1
|
Bouda M, Bertke JA, Wolf C. Organocatalytic Asymmetric Conjugate Addition of Fluorooxindoles to Quinone Methides. J Org Chem 2024; 89:6100-6105. [PMID: 38619814 PMCID: PMC11077483 DOI: 10.1021/acs.joc.4c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/24/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
Fluorooxindoles undergo asymmetric Michael addition to para-quinone methides under phase-transfer conditions with 10 mol% of a readily available cinchona alkaloid ammonium catalyst. This reaction affords sterically encumbered, multifunctional fluorinated organic compounds displaying two adjacent chirality centers with high yields, ee's and dr's.
Collapse
Affiliation(s)
- Maria Bouda
- Chemistry Department, Georgetown University, Washington, D.C. 20057, United States
| | - Jeffery A. Bertke
- Chemistry Department, Georgetown University, Washington, D.C. 20057, United States
| | - Christian Wolf
- Chemistry Department, Georgetown University, Washington, D.C. 20057, United States
| |
Collapse
|
2
|
Qin H, Wei GL, Zheng XW, Zhang YW, Huang P. Selectfluor Mediated Direct C-H Fluorination of 3-Heteroaryl-Oxindoles. J Org Chem 2024; 89:740-747. [PMID: 38101804 DOI: 10.1021/acs.joc.3c02063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
An efficient transition-metal-free fluorination synthesis of N-H-free 3-heteroaryl-oxindoles with Selectfluor was depicted. Under mild reaction conditions, a series of 3-heteroaryl-fluorooxindoles were produced in yield of 62-88% using Selectfluor as a fluorine source.
Collapse
Affiliation(s)
- Hui Qin
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang 310014, China
| | - Guo-Liang Wei
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Xiao-Wei Zheng
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang 310014, China
| | - Yi-Wen Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang 310014, China
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
3
|
Huang W, Yang J, Gao K, Wang Z, Huang G, Yao W, Yang J. Construction of Enantioenriched Quaternary C-Cl Oxindoles through Palladium-Catalyzed Asymmetric Allylic Substitution with Chloroenolates. J Org Chem 2023; 88:15298-15310. [PMID: 37831540 DOI: 10.1021/acs.joc.3c01811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
A palladium-catalyzed asymmetric chloroenolate allylation with vinyl benzoxazinanones under mild reaction conditions has been developed, affording a series of optically active 3,3-disubstituted oxindoles exhibiting a chloro-group and a linear aryl amino side chain in good yields with up to 96% ee. Versatile functional group tolerance on the benzene ring has been demonstrated, and the utility of this method was probed by a scale-up synthesis and highlighted by product derivatizations.
Collapse
Affiliation(s)
- Wen Huang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, P. R. China
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
| | - Jingjie Yang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, P. R. China
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
| | - Kai Gao
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
| | - Zhiming Wang
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
| | - Guobo Huang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
| | - Weijun Yao
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, P. R. China
| | - Jianguo Yang
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
| |
Collapse
|
4
|
Yuan A, Steber SE, Xhili D, Nelson E, Wolf C. Enantioseparation and racemization of 3-fluorooxindoles. Chirality 2023; 35:619-624. [PMID: 37129272 PMCID: PMC10516598 DOI: 10.1002/chir.23572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/03/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Fluorinated oxindoles are frequently used building blocks in asymmetric synthesis and represent an important scaffold found in a variety of biologically relevant compounds. While it is understood that incorporation of fluorine atoms into organic molecules can improve their pharmacological properties, the impact on the configurational stability of chiral organofluorines is still underexplored. In this study, semipreparative HPLC enantioseparations of five oxindoles were carried out, and the resulting enantiomerically enriched solutions were used to investigate base promoted racemization kinetics at room temperature. It was found that incorporation of fluorine at the chiral center increases the configurational stability, while substitutions on the aromatic ring and at the lactam moiety also have significant effects on the rate of racemization, which generally follows reversible first-order reaction kinetics.
