1
|
Kumar R. Decennary Update on Oxidative-Rearrangement Involving 1,2-Aryl C-C Migration Around Alkenes: Synthetic and Mechanistic Insights. Chem Asian J 2024; 19:e202400053. [PMID: 38741472 DOI: 10.1002/asia.202400053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
In recent years, numerous methodologies on oxidative rearrangements of alkenes have been investigated, that produce multipurpose synthons and heterocyclic scaffolds of potential applications. The present review focused on recently established methodologies for oxidative transformation via 1,2-aryl migration in alkenes (2013-2023). Special emphasis has been placed on mechanistic pathways to understand the reactivity pattern of different substrates, challenges to enhance selectivity, the key role of different reagents, and effect of different substituents, and how they affect the rearrangement process. Moreover, synthetic limitations and future direction also have been discussed. We believe, this review offers new synthetic and mechanistic insight to develop elegant precursors and approaches to explore the utilization of alkene-based compounds for natural product synthesis and functional materials.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Chemistry, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, Haryana (India
| |
Collapse
|
2
|
Xiong B, Shi C, Ren Y, Xu W, Liu Y, Zhu L, Cao F, Tang KW, Yin SF. Zn-Catalyzed Dehydroxylative Phosphorylation of Allylic Alcohols with P(III)-Nucleophiles. J Org Chem 2024; 89:3033-3048. [PMID: 38372254 DOI: 10.1021/acs.joc.3c02489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
A novel and efficient protocol for the synthesis of diarylallyl-functionalized phosphonates, phosphinates, and phosphine oxides through the zinc-catalyzed dehydroxylative phosphorylation of allylic alcohols with P(III)-nucleophiles via a Michaelis-Arbuzov-type rearrangement is reported. A broad range of allylic alcohols and P(III)-nucleophiles (P(OR)3, ArP(OR)2, and Ar2P(OR)) are well tolerated in this reaction, and the expected dehydroxylative phosphorylation products could be synthesized with good to excellent yields under the optimal reaction conditions. The reaction can be easily scaled up at a gram-synthesis level. Furthermore, through the step-by-step control experiments, kinetic study experiments, and 31P NMR tracking experiments, we acquired insights into the reaction and proposed the possible mechanism for this transformation.
Collapse
Affiliation(s)
- Biquan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Chonghao Shi
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Yining Ren
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Weifeng Xu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Longzhi Zhu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Fan Cao
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Shuang-Feng Yin
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
- College of Science, Central South University of Forestry and Technology, Changsha, Hunan 410004, P. R. China
| |
Collapse
|
3
|
Ma S, Guo Y, Liu L, Shi L, Lei X, Duan X, Jiao P. gem-Bromonitroalkane Involved Radical 1,2-Aryl Migration of α,α-Diaryl Allyl Alcohol TMS Ether via Visible-Light Photoredox Catalysis. J Org Chem 2023; 88:4743-4756. [PMID: 36971723 DOI: 10.1021/acs.joc.3c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
A mild and efficient coupling method concerning the reactions of gem-bromonitroalkanes with α,α-diaryl allyl alcohol trimethylsilyl ethers was reported. A cascade consisting of visible-light-induced generation of an α-nitroalkyl radical and a subsequent neophyl-type rearrangement was key to realize the coupling reactions. Structurally diverse α-aryl-γ-nitro ketones, especially those bearing a nitrocyclobutyl structure, were prepared in moderate to high yields, which could be converted into spirocyclic nitrones and imines.
Collapse
|
4
|
Shen J, Li L, Xu J, Shen C, Zhang P. Recent advances in the application of Langlois' reagent in olefin difunctionalization. Org Biomol Chem 2023; 21:2046-2058. [PMID: 36448510 DOI: 10.1039/d2ob01875f] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this review, we summarise the recent applications of Langlois' reagent in the radical-mediated difunctionalization of alkenes. Among the various trifluoromethylation reagents, Langlois' reagent is an exceptional compound, and many important organic transformations have been realized by employing such reagents. Various organic transformations of Langlois' reagent, especially in radical chemistry, have been developed in recent years. This review describes several key activation methods for Langlois' reagent in the difunctionalization of alkenes by showcasing selected cornerstone research areas and related mechanisms to stimulate the interest of readers in promoting the wider development and application of Langlois' reagent.
