1
|
Bai L, Tu D, Deng P, Chen Y, Tang Q. Electrophilic aromatic substitution of electron-rich arenes with N-fluorobenzenesulfonimide (NFSI) as an electrophile. RSC Adv 2024; 14:34811-34815. [PMID: 39483384 PMCID: PMC11526033 DOI: 10.1039/d4ra07008a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 10/25/2024] [Indexed: 11/03/2024] Open
Abstract
An efficient amidation of electron-rich arenes using NFSI as a nitrogen source has been successfully disclosed. This amidation process can be easily conducted at elevated temperatures, without the need for catalysts or additives. A wide range of arenes substituted with hydroxy, alkoxy, or carbonyl groups were found to be compatible, yielding the desired amination products. Computational study shows that the amidation proceeds via an electrophilic aromatic substitution pathway, comprising a three-step process that includes substitution, addition, and elimination, which differs slightly from the classical mechanism.
Collapse
Affiliation(s)
- Lina Bai
- College of Pharmacy, Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University No. 1 Yixueyuan Road Chongqing 400016 P. R. China
| | - Dewei Tu
- College of Pharmacy, Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University No. 1 Yixueyuan Road Chongqing 400016 P. R. China
| | - Ping Deng
- College of Pharmacy, Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University No. 1 Yixueyuan Road Chongqing 400016 P. R. China
| | - Yongjie Chen
- College of Pharmacy, Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University No. 1 Yixueyuan Road Chongqing 400016 P. R. China
| | - Qiang Tang
- College of Pharmacy, Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University No. 1 Yixueyuan Road Chongqing 400016 P. R. China
| |
Collapse
|
2
|
Jia X, Tian X, Zhuang D, Wan Z, Gu J, Li Z. Copper-Catalyzed Intermolecular Cross-dehydrogenative C-N Coupling at Room Temperature via Remote Activating Group Enabled Radical Relay Strategy. Org Lett 2023; 25:2012-2017. [PMID: 36944029 DOI: 10.1021/acs.orglett.3c00267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Employing N-fluorobenzenesulfonimide (NFSI) as a nitrogen-centered radical (NCR) precursor, an intermolecular C(sp2)-N coupling on heteroarenes or substituted benzenes with remote activated aniline derivatives via copper catalyzed N-N radical relay strategy at room temperature is developed. Good to excellent yields are acquired, and no ligand or additive is required. Reaction scope investigation and preliminary mechanistic studies demonstrate that the remote activating strategy and delicate control on the reactivities of active NCR species are essential to guarantee satisfactory chemo- and site-selectivity.
Collapse
Affiliation(s)
- Xiaoqi Jia
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Xiangmin Tian
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Dailin Zhuang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Zhenyang Wan
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Jiahao Gu
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Ziyuan Li
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| |
Collapse
|
3
|
Rachor SG, Ahrens M, Braun T. Conversion of a Au I Fluorido Complex into an N-Fluoroamido Derivative: N-F versus Au-N Reactivity. Angew Chem Int Ed Engl 2022; 61:e202212858. [PMID: 36279190 PMCID: PMC10099710 DOI: 10.1002/anie.202212858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Indexed: 11/06/2022]
Abstract
The AuI complex [Au{N(F)SO2 Ph}(SPhos)] (SPhos=dicyclohexyl(2',6'-dimethoxy[1,1'-biphenyl]-2-yl)phosphane) (2) bearing a fluoroamido ligand has been synthesized by reaction of the fluorido complex [Au(F)(SPhos)] (1) with NFSI (NFSI=N-fluorobenzenesulfonimide). A reaction with CO resulted in an unprecedented insertion into the N-F bond at 2. With the carbene precursor N2 CH(CO2 Et) N-F bond cleavage gave the Au-F bond insertion product [Au{CHF(CO2 C2 H5 )}(SPhos)] (7). The presence of CNtBu led to Au-N cleavage at 2 and concomitant amide formation to give the cationic complex [Au(CNtBu)(SPhos)][N(F)SO2 Ph)] (5), which reacted further to give FtBu as well as the cyanido complex [Au(CN)(SPhos)] (6). These results led to the development of a process for the amination of electrophilic organic substrates by transfer of the fluoroamido group NF(SO2 Ph)- .