Collapse
Affiliation(s)
- Andi Yuan
- Department of Chemistry, Georgetown University, Washington, DC, USA
| | - Sarah E Steber
- Department of Chemistry, Georgetown University, Washington, DC, USA
| | - Dea Xhili
- Department of Chemistry, Georgetown University, Washington, DC, USA
| | - Eryn Nelson
- Department of Chemistry, Georgetown University, Washington, DC, USA
| | - Christian Wolf
- Department of Chemistry, Georgetown University, Washington, DC, USA
| |
Collapse
|
5
|
Vinylogous Michael addition of nitroalkylideneoxindoles to isatylidene-malononitriles in the regio- and diastereoselective synthesis of dispirocyclopentylbisoxindoles. J CHEM SCI 2023. [DOI: 10.1007/s12039-022-02122-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
6
|
Balaraman K, Kyriazakos S, Palmer R, Thanzeel FY, Wolf C. Selective Csp 3-F Bond Functionalization with Lithium Iodide. SYNTHESIS-STUTTGART 2022; 54:4320-4328. [PMID: 36330045 PMCID: PMC9624501 DOI: 10.1055/s-0041-1738383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A highly efficient method for C-F bond functionalization of a broad variety of activated and unactivated aliphatic substrates with inexpensive lithium iodide is presented. Primary, secondary, tertiary, benzylic, propargylic and α-functionalized alkyl fluorides react in chlorinated or aromatic solvents at room temperature or upon heating to the corresponding iodides which are isolated in 91-99% yield. The reaction is selective for aliphatic monofluorides and can be coupled with in situ nucleophilic iodide replacements to install carbon-carbon, carbon-nitrogen and carbon-sulfur bonds with high yields. Alkyl difluorides, trifluorides, even in activated benzylic positions, are inert under the same conditions and aryl fluoride bonds are also tolerated.
Collapse
Affiliation(s)
- Kaluvu Balaraman
- Georgetown University, Chemistry Department, Washington, DC 20057, USA
| | | | - Rachel Palmer
- Georgetown University, Chemistry Department, Washington, DC 20057, USA
| | - F Yushra Thanzeel
- Georgetown University, Chemistry Department, Washington, DC 20057, USA
| | - Christian Wolf
- Georgetown University, Chemistry Department, Washington, DC 20057, USA
| |
Collapse
|
7
|
Abstract
A palladium(phosphinoxazoline) catalyzed method for asymmetric allylic alkylation of α-aryl-α-fluoroacetonitriles is introduced. This reaction achieves C-C bond formation and incorporation of two adjacent chirality centers with moderate to good yields, high enantioselectivities, and up to 15:1 dr.
Collapse
Affiliation(s)
- Archita Sripada
- Department of Chemistry, Georgetown University, 37th and O Streets, Washington, DC 20057, United States
| | - Christian Wolf
- Department of Chemistry, Georgetown University, 37th and O Streets, Washington, DC 20057, United States
| |
Collapse
|
8
|
Asahara H, Bonkohara A, Takagi M, Iwai K, Ito A, Yoshioka K, Tani S, Umezu K, Nishiwaki N. Development of a synthetic equivalent of α,α-dicationic acetic acid leading to unnatural amino acid derivatives via tetrafunctionalized methanes. Org Biomol Chem 2022; 20:2282-2292. [PMID: 35234775 DOI: 10.1039/d1ob02482e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Diethyl mesoxalate (DEMO) exhibits high electrophilicity and accepts the nucleophilic addition of a less nucleophilic acid amide to afford N,O-hemiacetal. However, our research showed that elimination of the amide moiety proceeded more easily than dehydration upon treatment with a base. This problem was overcome by reacting DEMO with an acid amide in the presence of acetic anhydride to efficiently obtain N,O-acetal. Acetic acid was eliminated leading to the formation of N-acylimine in situ upon treatment with the base. N-Acylimine is also electrophilic, accepting the second nucleophilic addition by pyrrole or indole to form α,α-disubstituted malonates. Subsequent hydrolysis followed by decarboxylation resulted in (α-indolyl-α-acylamino)acetic acid formation; homologs of tryptophan. Through this process, DEMO serves as a synthetic equivalent of α,α-dicationic acetic acid to facilitate nucleophilic introduction of the two substituents.
