1
|
Hochegger P, Hermann T, Dolensky J, Seebacher W, Saf R, Pferschy-Wenzig EM, Kaiser M, Mäser P, Weis R. Structure-Activity Relationships and Antiplasmodial Potencies of Novel 3,4-Disubstituted 1,2,5-Oxadiazoles. Int J Mol Sci 2023; 24:14480. [PMID: 37833929 PMCID: PMC10572347 DOI: 10.3390/ijms241914480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
The 4-substituted 3-amino-1,2,5-oxadiazole 1 from the Malaria Box Project of the Medicines for Malaria Venture foundation shows very promising selectivity and in vitro activity against Plasmodium falciparum. Within the first series of new compounds, various 3-acylamino analogs were prepared. This paper now focuses on the investigation of the importance of the aromatic substituent in ring position 4. A number of new structure-activity relationships were elaborated, showing that antiplasmodial activity and selectivity strongly depend on the substitution pattern of the 4-phenyl moiety. In addition, physicochemical parameters relevant for drug development were calculated (logP and ligand efficiency) or determined experimentally (CYP3A4-inhibition and aqueous solubility). N-[4-(3-ethoxy-4-methoxyphenyl)-1,2,5-oxadiazol-3-yl]-3-methylbenzamide 51 showed high in vitro activity against the chloroquine-sensitive strain NF54 of P. falciparum (PfNF54 IC50 = 0.034 µM), resulting in a very promising selectivity index of 1526.
Collapse
Affiliation(s)
- Patrick Hochegger
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Schubertstraße 1, A-8010 Graz, Austria; (P.H.); (J.D.); (W.S.); (R.W.)
| | - Theresa Hermann
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Schubertstraße 1, A-8010 Graz, Austria; (P.H.); (J.D.); (W.S.); (R.W.)
| | - Johanna Dolensky
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Schubertstraße 1, A-8010 Graz, Austria; (P.H.); (J.D.); (W.S.); (R.W.)
| | - Werner Seebacher
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Schubertstraße 1, A-8010 Graz, Austria; (P.H.); (J.D.); (W.S.); (R.W.)
| | - Robert Saf
- Institute for Chemistry and Technology of Materials (ICTM), Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria;
| | - Eva-Maria Pferschy-Wenzig
- Institute of Pharmaceutical Sciences, Pharmacognosy, University of Graz, Beethovenstraße 8, A-8010 Graz, Austria;
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Kreuzstraße 2, CH-4123 Allschwil, Switzerland; (M.K.); (P.M.)
- Faculty of Philosophy and Natural Sciences, University of Basel, Swiss TPH, Petersplatz 1, CH-4003 Basel, Switzerland
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Kreuzstraße 2, CH-4123 Allschwil, Switzerland; (M.K.); (P.M.)
- Faculty of Philosophy and Natural Sciences, University of Basel, Swiss TPH, Petersplatz 1, CH-4003 Basel, Switzerland
| | - Robert Weis
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Schubertstraße 1, A-8010 Graz, Austria; (P.H.); (J.D.); (W.S.); (R.W.)