Collapse
Affiliation(s)
- Jiabin Shen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China. .,College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| | - Lin Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| | - Jun Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| | - Chao Shen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Pengfei Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| |
Collapse
|
5
|
Lai Q, Chen S, Zou L, Lin C, Huang S, Fu L, Cai L, Cai S. Syntheses of functionalized benzocoumarins by photoredox catalysis. Org Biomol Chem 2023; 21:1181-1186. [PMID: 36632780 DOI: 10.1039/d2ob02225g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Direct functionalization of inert C(sp3)-H bonds is an attractive synthetic technology for the preparation of pharmaceutically significant compounds in modern synthetic organic chemistry. In this work, we report a new method for the synthesis of functionalized benzocoumarins through the strategy of activation of multiple C-H bonds on 2-aryl toluenes under visible-light-enabled photoredox conditions. This method has the advantages of high functional group compatibility, mild reaction conditions, and effectively avoiding the use of strong oxidants and precious metal catalysts. Detailed mechanistic investigations, including spectroscopic and electrochemical studies, support the reaction's mechanistic course.
Collapse
Affiliation(s)
- Qihong Lai
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, School of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China.
| | - Shanyi Chen
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, School of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China.
| | - Linnan Zou
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, School of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China.
| | - Chengzhi Lin
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, School of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China.
| | - Shuling Huang
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, School of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China.
| | - Lailing Fu
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, School of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China.
| | - Lina Cai
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, School of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China.
| | - Shunyou Cai
- Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, School of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China. .,Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| |
Collapse
|
6
|
Zhang J, Deng Y, Mo N, Chen L. Advances in Radical Mediated 1,2-Aryl Migration Reactions of α, α-Diarylallyl Alcohols. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202208028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
7
|
You Y, Jeong DY. Organic Photoredox Catalysts Exhibiting Long Excited-State Lifetimes. Synlett 2022. [DOI: 10.1055/a-1608-5633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractOrganic photoredox catalysts with a long excited-state lifetime have emerged as promising alternatives to transition-metal-complex photocatalysts. This paper explains the effectiveness of using long-lifetime photoredox catalysts for organic transformations, focusing on the structures and photophysics that enable long excited-state lifetimes. The electrochemical potentials of the reported organic, long-lifetime photocatalysts are compiled and compared with those of the representative Ir(III)- and Ru(II)-based catalysts. This paper closes by providing recent demonstrations of the synthetic utility of the organic catalysts.1 Introduction2 Molecular Structure and Photophysics3 Photoredox Catalysis Performance4 Catalysis Mediated by Long-Lifetime Organic Photocatalysts4.1 Photoredox Catalytic Generation of a Radical Species and its Addition to Alkenes4.2 Photoredox Catalytic Generation of a Radical Species and its Addition to Arenes4.3 Photoredox Catalytic Generation of a Radical Species and its Addition to Imines4.4 Photoredox Catalytic Generation of a Radical Species and its Addition to Substrates Having C≡X Bonds (X=C, N)4.5 Photoredox Catalytic Generation of a Radical Species and its Bond Formation with Transition Metals4.6 Miscellaneous Reactions of Radical Species Generated by Photoredox Catalysis5 Conclusions
Collapse
|
8
|
Remete AM, Nonn M, Novák TT, Csányi D, Kiss L. Recent progress in aryltrifluoromethylation reactions of carbon-carbon multiple bonds. Chem Asian J 2022; 17:e202200395. [PMID: 35584374 DOI: 10.1002/asia.202200395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/18/2022] [Indexed: 11/06/2022]
Abstract
Due to the increasing relevance of fluorine-containing organic molecules in drug design, the synthesis of organofluorine compounds has gained high significance in synthetic organic chemistry. Trifluoromethylative difunctionalizations of carbon-carbon multiple bonds, with the simultaneous incorporation of a CF 3 group and another functional element, have considerable potential. Because of the high importance of carbon-carbon bond-forming reactions in organic synthesis, carbotrifluoromethylations and, in particular, aryltrifluoromethylations or heteroaryltrifluoromethylations are considered to be increasing fields of synthetic organic chemistry. The aim of the current review is to summarize recent developments of aryltrifluoromethylation or heteroaryltrifluoromethylation reactions.