Collapse
Affiliation(s)
- Haruyasu Asahara
- School of Environmental Science and Engineering, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan. .,Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka 1-6, Suita, Osaka 565-0871, Japan
| | - Atsushi Bonkohara
- School of Environmental Science and Engineering, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan.
| | - Masaya Takagi
- School of Environmental Science and Engineering, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan.
| | - Kento Iwai
- School of Environmental Science and Engineering, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan. .,Research Center for Molecular Design, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan
| | - Akitaka Ito
- School of Environmental Science and Engineering, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan. .,Research Center for Molecular Design, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan
| | - Kotaro Yoshioka
- Kumiai Chemical Industry Co. Ltd., Nakanogo, Fuji, Shizuoka 421-3306, Japan
| | - Shinki Tani
- Kumiai Chemical Industry Co. Ltd., Nakanogo, Fuji, Shizuoka 421-3306, Japan
| | - Kazuto Umezu
- Kumiai Chemical Industry Co. Ltd., Nakanogo, Fuji, Shizuoka 421-3306, Japan
| | - Nagatoshi Nishiwaki
- School of Environmental Science and Engineering, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan. .,Research Center for Molecular Design, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan
| |
Collapse
|
9
|
zhang X, wei LZ, cao GJ, liang PD, Lin Y, Duan H. Chiral Urea-Catalyzed Asymmetric Mannich reaction of 3-fluorooxindoles with α-amidosulfones : Synthesis of Optically Active α-fluoro-β-amino-oxindoles. Synlett 2022. [DOI: 10.1055/a-1747-2724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The asymmetric Mannich reaction of 3-fluorooxindoles and ɑ-amidosulfones catalyzed by a chiral urea catalyst derived from quinine in presence of K3PO4 was developed. Through the asymmetric reaction, a series of ɑ-fluoro-β-amino-oxindoles, containing a four-substituted carbon continuous stereocenter, could be obtained in high yields (up to 95%) with high enantioselectivity (95%) and diastereoselectivity (>99:1). Such ɑ-fluoro-β-amino-oxindole compounds are expected to become candidates in the field of medicine.
Collapse
Affiliation(s)
- xin zhang
- Organic Chemistry, Jilin University, Changchun, China
| | - lin zhong wei
- college of chemistry, jilin university, changchun, China
| | - gang jun cao
- college of chemistry, jilin university, changchun, China
| | - peng da liang
- college of chemistry, jilin university, changchun, China
| | - Yingjie Lin
- college of chemistry, jilin university, changchun, China
| | - haifeng Duan
- college of chemistry, jilin university, Changchun, China
- college of chemistry, Jilin University, Changchun, China
| |
Collapse
|
10
|
Liu YL, Wang XP, Wei J, Li Y. Synthesis of oxindoles bearing a stereogenic 3-fluorinated carbon center from 3-fluorooxindoles. Org Biomol Chem 2021; 20:538-552. [PMID: 34935824 DOI: 10.1039/d1ob01964c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
3,3-Disubstituted oxindoles bearing a stereogenic 3-fluorinated carbon center are privileged structural motifs present in many bioactive molecules. The straightforward functionalization of 3-fluorooxindoles constitutes a powerful method for the synthesis of 3-fully substituted 3-fluorooxindoles, taking advantage of the ease of preparation of 3-fluorooxindoles with different substitution patterns and the atom efficiency of chemical reactions. In the past decade, many papers have appeared on the synthesis of 3-fully substituted 3-fluorooxindoles from 3-fluorooxindoles. Importantly, many asymmetric catalytic methods have been developed for the enantioselective synthesis of these valuable compounds. This review summarizes the achievements in this area, and overviews synthetic opportunities that still exist.