Collapse
Affiliation(s)
- Simon G Rachor
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Mike Ahrens
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Thomas Braun
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| |
Collapse
|
4
|
Copper-promoted C1−H amination of pyrrolo[1,2-a]quinoxaline with N‑fluorobenzenesulfonimide. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Wang F, Chen J, Jia X, Zhuang D, Wan Z, Ma L, Li Z. Direct Benzylic C(sp 3)-O Coupling with Alcohol via Site-Selective C(sp 3)-H Cleavage at Room Temperature through a Remote Directing Group-Enabled Radical Relay Strategy. J Org Chem 2022; 87:10698-10709. [PMID: 35930467 DOI: 10.1021/acs.joc.2c00884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Employing a low loading of the terminal oxidant, a remote directing group-enabled radical relay strategy for benzylic direct C(sp3)-H alkoxylation with alcohols at room temperature is developed. Satisfactory site-selectivity, chemoselectivity, and reaction scope are achieved under simple and mild conditions, and no ligand or additive is required. Mechanistic studies, ready conversions of the directing group, and other benzylic functionalizations currently under development in our laboratory further indicate the promising potentials of this remote directing group-enabled radical relay strategy.
Collapse
Affiliation(s)
- Fang Wang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 61006, P. R. China
| | - Jiaming Chen
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 61006, P. R. China
| | - Xiaoqi Jia
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 61006, P. R. China
| | - Dailin Zhuang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 61006, P. R. China
| | - Zhenyang Wan
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 61006, P. R. China
| | - Lifang Ma
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 61006, P. R. China
| | - Ziyuan Li
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 61006, P. R. China
| |
Collapse
|
6
|
Chen J, Wang F, Huang Y, Jia X, Zhuang D, Wan Z, Li Z. Remote carbamate-directed site-selective benzylic C–H oxygenation via synergistic copper/TEMPO catalysis at room temperature. Org Chem Front 2022. [DOI: 10.1039/d2qo00435f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A benzylic C(sp3)–H oxygenation with water at room temperature through a ligand- and additive-free synergistic copper/TEMPO-catalysed radical relay pathway and a remote directing strategy is described.
Collapse
Affiliation(s)
- Jiaming Chen
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Fang Wang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yanping Huang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
- Engineering Experimental Teaching Centre, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Xiaoqi Jia
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Dailin Zhuang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Zhenyang Wan
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Ziyuan Li
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
7
|
Van Emelen L, Henrion M, Lemmens R, De Vos D. C–N coupling reactions with arenes through C–H activation: the state-of-the-art versus the principles of green chemistry. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01827b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Herein, we discuss the state-of-the-art in arene C–N coupling through C–H activation and to what extent it complies with the principles of green chemistry, with a focus on heterogeneously catalysed systems.
Collapse
Affiliation(s)
- Lisa Van Emelen
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Department of Microbial and Molecular Systems, KU Leuven – University of Leuven, Leuven Chem & Tech, Celestijnenlaan 200F Postbox 2454, Heverlee, Belgium
| | - Mickaël Henrion
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Department of Microbial and Molecular Systems, KU Leuven – University of Leuven, Leuven Chem & Tech, Celestijnenlaan 200F Postbox 2454, Heverlee, Belgium
| | - Robin Lemmens
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Department of Microbial and Molecular Systems, KU Leuven – University of Leuven, Leuven Chem & Tech, Celestijnenlaan 200F Postbox 2454, Heverlee, Belgium
| | - Dirk De Vos
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), Department of Microbial and Molecular Systems, KU Leuven – University of Leuven, Leuven Chem & Tech, Celestijnenlaan 200F Postbox 2454, Heverlee, Belgium
| |
Collapse
|
8
|
|
9
|
Yang D, Chen J, Huang Y, Pan H, Shi J, Zhang Y, Wang F, Li Z. Room-temperature Formal Aza-Wacker Cyclization through Synergistic Copper/TEMPO-catalyzed Radical Relay. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Dong Yang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Jiaming Chen
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Yanping Huang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
- Engineering Experimental Teaching Centre, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Huiquan Pan
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Jingqi Shi
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Yingyue Zhang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Fang Wang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Ziyuan Li
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| |
Collapse
|
10
|