Collapse
Affiliation(s)
- Attila M Remete
- University of Szeged: Szegedi Tudomanyegyetem, INSTITUTE OF PHARMACEUTICAL CHEMISTRY, HUNGARY
| | - Melinda Nonn
- HAS RCNS: Termeszettudomanyi Kutatokozpont, INSTITUTE OF MATERIALS AND ENVIRONMENTAL CHEMISTRY, HUNGARY
| | - Tamás T Novák
- HAS RCNS: Termeszettudomanyi Kutatokozpont, INSTITUTE OF ORGANIC CHEMISTRY, HUNGARY
| | - Dorottya Csányi
- HAS RCNS: Termeszettudomanyi Kutatokozpont, INSTITUTE OF ORGANIC CHEMISTRY, HUNGARY
| | - Lorand Kiss
- Research Centre for Natural Sciences: Termeszettudomanyi Kutatokozpont, Institute of Organic Chemistry, Magyar Tudósok krt, 1117, Budapest, HUNGARY
| |
Collapse
|
9
|
Abstract
Radical aryl migrations are powerful techniques to forge new bonds in aromatic compounds. The growing popularity of photoredox catalysis has led to an influx of novel strategies to initiate and control aryl migration starting from widely available radical precursors. This review encapsulates progress in radical aryl migration enabled by photochemical methods─particularly photoredox catalysis─since 2015. Special attention is paid to descriptions of scope, mechanism, and synthetic applications of each method.
Collapse
Affiliation(s)
- Anthony R. Allen
- Department of Chemistry, Willard Henry Dow Laboratory, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Efrey A. Noten
- Department of Chemistry, Willard Henry Dow Laboratory, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Corey R. J. Stephenson
- Department of Chemistry, Willard Henry Dow Laboratory, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
10
|
Zhang K, Liang T, Wang Y, He C, Hu M, Duan XH, Liu L. Oxidative thiocyanation of allylic alcohols: an easy access to allylic thiocyanates with K2S2O8 and NH4SCN. Org Chem Front 2022. [DOI: 10.1039/d1qo01710a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A practical method for the synthesis of allylic thioacyanates from allylic alcohols was disclosed employing K2S2O8 as the oxidant and NH4SCN as the thiocyanate source.
Collapse
Affiliation(s)
- Keyuan Zhang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tianbing Liang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yulong Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chonglong He
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mingyou Hu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin-Hua Duan
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Le Liu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
11
|
Li M, Zhao D, Sun K. Visible Light Driving Alkene Difunctionalization Reaction Involving Group Migration. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202207037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
12
|
Xu GQ, Xu PF. Visible light organic photoredox catalytic cascade reactions. Chem Commun (Camb) 2021; 57:12914-12935. [PMID: 34782893 DOI: 10.1039/d1cc04883j] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Over the past years, impressive progress has been made in the development of organic photoredox catalytic cascade reactions without the participation of expensive and toxic transition metals under visible light irradiation. These transformations highly depend on the in situ generation of various radical species in the photoredox catalytic cycles. Numerous chemically and biomedically valuable building blocks have been synthesized through this efficient and sustainable protocol. In this review, we highlight the recent progress in this blooming area by presenting a series of new catalytic cascade reactions mediated by organic photoredox catalysts and describe their mechanisms and applications which have appeared in the recent literature.
Collapse
Affiliation(s)
- Guo-Qiang Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China. .,State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
13
|
Wu X, Ma Z, Feng T, Zhu C. Radical-mediated rearrangements: past, present, and future. Chem Soc Rev 2021; 50:11577-11613. [PMID: 34661216 DOI: 10.1039/d1cs00529d] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Rearrangement reactions, one of the most significant transformations in organic chemistry, play an irreplaceable role in improving synthetic efficiency and molecular complexity. Concomitant cleavage and reconstruction of chemical bonds can display the great artistry and the glamour of synthetic chemistry. Over the past century, ionic rearrangement reactions, in particular those involving cationic pathways, have represented most of the research. Alongside the renaissance of radical chemistry, radical-mediated rearrangements have recently seen a rapid increase of attention from the chemical community. Many new radical rearrangements that extensively reveal the migratory behaviour of functional groups have been unveiled in the last decade. This Review provides a comprehensive perspective on the area from the past to present achievements, and brings up the prospects that may inspire colleagues to develop more useful synthetic tools based on radical rearrangements.