Collapse
Affiliation(s)
- Yong-Liang Liu
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai, 201620, China.
| | - Xiao-Ping Wang
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai, 201620, China.
| | - Jie Wei
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai, 201620, China.
| | - Ya Li
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai, 201620, China. .,Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, China
| |
Collapse
|
11
|
Balaraman K, Wolf C. Palladium and Nickel Catalyzed Suzuki Cross-Coupling with Alkyl Fluorides. Org Lett 2021; 23:8994-8999. [PMID: 34723542 DOI: 10.1021/acs.orglett.1c03515] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Suzuki cross-coupling of benzylic and unactivated aliphatic fluorides with aryl- and alkenylboronic acids has been achieved via mechanistically distinct Pd and Ni catalyzed pathways that outperform competing protodeboronation, β-hydride elimination, and homocoupling processes. The utility is demonstrated with more than 20 examples including heterocyclic structures, 1,1-disubstituted and trans-1,2-disubstituted alkenes, and by the incorporation of acetonitrile into functionalized (hetero)arenes.
Collapse
Affiliation(s)
- Kaluvu Balaraman
- Georgetown University, Chemistry Department, Washington, District of Columbia 20057, United States
| | - Christian Wolf
- Georgetown University, Chemistry Department, Washington, District of Columbia 20057, United States
| |
Collapse
|
12
|
Steber SE, Pham ANDL, Nelson E, Wolf C. Enantioseparation and racemization of α-aryl-α-fluoroacetonitriles. Chirality 2021; 33:891-898. [PMID: 34598313 DOI: 10.1002/chir.23367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/02/2021] [Accepted: 09/12/2021] [Indexed: 12/15/2022]
Abstract
The 2-Aryl-2-fluoroacetonitriles have garnered increasing interest as versatile building blocks in asymmetric synthesis. However, the configurational stability of these organofluorines is poorly understood and analytical methods that can be used to differentiate between their enantiomers remain underdeveloped. In this study, baseline high performance liquid chromatography (HPLC) enantioseparation of ten 2-aryl-2-fluoroacetonitriles was achieved by screening frequently used chiral stationary phases. While Chiralcel OD, Chiralpak AD, and Chiralpak AS proved to be most broadly useful, preparative separation of the enantiomers of 2-(2-naphthyl)-2-fluoroacetonitrile was possible on Chiralcel OJ. This enabled racemization studies at various temperatures and in the presence of organic bases which showed that this compound is configurationally stable under neutral conditions upon heating to 130°C for 6 h but undergoes complete racemization within 10 h in the presence of stoichiometric amounts of a guanidine base at room temperature. The racemization is likely to proceed via formation of an achiral keteniminate intermediate and obeys reversible first-order reaction kinetics with a half-life time of 87.7 min in ethanolic hexanes at 23.2°C. Racemization is significantly slower and occurs with a half-life time of 23.1 h at 22.4°C when the guanidine is replaced with a weaker amidine base.
Collapse
Affiliation(s)
- Sarah E Steber
- Department of Chemistry, Georgetown University, Washington, District of Columbia, USA
| | - Angelette N D L Pham
- Department of Chemistry, Georgetown University, Washington, District of Columbia, USA
| | - Eryn Nelson
- Department of Chemistry, Georgetown University, Washington, District of Columbia, USA
| | - Christian Wolf
- Department of Chemistry, Georgetown University, Washington, District of Columbia, USA
| |
Collapse
|
13
|
Song S, Li Y, Chen D, Wang X, Liu Y, Chen L. Synthesis of α‐Amidoacrylates Containing a 3‐Ylideneoxindole Motif. ChemistrySelect 2021. [DOI: 10.1002/slct.202100578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shuai Song
- School of Chemistry and Chemical Engineering Shanghai University of Engineering Science 1333 Longteng Road Shanghai 201620 China
| | - Ya Li
- School of Chemistry and Chemical Engineering Shanghai University of Engineering Science 1333 Longteng Road Shanghai 201620 China
| | - De‐Yin Chen
- School of Chemistry and Chemical Engineering Shanghai University of Engineering Science 1333 Longteng Road Shanghai 201620 China
| | - Xiao‐Ping Wang
- School of Chemistry and Chemical Engineering Shanghai University of Engineering Science 1333 Longteng Road Shanghai 201620 China
| | - Yong‐Liang Liu
- School of Chemistry and Chemical Engineering Shanghai University of Engineering Science 1333 Longteng Road Shanghai 201620 China
| | - Ling‐Yan Chen
- School of Chemistry and Chemical Engineering Shanghai University of Engineering Science 1333 Longteng Road Shanghai 201620 China
| |
Collapse
|
14
|
Chen DY, Song S, Chen LY, Ren X, Li Y. Organo-catalyzed Michael addition of 2-fluoro-2-arylacetonitriles. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
15
|
Qiu ZB, Chen LY, Ji J, Ren X, Li Y. Highly diastereoselective aldol reactions of 3-Fluorooxindoles promoted by MgBr2•OEt2/iPr2NEt. J Fluor Chem 2020. [DOI: 10.1016/j.jfluchem.2020.109594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
16
|
Lynch CC, Balaraman K, Wolf C. Catalytic Asymmetric Allylic Amination with Isatins, Sulfonamides, Imides, Amines, and N-Heterocycles. Org Lett 2020; 22:3180-3184. [PMID: 32255635 PMCID: PMC7369029 DOI: 10.1021/acs.orglett.0c00936] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A generally useful palladium-catalyzed method for the asymmetric allylic amination with a large variety of isatins, sulfonamides, imides, amines, and N-heterocycles is introduced. A single protocol with a readily available catalyst accomplishes this reaction at room temperature with high yields and enantioselectivities often exceeding 90%, which is demonstrated with 31 examples.