Yang D, Shi J, Chen J, Jia X, Shi C, Ma L, Li Z. Visible-light enabled room-temperature dealkylative imidation of secondary and tertiary amines promoted by aerobic ruthenium catalysis. RSC Adv 2021; 11:18966-18973. [PMID: 35478631 PMCID: PMC9033495 DOI: 10.1039/d0ra10517a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Employing sulfonyl azide as a nitrogen donor, a visible-light-enabled aerobic dealkylative imidation of tertiary and secondary amines involving C(sp3)–C(sp3) bond cleavage with moderate to excellent yields at room temperature is described. It has been demonstrated that this imidation could take place spontaneously upon visible-light irradiation, and could be facilitated considerably by a ruthenium photocatalyst and oxygen. An alternative mechanism to the previous aerobic photoredox pathway has also been proposed. A photoredox dealkylative imidation of tertiary and secondary amines with sulfonyl azide facilitated by aerobic ruthenium-catalysis to afford sulfonyl amidine at room temperature is reported.![]()
Collapse
Affiliation(s)
- Dong Yang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University Chengdu 610065 China
| | - Jingqi Shi
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University Chengdu 610065 China
| | - Jiaming Chen
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University Chengdu 610065 China
| | - Xiaoqi Jia
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University Chengdu 610065 China
| | - Cuiying Shi
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University Chengdu 610065 China
| | - Lifang Ma
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University Chengdu 610065 China
| | - Ziyuan Li
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University Chengdu 610065 China
| |
Collapse
|
11
|
Shao Z, Wang F, Shi J, Ma L, Li Z. Synergetic copper/TEMPO-catalysed benzylic C–H imidation with N-fluorobenzenesulfonimide at room temperature and tandem conversions with alcohols or arenes. Org Chem Front 2021. [DOI: 10.1039/d1qo00340b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A remote carbamate-directed benzylic C–H imidation with NFSI at room temperature through synergetic CuCl-TEMPO catalysis and tandem alkoxylation or arylation with alcohols or arenes are described.
Collapse
Affiliation(s)
- Zhong Shao
- Department of Pharmaceutical and Biological Engineering
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Fang Wang
- Department of Pharmaceutical and Biological Engineering
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Jingqi Shi
- Department of Pharmaceutical and Biological Engineering
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Lifang Ma
- Department of Pharmaceutical and Biological Engineering
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Ziyuan Li
- Department of Pharmaceutical and Biological Engineering
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
12
|
Zimin DP, Dar’in DV, Kukushkin VY, Dubovtsev AY. Oxygen Atom Transfer as Key To Reverse Regioselectivity in the Gold(I)-Catalyzed Generation of Aminooxazoles from Ynamides. J Org Chem 2020; 86:1748-1757. [DOI: 10.1021/acs.joc.0c02584] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Dmitry P. Zimin
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Dmitry V. Dar’in
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Vadim Yu. Kukushkin
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
- South Ural State University, 76, Lenin Av., Chelyabinsk 454080, Russian Federation
| | - Alexey Yu. Dubovtsev
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| |
Collapse
|
13
|
Sushmita, Aggarwal T, Kumar S, Verma AK. Exploring the behavior of the NFSI reagent as a nitrogen source. Org Biomol Chem 2020; 18:7056-7073. [PMID: 32909593 DOI: 10.1039/d0ob01429j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The diverse biological activities of nitrogen-containing compounds make the construction of the C-N bond of great importance. As N-fluorobenzenesulfonimide, one of the most abundant chemical feedstock, has a dual behaviour, i.e. as an electrophilic fluorination and amidation source, it attracts the attention of synthetic chemists for exploitation. This review comprehensively summarizes the significant progress of the efficient and mild amidation reactions, with an emphasis on approaches for the generation of nitrogen-centered intermediates, related mechanisms and new synthetic chemistry methods that offer opportunities to overcome obstacles in pharmaceutical applications. In this perspective, we discuss the developments in the amidation reaction using NFSI in the past decade. We discuss the recent progress, challenges and future outcomes in the area of amidation chemistry using commercially available NFSI.
Collapse
Affiliation(s)
- Sushmita
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Trapti Aggarwal
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Sonu Kumar
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Akhilesh K Verma
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India.
| |
Collapse
|
14
|
Zeidan N, Zambri M, Unger S, Dank C, Torelli A, Mirabi B, Lautens M. Synthesis and Reactions of 3,3-Difluoro-2- exo-methylidene Indolines. Org Lett 2020; 22:3688-3691. [PMID: 32276536 PMCID: PMC7201399 DOI: 10.1021/acs.orglett.0c01175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
A dearomative electrophilic fluorination
of 2-methylindoles is
reported, delivering 3,3-difluoroindolines bearing an exomethylidene.
The model substrate was synthesized on up to a 20 mmol scale and was
purified by a practical recrystallization as a crystalline bench-stable,
yet reactive solid. The olefin is amphoteric and can react both as
a nucleophile and as an electrophile. A wide range of metal-free,
palladium, rhodium, and copper reactions was explored, forming new
C–H, C–B, C–C (alkyl and aryl), C–N, C–O,
C–P, and C–S bonds.