Collapse
Affiliation(s)
- Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China.
| | - Zhigang Ma
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China.
| | - Tingting Feng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China.
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China. .,Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
14
|
Xing Y, Li C, Meng J, Zhang Z, Wang X, Wang Z, Ye Y, Sun K. Recent Advances in the Synthetic Use of Migration Reactions of Allyl Alcohols. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100446] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Yun Xing
- College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 People's Republic of China
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 Shandong People's Republic of China
| | - Chen Li
- School of Pharmacy Harbin University of Commerce Harbin 150076 People's Republic of China
| | - Jianping Meng
- School of Pharmacy Harbin University of Commerce Harbin 150076 People's Republic of China
| | - Zhen Zhang
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 Shandong People's Republic of China
| | - Xin Wang
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 Shandong People's Republic of China
| | - Zhichuan Wang
- School of Pharmacy Harbin University of Commerce Harbin 150076 People's Republic of China
| | - Yong Ye
- College of Chemistry Zhengzhou University Zhengzhou 450001 People's Republic of China
| | - Kai Sun
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 Shandong People's Republic of China
| |
Collapse
|
15
|
Li Z, Wang M, Shi Z. Radical Addition Enables 1,2-Aryl Migration from a Vinyl-Substituted All-Carbon Quaternary Center. Angew Chem Int Ed Engl 2021; 60:186-190. [PMID: 32914547 DOI: 10.1002/anie.202010839] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/03/2020] [Indexed: 12/19/2022]
Abstract
An efficient method for photocatalytic perfluoroalkylation of vinyl-substituted all-carbon quaternary centers involving 1,2-aryl migration has been developed. The rearrangement reactions use fac-Ir(ppy)3 , visible light and commercially available fluoroalkyl halides and can generate valuable multisubstituted perfluoroalkylated compounds in a single step that would be challenging to prepare by other methods. Mechanistically, the photoinduced alkyl radical addition to an alkene leads to the migration of a vicinal aryl substituent from its adjacent all-carbon quaternary center with the concomitant generation of a C-radical bearing two electron-withdrawing groups that is further reduced by a hydrogen donor to complete the domino sequence.
Collapse
Affiliation(s)
- Zexian Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
16
|
Qiu Y, Wei F, Ye L, Zhao M. Advances in Trifluoromethylation-Promoted Functional Group Migration of Alkenes. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202009036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Bryden MA, Zysman-Colman E. Organic thermally activated delayed fluorescence (TADF) compounds used in photocatalysis. Chem Soc Rev 2021; 50:7587-7680. [PMID: 34002736 DOI: 10.1039/d1cs00198a] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Organic compounds that show Thermally Activated Delayed Fluorescence (TADF) have become wildly popular as next-generation emitters in organic light emitting diodes (OLEDs). Since 2016, a subset of these have found increasing use as photocatalysts. This review comprehensively highlights their potential by documenting the diversity of the reactions where an organic TADF photocatalyst can be used in lieu of a noble metal complex photocatalyst. Beyond the small number of TADF photocatalysts that have been used to date, the analysis conducted within this review reveals the wider potential of organic donor-acceptor TADF compounds as photocatalysts. A discussion of the benefits of compounds showing TADF for photocatalysis is presented, which paints a picture of a very promising future for organic photocatalyst development.
Collapse
Affiliation(s)
- Megan Amy Bryden
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK.
