,3-enynes bearing a propargylic
steering substituent as the substrates, the reaction occurs regioselectively,
giving rise to vinyl carbene complexes that adopt interconverting
η1/η3-binding modes in solution;
a prototypical example of such a reactive intermediate was characterized
in detail by spectroscopic means. Although both forms are similarly
stable, only the η3-vinyl carbene proved kinetically
competent to insert into primary, secondary, or tertiary C–H
bonds on the steering group itself or another suitably placed ether,
acetal, orthoester, or (sulfon)amide substituent. The ensuing net
hydrogenative C–H insertion reaction is highly enabling in
that it gives ready access to spirocyclic as well as bridged ring
systems of immediate relevance as building blocks for medicinal chemistry.
Moreover, the reaction scales well and lends itself to the formation
of partly or fully deuterated isotopologues. Labeling experiments
in combination with PHIP NMR spectroscopy (PHIP = parahydrogen induced
polarization) confirmed that the reactions are indeed triggered by gem-hydrogenation, whereas kinetic data provided valuable
insights into the very nature of the turnover-limiting transition
state of the actual C–H insertion step.
Collapse
Affiliation(s)
- Sebastian Peil
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | | | - Markus Leutzsch
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| |
Collapse
|
4
|
Ru GX, Zhang TT, Zhang M, Jiang XL, Wan ZK, Zhu XH, Shen WB, Gao GQ. Recent progress towards the transition-metal-catalyzed Nazarov cyclization of alkynes via metal carbenes. Org Biomol Chem 2021; 19:5274-5283. [PMID: 34060570 DOI: 10.1039/d1ob00744k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In recent years, transition-metal-catalyzed tandem cyclization reactions of alkynes, especially those involving a metal carbene intermediate, have received worthwhile interest, as this type of reaction does not require the use of risky and potentially explosive diazo compounds as starting materials for carbene generation. A significant and general strategy for the stereospecific synthesis of 5-membered cycles is Nazarov cyclization based on the 4π-conrotatory electrocyclization of a conjugated pentadienyl cation to afford a cyclopentenyl cation. In this review, we introduce an overview of recent advances in the transition-metal-catalyzed Nazarov cyclization of alkynes via a metal carbene intermediate, and categorize these reactions according to the structure of the metal carbene. Our aim is to accelerate advancements in this enchanting area of research.
Collapse
Affiliation(s)
- Guang-Xin Ru
- College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China.
| | - Ting-Ting Zhang
- College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China.
| | - Meng Zhang
- College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China.
| | - Xiao-Lei Jiang
- College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China.
| | - Zheng-Kai Wan
- College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China.
| | - Xiu-Hong Zhu
- College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China.
| | - Wen-Bo Shen
- College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China.
| | - Guang-Qin Gao
- College of Sciences and College of Forestry, Henan Agricultural University, Zhengzhou, Henan 450002, China.
| |
Collapse
|
5
|
Peil S, Bistoni G, Goddard R, Fürstner A. Hydrogenative Metathesis of Enynes via Piano-Stool Ruthenium Carbene Complexes Formed by Alkyne gem-Hydrogenation. J Am Chem Soc 2020; 142:18541-18553. [PMID: 33073575 PMCID: PMC7596760 DOI: 10.1021/jacs.0c07808] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Indexed: 12/12/2022]
Abstract
The only recently discovered gem-hydrogenation of internal alkynes is a fundamentally new transformation, in which both H atoms of dihydrogen are transferred to the same C atom of a triple bond while the other position transforms into a discrete metal carbene complex. [Cp*RuCl]4 is presently the catalyst of choice: the resulting piano-stool ruthenium carbenes can engage a tethered alkene into either cyclopropanation or metathesis, and a prototypical example of such a reactive intermediate with an olefin ligated to the ruthenium center has been isolated and characterized by X-ray diffraction. It is the substitution pattern of the olefin that determines whether metathesis or cyclopropanation takes place: a systematic survey using alkenes of largely different character in combination with a computational study of the mechanism at the local coupled cluster level of theory allowed the preparative results to be sorted and an intuitive model with predictive power to be proposed. This model links the course of the reaction to the polarization of the double bond as well as to the stability of the secondary carbene complex formed, if metathesis were to take place. The first application of "hydrogenative metathesis" to the total synthesis of sinularones E and F concurred with this interpretation and allowed the proposed structure of these marine natural products to be confirmed. During this synthesis, it was found that gem-hydrogenation also provides opportunities for C-H functionalization. Moreover, silylated alkynes are shown to participate well in hydrogenative metathesis, which opens a new entry into valuable allylsilane building blocks. Crystallographic evidence suggests that the polarized [Ru-Cl] bond of the catalyst interacts with the neighboring R3Si group. Since attractive interligand Cl/R3Si contacts had already previously been invoked to explain the outcome of various ruthenium-catalyzed reactions, including trans-hydrosilylation, the experimental confirmation provided herein has implications beyond the present case.