| |
Collapse
|
2
|
Fatima A, Singh M, Abualnaja KM, Althubeiti K, Muthu S, Siddiqui N, Javed S. Experimental Spectroscopic, Structural (Monomer and Dimer), Molecular Docking, Molecular Dynamics Simulation and Hirshfeld Surface Analysis of 2-Amino-6-Methylpyridine. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2080726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Aysha Fatima
- School of Studies in Chemistry, Jiwaji University, Gwalior, India
- Department of Chemistry, Institute of H. Science, Dr. Bhimrao Ambedkar University, Agra, India
| | - Meenakshi Singh
- Department of Chemistry, Institute of H. Science, Dr. Bhimrao Ambedkar University, Agra, India
| | - Khamael M. Abualnaja
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| | - Khaled Althubeiti
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| | - S. Muthu
- Department of Physics, Arignar Anna Government Arts College, Cheyyar, India
| | - Nazia Siddiqui
- Department of Chemistry, Dayalbagh Educational Institute, Agra, India
| | - Saleem Javed
- Department of Chemistry, Institute of H. Science, Dr. Bhimrao Ambedkar University, Agra, India
| |
Collapse
|
3
|
Yang L, Huang Y, Yu W, Fan L, Wang T, Fu J. Copper-Catalyzed Oxidative Coupling of Quinazoline-3-Oxides: Synthesis of O-Quinazolinic Carbamates. J Org Chem 2022; 87:5136-5148. [DOI: 10.1021/acs.joc.1c03098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lingyun Yang
- National Research Center for Carbohydrate Synthesis and Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P.R. China
| | - Yangfei Huang
- National Research Center for Carbohydrate Synthesis and Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P.R. China
| | - Weijie Yu
- National Research Center for Carbohydrate Synthesis and Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P.R. China
| | - Lijia Fan
- National Research Center for Carbohydrate Synthesis and Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P.R. China
| | - Tao Wang
- National Research Center for Carbohydrate Synthesis and Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P.R. China
| | - Junkai Fu
- National Research Center for Carbohydrate Synthesis and Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P.R. China
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
4
|
Lewis acid catalyzed condensation of 2-aminohetarene N-oxides with N,N-dimethylformamide dimethyl acetal. Chem Heterocycl Compd (N Y) 2022. [DOI: 10.1007/s10593-021-03031-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Fershtat LL, Teslenko FE. Five-Membered Hetarene N-Oxides: Recent Advances in Synthesis and Reactivity. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1529-7678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AbstractFive-membered heterocyclic N-oxides attract special attention due to their significant potential applications in medicinal chemistry and advanced materials science. In this regard, novel methods for their synthesis and functionalization are in constant demand. In this short review, recent state-of-the-art achievements in the chemistry of isoxazoline N-oxides, 1,2,3-triazole 1-oxides and 1,2,5-oxadiazole 2-oxides are summarized. The main routes involving transition-metal-catalyzed and metal-free functionalization protocols along with mechanistic considerations are outlined. The transformations of these hetarene N-oxide rings as precursors to other nitrogen heterocyclic systems are also presented.1 Introduction2 Isoxazoline N-Oxides3 1,2,3-Triazole 1-Oxides4 1,2,5-Oxadiazole 2-Oxides5 Conclusion
Collapse
Affiliation(s)
- Leonid L. Fershtat
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences
- National Research University Higher School of Economics
| | - Fedor E. Teslenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences
| |
Collapse
|
6
|
Kasatkina SO, Geyl KK, Baykov SV, Boyarskaya IA, Boyarskiy VP. Catalyst-free synthesis of substituted pyridin-2-yl, quinolin-2-yl, and isoquinolin-1-yl carbamates from the corresponding hetaryl ureas and alcohols. Org Biomol Chem 2021; 19:6059-6065. [PMID: 34137410 DOI: 10.1039/d1ob00783a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel catalyst-free synthesis of N-pyridin-2-yl, N-quinolin-2-yl, and N-isoquinolin-1-yl carbamates utilizes easily accessible N-hetaryl ureas and alcohols. The proposed environmentally friendly technique is suitable for the good-to-high yielding synthesis of a wide range of N-pyridin-2-yl or N-quinolin-2-yl substituted carbamates featuring electron-donating and electron-withdrawing groups in the azine rings and containing various primary, secondary, and even tertiary alkyl substituents at the oxygen atom (48-94%; 31 examples). The DFT calculation and experimental study showed that the reaction proceeds through the intermediate formation of hetaryl isocyanates. The method can be applied to obtain N-isoquinolin-1-yl carbamates, although in lower yields, and ethyl benzo[h]quinolin-2-yl carbamate has also been successfully synthesized (68%).
Collapse
Affiliation(s)
- Svetlana O Kasatkina
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab., 7/9, 199034 Saint Petersburg, Russia.
| | - Kirill K Geyl
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab., 7/9, 199034 Saint Petersburg, Russia.
| | - Sergey V Baykov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab., 7/9, 199034 Saint Petersburg, Russia.
| | - Irina A Boyarskaya
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab., 7/9, 199034 Saint Petersburg, Russia.
| | - Vadim P Boyarskiy
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab., 7/9, 199034 Saint Petersburg, Russia.