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK.
| |
Collapse
|
18
|
Huynh M, De Abreu M, Belmont P, Brachet E. Spotlight on Photoinduced Aryl Migration Reactions. Chemistry 2020; 27:3581-3607. [DOI: 10.1002/chem.202003507] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Marie Huynh
- UMR CNRS 8038 CiTCoM Université de Paris 4 avenue de l'Observatoire 75006 Paris France
| | - Maxime De Abreu
- UMR CNRS 8038 CiTCoM Université de Paris 4 avenue de l'Observatoire 75006 Paris France
| | - Philippe Belmont
- UMR CNRS 8038 CiTCoM Université de Paris 4 avenue de l'Observatoire 75006 Paris France
| | - Etienne Brachet
- UMR CNRS 8038 CiTCoM Université de Paris 4 avenue de l'Observatoire 75006 Paris France
| |
Collapse
|
19
|
Li Z, Wang M, Shi Z. Radical Addition Enables 1,2‐Aryl Migration from a Vinyl‐Substituted All‐Carbon Quaternary Center. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zexian Li
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| |
Collapse
|
20
|
Zhang Y, Ren Z, Liu Y, Wang Z, Li Z. Fluoroalkylation of Allylic Alcohols with Concomitant (Hetero)aryl Migration: Access to Fluoroalkylated Ketones and Evaluation of Antifungal Action against
Magnaporthe grisea. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000782] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yanhu Zhang
- Department of Applied Chemistry College of Materials and Energy South China Agricultural University 510642 Guangzhou China
| | - Ziyang Ren
- Department of Applied Chemistry College of Materials and Energy South China Agricultural University 510642 Guangzhou China
| | - Yun‐Lin Liu
- School of Chemistry and Chemical Engineering Guangzhou University 230 Wai Huan Xi Road 510006 Guangzhou China
| | - Zhentao Wang
- College of Chemistry and Material Science Shandong Agricultural University 271018 Taian Shandong China
| | - Zhaodong Li
- Department of Applied Chemistry College of Materials and Energy South China Agricultural University 510642 Guangzhou China
| |
Collapse
|
21
|
Soni S, Pali P, Ansari MA, Singh MS. Visible-Light Photocatalysis of Eosin Y: HAT and Complementing MS-CPET Strategy to Trifluoromethylation of β-Ketodithioesters with Langlois' Reagent. J Org Chem 2020; 85:10098-10109. [PMID: 32648747 DOI: 10.1021/acs.joc.0c01355] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A metal- and oxidant-free photoinduced strategy for thioxo sulfur-selective trifluoromethylation of β-ketodithioesters at room temperature is reported. Excellent Z/E-stereoselectivity has been achieved with cheap and viable Langlois' reagent (CF3SO2Na, sodium triflinate) in the presence of eosin Y, which acts as a hydrogen atom transfer (HAT) catalyst. The reaction proceeds via disulfide intermediate disulfanediylbis(3-(alkylthio)-1-phenylprop-2-en-1-one) (a dimer of β-ketodithioester) followed by complementing proton-coupled electron transfer-mediated reverse HAT cycle of eosin Y. This operationally simple and efficient protocol allows direct access to triflinated α-oxoketene dithioacetals in good to excellent yields bearing diverse synthetically useful functional groups of different electronic and steric nature.
Collapse
Affiliation(s)
- Sonam Soni
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Pragya Pali
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Monish Arbaz Ansari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Maya Shankar Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
22
|
Barata‐Vallejo S, Postigo A. New Visible‐Light‐Triggered Photocatalytic Trifluoromethylation Reactions of Carbon–Carbon Multiple Bonds and (Hetero)Aromatic Compounds. Chemistry 2020; 26:11065-11084. [DOI: 10.1002/chem.202000856] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/14/2020] [Indexed: 01/10/2023]
Affiliation(s)
- Sebastian Barata‐Vallejo
- Department of Organic ChemistryUniversidad de Buenos Aires, Facultad de Farmacia y Bioquímica Junin 954 CP 1113 Buenos Aires Argentina
- ISOFConsiglio Nazionale delle Ricerche Via P. Gobetti 101 40129 Bologna Italy
| | - Al Postigo
- Department of Organic ChemistryUniversidad de Buenos Aires, Facultad de Farmacia y Bioquímica Junin 954 CP 1113 Buenos Aires Argentina
| |
Collapse
|
23
|
Yu XY, Chen JR, Xiao WJ. Visible Light-Driven Radical-Mediated C–C Bond Cleavage/Functionalization in Organic Synthesis. Chem Rev 2020; 121:506-561. [DOI: 10.1021/acs.chemrev.0c00030] [Citation(s) in RCA: 557] [Impact Index Per Article: 111.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiao-Ye Yu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Jia-Rong Chen
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| |
Collapse
|
24
|
Koike T. Frontiers in Radical Fluoromethylation by Visible‐Light Organic Photocatalysis. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000058] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Takashi Koike
- Laboratory for Chemistry and Life Science Institute of Innovative ResearchTokyo Institute of Technology R1-27, 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| |
Collapse
|
25
|
Hu L, Deng Q, Zhou Y, Zhang X, Xiong Y. Cu2O-catalyzed phosphonyldifluoromethylation of allylic alcohols through a radical 1,2-aryl migration. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.130949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Lin Z, Lu M, Liu B, Gao J, Huang M, Gan Z, Cai S. Oxidative alkylation of alkenes with carbonyl compounds through concomitant 1,2-aryl migration by photoredox catalysis. NEW J CHEM 2020. [DOI: 10.1039/d0nj03733h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient protocol for the construction of 1,5-diketones was realized in the presence of organic fluorophore 4CzIPN, diaryliodonium salt, and visible light irradiation.