Collapse
Affiliation(s)
- Ciarán C Lynch
- Department of Chemistry, Georgetown University, 37th and O Streets, Washington, DC 20057, United States
| | - Kaluvu Balaraman
- Department of Chemistry, Georgetown University, 37th and O Streets, Washington, DC 20057, United States
| | - Christian Wolf
- Department of Chemistry, Georgetown University, 37th and O Streets, Washington, DC 20057, United States
| |
Collapse
|
17
|
Chen FY, Xiang L, Zhan G, Liu H, Kang B, Zhang SC, Peng C, Han B. Highly stereoselective organocatalytic synthesis of pyrrolidinyl spirooxindoles containing halogenated contiguous quaternary carbon stereocenters. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151806] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
18
|
Ji J, Chen L, Qiu Z, Ren X, Li Y. Visible‐Light Photoredox‐Catalyzed Cross‐Dehydrogenative Coupling of Tetrahydroisoquinolines with 3‐Fluorooxindoles. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900378] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jian Ji
- College of Chemistry and Chemical EngineeringShanghai University of Engineering Science 333 Longteng Road Shanghai 201620 China
| | - Ling‐Yan Chen
- College of Chemistry and Chemical EngineeringShanghai University of Engineering Science 333 Longteng Road Shanghai 201620 China
| | - Zi‐Bin Qiu
- College of Chemistry and Chemical EngineeringShanghai University of Engineering Science 333 Longteng Road Shanghai 201620 China
| | - Xinfeng Ren
- College of Chemistry and Chemical EngineeringShanghai University of Engineering Science 333 Longteng Road Shanghai 201620 China
| | - Ya Li
- College of Chemistry and Chemical EngineeringShanghai University of Engineering Science 333 Longteng Road Shanghai 201620 China
| |
Collapse
|
19
|
Zhao J, Li Y, Chen LY, Ren X. Enantioselective Mannich Reactions of 3-Fluorooxindoles with Cyclic N-Sulfamidate Aldimines. J Org Chem 2019; 84:5099-5108. [PMID: 30977656 DOI: 10.1021/acs.joc.9b00007] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Both the 3-fluorooxindole and cyclic sulfamidate frameworks are important in medicinal chemistry owing to their associated biological activities. We report an approach accessing 3-fully substituted 3-fluorooxindoles, containing a benzo-fused sulfamidate subunit through highly enantioselective Mannich-type reactions between 3-fluorooxindoles and cyclic benzo-fused N-sulfamidate aldimines. These reactions are promoted by a commercially available cinchona alkaloid catalyst, accommodate a broad substrate scope, and deliver the desired products in a yield of up to 99% with an enantiomeric excess of up to 94%. A plausible reaction pathway is also presented.