Collapse
Affiliation(s)
- Nicolas Zeidan
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Matthew Zambri
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Sven Unger
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Christian Dank
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Alexa Torelli
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Bijan Mirabi
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Mark Lautens
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
15
|
Gu Q, Vessally E. N-Fluorobenzenesulfonimide: a useful and versatile reagent for the direct fluorination and amination of (hetero)aromatic C–H bonds. RSC Adv 2020; 10:16756-16768. [PMID: 35498838 PMCID: PMC9053168 DOI: 10.1039/d0ra00324g] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 04/17/2020] [Indexed: 12/31/2022] Open
Abstract
This review updates recent advances and developments in the direct fluorination and amination of (hetero)aromatic C–H bonds utilizing N-fluorobenzenesulfonimide, classified according to the type of catalyst. This review updates recent advances and developments in the direct fluorination and amination of (hetero)aromatic C–H bonds utilizing N-fluorobenzenesulfonimide, classified according to the type of catalyst.![]()
Collapse
Affiliation(s)
- Qiang Gu
- The School of Architecture
- Yantai University
- Yantai City
- China
| | | |
Collapse
|
16
|
Douglas GE, Raw SA, Marsden SP. Iron-Catalysed Direct Aromatic Amination with N
-Chloroamines. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900614] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Gayle E. Douglas
- School of Chemistry and Institute of Process Research and Development; University of Leeds; Leeds LS2 9JT UK
| | - Steven A. Raw
- Pharmaceutical Development; AstraZeneca; Macclesfield SK10 3RN UK
| | - Stephen P. Marsden
- School of Chemistry and Institute of Process Research and Development; University of Leeds; Leeds LS2 9JT UK
| |
Collapse
|
17
|
Shi C, Miao Q, Ma L, Lu T, Yang D, Chen J, Li Z. Room‐Temperature C‐H Bromination and Iodination with Sodium Bromide and Sodium Iodide Using
N
‐Fluorobenzenesulfonimide as an Oxidant. ChemistrySelect 2019. [DOI: 10.1002/slct.201901456] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Cuiying Shi
- Department of Pharmaceutical and Biological EngineeringSchool of Chemical Engineering, Sichuan University No.24 South Section 1, Yihuan Road Chengdu 610065 China
| | - Qi Miao
- Department of Pharmaceutical and Biological EngineeringSchool of Chemical Engineering, Sichuan University No.24 South Section 1, Yihuan Road Chengdu 610065 China
| | - Lifang Ma
- Department of Pharmaceutical and Biological EngineeringSchool of Chemical Engineering, Sichuan University No.24 South Section 1, Yihuan Road Chengdu 610065 China
| | - Tao Lu
- Department of Pharmaceutical and Biological EngineeringSchool of Chemical Engineering, Sichuan University No.24 South Section 1, Yihuan Road Chengdu 610065 China
| | - Dong Yang
- Department of Pharmaceutical and Biological EngineeringSchool of Chemical Engineering, Sichuan University No.24 South Section 1, Yihuan Road Chengdu 610065 China
| | - Jiaming Chen
- Department of Pharmaceutical and Biological EngineeringSchool of Chemical Engineering, Sichuan University No.24 South Section 1, Yihuan Road Chengdu 610065 China
| | - Ziyuan Li
- Department of Pharmaceutical and Biological EngineeringSchool of Chemical Engineering, Sichuan University No.24 South Section 1, Yihuan Road Chengdu 610065 China
| |
Collapse
|
18
|
Han S, Gao X, Wu Q, Li J, Zou D, Wu Y, Wu Y. Nickel-promoted C(2)–H amidation of quinoline N-oxides with N-fluorobenzenesulfonimide. Org Chem Front 2019. [DOI: 10.1039/c8qo01281d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The first example of nickel-promoted C–H amidation of quinoline N-oxides with NFSI.