Collapse
Affiliation(s)
- Zhaowei Lin
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry, Chemical Engineering and Environment, Minnan Normal University
- Zhangzhou
- China
| | - Maojian Lu
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry, Chemical Engineering and Environment, Minnan Normal University
- Zhangzhou
- China
| | - Boyi Liu
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry, Chemical Engineering and Environment, Minnan Normal University
- Zhangzhou
- China
| | - Jing Gao
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry, Chemical Engineering and Environment, Minnan Normal University
- Zhangzhou
- China
| | - Mingqiang Huang
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry, Chemical Engineering and Environment, Minnan Normal University
- Zhangzhou
- China
| | - Zhenhong Gan
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry, Chemical Engineering and Environment, Minnan Normal University
- Zhangzhou
- China
| | - Shunyou Cai
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry, Chemical Engineering and Environment, Minnan Normal University
- Zhangzhou
- China
- Key Laboratory of Chemical Genomics of Guangdong Province, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University
- Shenzhen
| |
Collapse
|
27
|
Yang HB, Wang ZH, Li JM, Wu C. Modular synthesis of α-aryl β-perfluoroalkyl ketones via N-heterocyclic carbene catalysis. Chem Commun (Camb) 2020; 56:3801-3804. [DOI: 10.1039/d0cc00293c] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A new strategy of assembling alkene, aldehyde and perfluoroalkyl reagents under the catalysis of an N-heterocyclic carbene afforded valuable α-aryl β-perfluoroalkyl ketones.
Collapse
Affiliation(s)
- Hai-Bin Yang
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou 510006
- P. R. China
| | - Zhi-Hou Wang
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou 510006
- P. R. China
| | - Jin-Mei Li
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou 510006
- P. R. China
| | - Chuande Wu
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou 510006
- P. R. China
- State Key Laboratory of Silicon Materials
| |
Collapse
|
28
|
Dong DQ, Yang H, Shi JL, Si WJ, Wang ZL, Xu XM. Promising reagents for difluoroalkylation. Org Chem Front 2020. [DOI: 10.1039/d0qo00567c] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review describes recent advances in difluoroalkylation reactions using different substrates.
Collapse
Affiliation(s)
- Dao-Qing Dong
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Huan Yang
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Jun-Lian Shi
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Wen-Jia Si
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Zu-Li Wang
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Xin-Ming Xu
- College of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- China
| |
Collapse
|
29
|
Lu M, Lin Z, Chen S, Chen H, Huang M, Cai S. Visible-Light-Enabled Oxidative Coupling of Alkenes with Dialkylformamides To Access Unsaturated Amides. Org Lett 2019; 21:9929-9933. [PMID: 31808698 DOI: 10.1021/acs.orglett.9b03870] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A practical and direct method for oxidative cross-coupling of alkenes with dialkylformamides is established employing visible-light-enabled photoredox catalysis. This strategy allows efficient access to diverse unsaturated amides under mild reaction conditions. The application of an appropriate diaryliodonium salt was demonstrated to be critical to the success of this process. This catalyst system is well tolerant of a variety of useful functional groups.