Collapse
Affiliation(s)
- Jianbo Zhao
- Department of Chemistry and Chemical Engineering , Shanghai University of Engineering Science , 333 Longteng Road , Shanghai 201620 , China
| | - Ya Li
- Department of Chemistry and Chemical Engineering , Shanghai University of Engineering Science , 333 Longteng Road , Shanghai 201620 , China
| | - Ling-Yan Chen
- Department of Chemistry and Chemical Engineering , Shanghai University of Engineering Science , 333 Longteng Road , Shanghai 201620 , China
| | - Xinfeng Ren
- Department of Chemistry and Chemical Engineering , Shanghai University of Engineering Science , 333 Longteng Road , Shanghai 201620 , China
| |
Collapse
|
20
|
Zhang Y, Luo L, Ge J, Yan SQ, Peng YX, Liu YR, Liu JX, Liu C, Ma T, Luo HQ. "On Water" Direct Organocatalytic Cyanoarylmethylation of Isatins for the Diastereoselective Synthesis of 3-Hydroxy-3-cyanomethyl Oxindoles. J Org Chem 2019; 84:4000-4008. [PMID: 30864430 DOI: 10.1021/acs.joc.8b03194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An "on water" organocatalytic cyanoarylmethylation of aryl acetonitrile to isatins is developed, giving products in high yields and up to excellent diastereoselectivities. A remarkable enhancement of reaction rates and diastereoselectivities by water was observed under mild conditions. Moreover, this approach provides a highly efficient and environmentally benign access to thermodynamic 3-hydroxy-3-cyanomethyl oxindoles.
Collapse
Affiliation(s)
- Yong Zhang
- Key Laboratory of Organo-pharmaceutical Chemistry , Gannan Normal University , Ganzhou 341000 , China
| | - Liang Luo
- Key Laboratory of Organo-pharmaceutical Chemistry , Gannan Normal University , Ganzhou 341000 , China
| | - Jin Ge
- Key Laboratory of Organo-pharmaceutical Chemistry , Gannan Normal University , Ganzhou 341000 , China
| | - Su-Qiong Yan
- Key Laboratory of Organo-pharmaceutical Chemistry , Gannan Normal University , Ganzhou 341000 , China
| | - Yan-Xin Peng
- Key Laboratory of Organo-pharmaceutical Chemistry , Gannan Normal University , Ganzhou 341000 , China
| | - Ya-Ru Liu
- Key Laboratory of Organo-pharmaceutical Chemistry , Gannan Normal University , Ganzhou 341000 , China
| | - Jin-Xiang Liu
- Key Laboratory of Organo-pharmaceutical Chemistry , Gannan Normal University , Ganzhou 341000 , China
| | - Chong Liu
- Inorganic Systems Engineering group, Chemical Engineering Department , Delft University of Technology , Van der Maasweg 9 , 2629 HZ Delft , The Netherlands
| | - Tianqiong Ma
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou , Gansu 730000 , China
| | - Hai-Qing Luo
- Key Laboratory of Organo-pharmaceutical Chemistry , Gannan Normal University , Ganzhou 341000 , China
| |
Collapse
|
21
|
Gong Y, Yu J, Hao Y, Zhou Y, Zhou J. Catalytic Enantioselective Aldol‐Type Reaction Using α‐Fluorinated Enolates. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900071] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yi Gong
- College of pharmacyGuiyang University of Chinese Medicine Guiyang 550025 China
| | - Jin‐Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development; Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesEast China Normal University 3663 N Zhongshan Road Shanghai 200062 China
| | - Yong‐Jia Hao
- College of pharmacyGuiyang University of Chinese Medicine Guiyang 550025 China
| | - Ying Zhou
- College of pharmacyGuiyang University of Chinese Medicine Guiyang 550025 China
| | - Jian Zhou
- College of pharmacyGuiyang University of Chinese Medicine Guiyang 550025 China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development; Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesEast China Normal University 3663 N Zhongshan Road Shanghai 200062 China
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic Chemistry, CAS Shanghai 200032 China
| |
Collapse
|
22
|
Moskowitz M, Wolf C. Catalytic Enantioselective Ynamide Additions to Isatins: Concise Access to Oxindole Alkaloids. Angew Chem Int Ed Engl 2019; 58:3402-3406. [PMID: 30695127 PMCID: PMC6444906 DOI: 10.1002/anie.201814074] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/28/2019] [Indexed: 11/05/2022]
Abstract
The highly enantioselective addition of terminal ynamides to a variety of isatins, catalyzed by a bisoxazolidine copper complex under mild, base-free reaction conditions, is described. The reaction is broad in scope, scalable, applicable to unprotected isatins, and provides efficient access to 3-hydroxyoxindoles carrying a tetrasubstituted chiral center with excellent yields and enantioselectivities. Synthetically versatile, multifunctional 3-hydroxyindolinones are obtained by hydration, partial hydrogenation, or hydroxyacyloxylation of the ynamide moiety at room temperature and exhaustive hydrogenation followed by reductive detosylation and spontaneous cyclization affords cinchonamidine alkaloids.