| |
Collapse
|
7
|
2-Amino-6-methylpyridine based co-crystal salt formation using succinic acid: Single-crystal analysis and computational exploration. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.129893] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Recent Advances in the Synthesis of C2‐Functionalized Pyridines and Quinolines Using
N
‐Oxide Chemistry. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000910] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Liu Q, Zhang CS, Sheng H, Enders D, Wang ZX, Chen XY. Site-Selective Pyridyl Alkyl Ketone Synthesis from N-Alkenoxypyridiniums through Boekelheide-Type Rearrangements. Org Lett 2020; 22:5617-5621. [DOI: 10.1021/acs.orglett.0c01984] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qiang Liu
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Chao-Shen Zhang
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - He Sheng
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Dieter Enders
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
10
|
Teslenko FE, Churakov AI, Larin AA, Ananyev IV, Fershtat LL, Makhova NN. Route to 1,2,4- and 1,2,5-oxadiazole ring assemblies via a one-pot condensation/oxidation protocol. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Makhova NN, Belen’kii LI, Gazieva GA, Dalinger IL, Konstantinova LS, Kuznetsov VV, Kravchenko AN, Krayushkin MM, Rakitin OA, Starosotnikov AM, Fershtat LL, Shevelev SA, Shirinian VZ, Yarovenko VN. Progress in the chemistry of nitrogen-, oxygen- and sulfur-containing heterocyclic systems. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4914] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Bystrov DM, Fershtat LL, Makhova NN. Synthesis and reactivity of aminofuroxans. Chem Heterocycl Compd (N Y) 2019. [DOI: 10.1007/s10593-019-02593-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Fershtat LL, Makhova NN. 1,2,5‐Oxadiazole‐Based High‐Energy‐Density Materials: Synthesis and Performance. Chempluschem 2019. [DOI: 10.1002/cplu.201900542] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Leonid L. Fershtat
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 119991, Leninsky Prospect, 47 Moscow Russia
| | - Nina N. Makhova
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 119991, Leninsky Prospect, 47 Moscow Russia
| |
Collapse
|
14
|
Zhilin ES, Bystrov DM, Ananyev IV, Fershtat LL, Makhova NN. Straightforward Access to the Nitric Oxide Donor Azasydnone Scaffold by Cascade Reactions of Amines. Chemistry 2019; 25:14284-14289. [DOI: 10.1002/chem.201903526] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Egor S. Zhilin
- N. D. Zelinsky Institute of Organic ChemistryRussian Academy of Sciences Leninsky Prospect 47 119991 Moscow Russia
| | - Dmitry M. Bystrov
- N. D. Zelinsky Institute of Organic ChemistryRussian Academy of Sciences Leninsky Prospect 47 119991 Moscow Russia
| | - Ivan V. Ananyev
- A. N. Nesmeyanov Institute of Organoelement CompoundsRussian Academy of Sciences Vavilova str. 28 119991 Moscow Russia
| | - Leonid L. Fershtat
- N. D. Zelinsky Institute of Organic ChemistryRussian Academy of Sciences Leninsky Prospect 47 119991 Moscow Russia
| | - Nina N. Makhova
- N. D. Zelinsky Institute of Organic ChemistryRussian Academy of Sciences Leninsky Prospect 47 119991 Moscow Russia
| |
Collapse
|
15
|
Xun X, Zhao M, Xue J, Hu T, Zhang M, Li G, Hong L. Difunctionalization of Alkenylpyridine N-Oxides by the Tandem Addition/Boekelheide Rearrangement. Org Lett 2019; 21:8266-8269. [DOI: 10.1021/acs.orglett.9b03035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Xudong Xun
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Man Zhao
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jianzhong Xue
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Tao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ming Zhang
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Guofeng Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Liang Hong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
16
|
Zhilin ES, Fershtat LL, Bystrov DM, Kulikov AS, Dmitrienko AO, Ananyev IV, Makhova NN. Renaissance of 1,2,5-Oxadiazolyl Diazonium Salts: Synthesis and Reactivity. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900622] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Egor S. Zhilin
- N.D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky Prospect, 47 119991 Moscow Russia
| | - Leonid L. Fershtat
- N.D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky Prospect, 47 119991 Moscow Russia
| | - Dmitry M. Bystrov
- N.D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky Prospect, 47 119991 Moscow Russia
| | - Alexander S. Kulikov
- N.D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky Prospect, 47 119991 Moscow Russia
| | - Artem O. Dmitrienko
- A. N. Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; Vavilova str., 28 119991 Moscow Russia
| | - Ivan V. Ananyev
- A. N. Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; Vavilova str., 28 119991 Moscow Russia
| | - Nina N. Makhova
- N.D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky Prospect, 47 119991 Moscow Russia
| |
Collapse
|