Collapse
Affiliation(s)
- Sebastian Peil
- Max-Planck-Institut für
Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Giovanni Bistoni
- Max-Planck-Institut für
Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Richard Goddard
- Max-Planck-Institut für
Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| | - Alois Fürstner
- Max-Planck-Institut für
Kohlenforschung, 45470 Mülheim/Ruhr, Germany
| |
Collapse
|
6
|
Shen WB, Tang XT, Zhang TT, Liu SY, He JM, Su TF. Cu(I)-Catalyzed Oxidative Cyclization of Enynamides: Regioselective Access to Cyclopentadiene Frameworks and 2-Aminofurans. Org Lett 2020; 22:6799-6804. [PMID: 32845152 DOI: 10.1021/acs.orglett.0c02317] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient Cu(I)-catalyzed oxidative cyclization of alkynyl-tethered enynamides for the construction of fused bicyclic cyclopentadiene derivatives is disclosed. The cascade proceeds through alkyne oxidation, carbene/alkyne metathesis, and formal (3 + 2) cycloaddition. Employing aryl-tethered enynamides as starting materials, substituted 2-aminofurans can be exclusively formed.
Collapse
Affiliation(s)
- Wen-Bo Shen
- College of Sciences, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Xiang-Ting Tang
- College of Sciences, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Ting-Ting Zhang
- College of Sciences, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Si-Yu Liu
- College of Sciences, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Jiang-Man He
- College of Sciences, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Tong-Fu Su
- College of Sciences, Henan Agricultural University, Zhengzhou, Henan 450002, China
| |
Collapse
|
7
|
Murai M, Taniguchi R, Takai K. Cyclization of 1,n-Enynes Initiated by the Addition Reaction of gem-Dichromiomethane Reagents to Alkynes. Org Lett 2020; 22:3985-3988. [DOI: 10.1021/acs.orglett.0c01304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Masahito Murai
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | - Ryuji Taniguchi
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Kazuhiko Takai
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
8
|
Wu M, Lin S, Zhu G, Sun M, Zhou Z, Gao H, Yi W. Synergistic Dual Directing Groups-Enabled Diastereoselective C–H Cyclopropylation via Rh(III)-Catalyzed Couplings with Cyclopropenyl Alcohols. Org Lett 2020; 22:1295-1300. [DOI: 10.1021/acs.orglett.9b04608] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Min Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Shuang Lin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Guoxun Zhu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Ming Sun
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Zhi Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Hui Gao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Wei Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| |
Collapse
|
9
|
Wan Y, Peng H, Yang Q, Liu W, Deng G. Selective Synthesis of 2-(4-Aminoaryl)-2-(4-pyranonyl)acetates and 2,2-Bis(4-aminoaryl)-2-(4-pyranonyl)acetates from 2-Diazo-3,5-dioxo-6-ynoates (ynones) and Aromatic Amines. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Yinbo Wan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China); Hunan Normal University; 410081 Changsha China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province; Hunan Normal University; 410081 Changsha China
| | - Haiyun Peng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China); Hunan Normal University; 410081 Changsha China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province; Hunan Normal University; 410081 Changsha China
| | - Qin Yang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China); Hunan Normal University; 410081 Changsha China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province; Hunan Normal University; 410081 Changsha China
| | - Weishun Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China); Hunan Normal University; 410081 Changsha China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province; Hunan Normal University; 410081 Changsha China
| | - Guisheng Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China); Hunan Normal University; 410081 Changsha China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province; Hunan Normal University; 410081 Changsha China
| |
Collapse
|
10
|
Jia S, Dong G, Ao C, Jiang X, Hu W. Rhodium-Catalyzed Formal C-O Insertion in Carbene/Alkyne Metathesis Reactions: Synthesis of 3-Substituted 3 H-Indol-3-ols. Org Lett 2019; 21:4322-4326. [PMID: 31120759 DOI: 10.1021/acs.orglett.9b01492] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An efficient and novel rhodium-catalyzed formal C-O insertion reaction of alkyne-tethered diazo compounds for the synthesis of 3 H-indol-3-ols is described. A type of donor/donor rhodium carbene generated in situ via a carbene/alkyne metathesis (CAM) process is the key intermediate and terminates in a unique transformation different from donor/acceptor carbenoids. In addition, 18O-labeling experiments indicate that intramolecular oxygen-atom transfer from the amide group to the carbon-carbon triple bond occurs during this transformation.
Collapse
Affiliation(s)
- Shikun Jia
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China
| | - Guizhi Dong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China
| | - Chaoqun Ao
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China
| | - Xianxing Jiang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences , Sun Yat-sen University , Guangzhou 510006 , China
| |
Collapse
|
11
|
Liu W, Fang L, Wan Y, Zhang J, Deng G, Wang J. Synthesis of 2-cyclopropyl-4-pyrones and 5-cyclopropyl-2-alkylene-3(2H)-furanones based on tandem cyclization-cyclopropanation strategy. Tetrahedron 2019. [DOI: 10.1016/j.tet.2018.11.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2017. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Marchetti F. Constructing Organometallic Architectures from Aminoalkylidyne Diiron Complexes. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800659] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Fabio Marchetti
- Dipartimento di Chimica e Chimica Industriale; University of Pisa; Via Moruzzi 13 I-56124 Pisa Italy
| |
Collapse
|