Collapse
Affiliation(s)
- Max Moskowitz
- Department of Chemistry, Georgetown University, 37 and O Streets, Washington, D.C. 20057 (USA)
| | - Christian Wolf
- Department of Chemistry, Georgetown University, 37 and O Streets, Washington, D.C. 20057 (USA)
| |
Collapse
|
23
|
Zheng BQ, Chen LY, Zhao JB, Ji J, Qiu ZB, Ren X, Li Y. Organocatalytic asymmetric syntheses of 3-fluorooxindoles containing vicinal fluoroamine motifs. Org Biomol Chem 2019; 16:8989-8993. [PMID: 30418465 DOI: 10.1039/c8ob01786g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An organocatalytic Mannich reaction of 3-fluorooxindoles has been developed. Using a commercially available cinchona alkaloid catalyst, a wide range of 3-fluorooxindoles was successfully reacted with N-sulfonyl aldimines to give biologically important 3-fluorooxindoles containing vicinal fluoroamine motifs with high efficiency and good enantioselectivity. This protocol uses readily available reactants and cheap organocatalysts, and it is operationally simple.
Collapse
Affiliation(s)
- Bu-Quan Zheng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China.
| | | | | | | | | | | | | |
Collapse
|
24
|
Ding R, De los Santos ZA, Wolf C. Catalytic Asymmetric Mannich Reaction of α-Fluoronitriles with Ketimines: Enantioselective and Diastereodivergent Construction of Vicinal Tetrasubstituted Stereocenters. ACS Catal 2019; 9:2169-2176. [PMID: 30956891 DOI: 10.1021/acscatal.8b05164] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Diastereodivergent and enantioselective conversion of isatin ketimines to α-fluoro-β-aminonitriles with vicinal tetrasubstituted stereocenters is achieved by a chiral copper complex/guanidine base catalyzed Mannich reaction with proper choice of the bisphosphine ligand. The reaction is broad in scope, scalable, and provides efficient access to a series of 3-aminoindolinones exhibiting a quaternary carbon-fluorine stereocenter with high yields and stereoselectivities. Selective transformations of the Mannich reaction products into multifunctional 3-aminooxindoles without erosion of enantiomeric and diastereomeric purity highlight the synthetic utility.
Collapse
Affiliation(s)
- Ransheng Ding
- Department of Chemistry, Georgetown University, 37th and O Streets, Washington, District of Columbia 20057, United States
| | - Zeus A. De los Santos
- Department of Chemistry, Georgetown University, 37th and O Streets, Washington, District of Columbia 20057, United States
| | - Christian Wolf
- Department of Chemistry, Georgetown University, 37th and O Streets, Washington, District of Columbia 20057, United States
| |
Collapse
|
25
|
Moskowitz M, Wolf C. Catalytic Enantioselective Ynamide Additions to Isatins: Concise Access to Oxindole Alkaloids. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Max Moskowitz
- Department of Chemistry; Georgetown University; 37 and O Streets Washington DC 20057 USA
| | - Christian Wolf
- Department of Chemistry; Georgetown University; 37 and O Streets Washington DC 20057 USA
| |
Collapse
|
26
|
Molina C, Ortega-Martínez A, Sansano JM, Nájera C. Synthesis of 3-substituted 3-fluoro-2-oxindoles by deacylative alkylation. Org Biomol Chem 2019; 17:482-489. [PMID: 30565638 DOI: 10.1039/c8ob01811a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The fluorination of 3-acetyl-2-oxindoles with N-fluorobenzenesulfonimide under Lewis acid catalysis using Mg(ClO4)2 gives the starting compounds 3-acetyl-3-fluoro-2-oxindoles. These compounds are subjected to base-promoted deacylative alkylation (DaA) for the in situ generation of 3-fluoro-2-oxindole enolates under very mild reaction conditions using Triton B (1 equiv.) and alkyl halides and Michael acceptors as electrophilic reagents. The corresponding 3-alkylated-3-fluoro-2-oxindoles are obtained in good to very high yields. In addition, the palladium-catalyzed deacylative allylation is carried out with allylic alcohols using LiOtBu as the base and 6 mol% of Pd(OAc)2 and dppp, giving the resulting 3-allylated 3-fluoro-2-oxindoles in good yields. This methodology allows a simple synthesis of 3-alkylated-3-fluoro-2-oxindoles, which are difficult to obtain by other routes.