Collapse
Affiliation(s)
- Shuaijun Han
- The College of Chemistry and Molecular Engineering
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Zhengzhou University
- Zhengzhou
- People's Republic of China
| | - Xianying Gao
- The College of Chemistry and Molecular Engineering
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Zhengzhou University
- Zhengzhou
- People's Republic of China
| | - Qingsong Wu
- The College of Chemistry and Molecular Engineering
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Zhengzhou University
- Zhengzhou
- People's Republic of China
| | - Jingya Li
- Tetranov Biopharm
- LLC
- and Collaborative Innovation Center of New Drug Research and Safety Evaluation
- Zhengzhou
- People's Republic of China
| | - Dapeng Zou
- The College of Chemistry and Molecular Engineering
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Zhengzhou University
- Zhengzhou
- People's Republic of China
| | - Yusheng Wu
- The College of Chemistry and Molecular Engineering
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Zhengzhou University
- Zhengzhou
- People's Republic of China
| | - Yangjie Wu
- The College of Chemistry and Molecular Engineering
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Zhengzhou University
- Zhengzhou
- People's Republic of China
| |
Collapse
|
19
|
Lei B, Miao Q, Ma L, Fu R, Hu F, Ni N, Li Z. Efficient metal-free aminoiodination of alkenes with N-fluorobenzenesulfonimide under mild conditions. Org Biomol Chem 2019; 17:2126-2133. [DOI: 10.1039/c8ob03019g] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel regioselective and stereoselective transition-metal-free aminoiodination of alkenes through an iodonium intermediate using NFSI as both the oxidant and amino precursor under mild conditions with a broad alkene scope is disclosed.
Collapse
Affiliation(s)
- Bowen Lei
- Department of Pharmaceutical and Biological Engineering
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Qi Miao
- Department of Pharmaceutical and Biological Engineering
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Lifang Ma
- Department of Pharmaceutical and Biological Engineering
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Ruoqi Fu
- Department of Pharmaceutical and Biological Engineering
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Fangrong Hu
- Department of Pharmaceutical and Biological Engineering
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Ni Ni
- Department of Pharmaceutical and Biological Engineering
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Ziyuan Li
- Department of Pharmaceutical and Biological Engineering
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
20
|
Miao Q, Shao Z, Shi C, Ma L, Wang F, Fu R, Gao H, Li Z. Metal-free C–H amination of arene with N-fluorobenzenesulfonimide catalysed by nitroxyl radicals at room temperature. Chem Commun (Camb) 2019; 55:7331-7334. [DOI: 10.1039/c9cc02739d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The first C–H amination of arene with NFSI via organocatalysis is disclosed, which can be achieved at room temperature with a broad substrate scope.
Collapse
Affiliation(s)
- Qi Miao
- Department of Pharmaceutical and Biological Engineering
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Zhong Shao
- Department of Pharmaceutical and Biological Engineering
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Cuiying Shi
- Department of Pharmaceutical and Biological Engineering
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Lifang Ma
- Department of Pharmaceutical and Biological Engineering
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Fang Wang
- Department of Pharmaceutical and Biological Engineering
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Ruoqi Fu
- Department of Pharmaceutical and Biological Engineering
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Haochen Gao
- Department of Pharmaceutical and Biological Engineering
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Ziyuan Li
- Department of Pharmaceutical and Biological Engineering
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
21
|
Lu S, Tian LL, Cui TW, Zhu YS, Zhu X, Hao XQ, Song MP. Copper-Mediated C–H Amination of Imidazopyridines with N-Fluorobenzenesulfonimide. J Org Chem 2018; 83:13991-14000. [DOI: 10.1021/acs.joc.8b02348] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Shuai Lu
- College of Chemistry and Molecular Engineering, Zhengzhou University, No. 100 Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Lu-Lu Tian
- College of Chemistry and Molecular Engineering, Zhengzhou University, No. 100 Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Tian-Wei Cui
- College of Chemistry and Molecular Engineering, Zhengzhou University, No. 100 Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Yu-Shen Zhu
- College of Chemistry and Molecular Engineering, Zhengzhou University, No. 100 Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Xinju Zhu
- College of Chemistry and Molecular Engineering, Zhengzhou University, No. 100 Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Xin-Qi Hao
- College of Chemistry and Molecular Engineering, Zhengzhou University, No. 100 Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Mao-Ping Song
- College of Chemistry and Molecular Engineering, Zhengzhou University, No. 100 Science Road, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
22
|
Lei B, Wang X, Ma L, Li Y, Li Z. NFSI-participated intermolecular aminoazidation of alkene through iron catalysis. Org Biomol Chem 2018; 16:3109-3113. [DOI: 10.1039/c8ob00699g] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
An iron-catalysed intermolecular vicinal aminoazidation of alkene with NFSI is reported, with broader alkene scope comparing to previously reported aminoazidation.
Collapse
Affiliation(s)
- Bowen Lei
- Department of Pharmaceutical and Biological Engineering
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Xiaojiao Wang
- Department of Pharmaceutical and Biological Engineering
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Lifang Ma
- Department of Pharmaceutical and Biological Engineering
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Yan Li
- Department of Pharmaceutical and Biological Engineering
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Ziyuan Li
- Department of Pharmaceutical and Biological Engineering
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|