Collapse
Affiliation(s)
- Cynthia Molina
- Department of Organic Chemistry and Centro de Innovación en Química Avanzada (ORFEO-CINQA). Faculty of Sciences, University of Alicante, E-03080 Alicante, Spain.
| | | | | | | |
Collapse
|
27
|
Zhu Y, Lu T, Geng A, Cui H, Zhang L. Ultrafast and Diastereoselective Synthesis of 3-Spirocyclopropyl-2-oxindoles Bearing Three Continuous All-Carbon Quaternary Centers. HETEROCYCLES 2019. [DOI: 10.3987/com-19-14078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Cinchona-alkaloid-catalyzed enantioselective hydroxymethylation of 3-fluorooxindoles with paraformaldehyde. J Fluor Chem 2018. [DOI: 10.1016/j.jfluchem.2018.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Li Y, Chang Y, Li Y, Cao C, Yang J, Wang B, Liang D. Iron-Catalyzed exo
-Selective Synthesis of Cyanoalkyl Indolines via Cyanoisopropylarylation of Unactivated Alkenes. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800296] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yanni Li
- Department of Chemistry; Kunming University; Kunming 650214 People's Republic of China
| | - Yu Chang
- Department of Chemistry; Kunming University; Kunming 650214 People's Republic of China
| | - Yufen Li
- Department of Chemistry; Kunming University; Kunming 650214 People's Republic of China
| | - Cheng Cao
- Department of Chemistry; Kunming University; Kunming 650214 People's Republic of China
| | - Jinshuang Yang
- Department of Chemistry; Kunming University; Kunming 650214 People's Republic of China
| | - Baoling Wang
- Yunnan Engineering Technology Research Center for Plastic Films; Kunming 650214 People's Republic of China
| | - Deqiang Liang
- Department of Chemistry; Kunming University; Kunming 650214 People's Republic of China
- Yunnan Engineering Technology Research Center for Plastic Films; Kunming 650214 People's Republic of China
| |
Collapse
|
30
|
Moskowitz M, Balaraman K, Wolf C. Organocatalytic Stereoselective Synthesis of Fluorinated 3,3'-Linked Bisoxindoles. J Org Chem 2018; 83:1661-1666. [PMID: 29313686 PMCID: PMC5939997 DOI: 10.1021/acs.joc.7b03084] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A highly diastereoselective organocatalytic method that produces 3-fluoro-3'-hydroxy-3,3'-bisoxindoles and the corresponding 3-fluoro-3'-amino derivatives having two adjacent chirality centers from fluorooxindoles and isatins in high yields is described. The reaction occurs in protic solvents at room temperature, it can be upscaled without compromising yield and stereoselectivity, and chromatographic product purification is not required.
Collapse
Affiliation(s)
- Max Moskowitz
- Department of Chemistry, Georgetown University , 37th and O Streets, Washington, DC 20057, United States
| | - Kaluvu Balaraman
- Department of Chemistry, Georgetown University , 37th and O Streets, Washington, DC 20057, United States
| | - Christian Wolf
- Department of Chemistry, Georgetown University , 37th and O Streets, Washington, DC 20057, United States
| |
Collapse
|