Collapse
Affiliation(s)
- Maojian Lu
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry, Chemical Engineering, and Environment , Minnan Normal University , Zhangzhou 363000 , China
| | - Zhaowei Lin
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry, Chemical Engineering, and Environment , Minnan Normal University , Zhangzhou 363000 , China
| | - Shanyi Chen
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry, Chemical Engineering, and Environment , Minnan Normal University , Zhangzhou 363000 , China
| | - Hongyou Chen
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry, Chemical Engineering, and Environment , Minnan Normal University , Zhangzhou 363000 , China
| | - Mingqiang Huang
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry, Chemical Engineering, and Environment , Minnan Normal University , Zhangzhou 363000 , China
| | - Shunyou Cai
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry, Chemical Engineering, and Environment , Minnan Normal University , Zhangzhou 363000 , China.,Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School , Peking University , Shenzhen 518055 , China
| |
Collapse
|
30
|
Jung HI, Kim Y, Kim DY. Electrochemical trifluoromethylation/semipinacol rearrangement sequences of alkenyl alcohols: synthesis of β-CF 3-substituted ketones. Org Biomol Chem 2019; 17:3319-3323. [PMID: 30869722 DOI: 10.1039/c9ob00373h] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrochemical oxidative radical trifluoromethylation/semipinacol rearrangement sequences of alkenyl alcohols were developed in this study. This approach is environmentally benign and uses the shelf-stable Langlois reagent as a trifluoromethyl radical precursor and electrons as the oxidizing reagents. The present protocol offers a facile route to prepare β-trifluoromethylated ketone derivatives.
Collapse
Affiliation(s)
- Hye Im Jung
- Department of Chemistry, Soonchunhyang University, Asan 31538, Chungnam, Republic of Korea.
| | | | | |
Collapse
|
31
|
Lu M, Zhang T, Tan D, Chen C, Zhang Y, Huang M, Cai S. Visible‐Light‐Promoted Oxidative Alkylarylation of
N
‐Aryl/Benzoyl Acrylamides Through Direct C−H Bond Functionalization. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900712] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Maojian Lu
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry Chemical Engineering and EnvironmentMinnan Normal University Zhangzhou 363000 People's Republic of China
| | - Tao Zhang
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry Chemical Engineering and EnvironmentMinnan Normal University Zhangzhou 363000 People's Republic of China
| | - Dabao Tan
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry Chemical Engineering and EnvironmentMinnan Normal University Zhangzhou 363000 People's Republic of China
| | - Chengzhu Chen
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry Chemical Engineering and EnvironmentMinnan Normal University Zhangzhou 363000 People's Republic of China
| | - Ying Zhang
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry Chemical Engineering and EnvironmentMinnan Normal University Zhangzhou 363000 People's Republic of China
| | - Mingqiang Huang
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry Chemical Engineering and EnvironmentMinnan Normal University Zhangzhou 363000 People's Republic of China
| | - Shunyou Cai
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry Chemical Engineering and EnvironmentMinnan Normal University Zhangzhou 363000 People's Republic of China
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate SchoolPeking University Shenzhen 518055 People's Republic of China
| |
Collapse
|
32
|
Kaiser D, Klose I, Oost R, Neuhaus J, Maulide N. Bond-Forming and -Breaking Reactions at Sulfur(IV): Sulfoxides, Sulfonium Salts, Sulfur Ylides, and Sulfinate Salts. Chem Rev 2019; 119:8701-8780. [PMID: 31243998 PMCID: PMC6661881 DOI: 10.1021/acs.chemrev.9b00111] [Citation(s) in RCA: 515] [Impact Index Per Article: 85.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Indexed: 12/13/2022]
Abstract
Organosulfur compounds have long played a vital role in organic chemistry and in the development of novel chemical structures and architectures. Prominent among these organosulfur compounds are those involving a sulfur(IV) center, which have been the subject of countless investigations over more than a hundred years. In addition to a long list of textbook sulfur-based reactions, there has been a sustained interest in the chemistry of organosulfur(IV) compounds in recent years. Of particular interest within organosulfur chemistry is the ease with which the synthetic chemist can effect a wide range of transformations through either bond formation or bond cleavage at sulfur. This review aims to cover the developments of the past decade in the chemistry of organic sulfur(IV) molecules and provide insight into both the wide range of reactions which critically rely on this versatile element and the diverse scaffolds that can thereby be synthesized.
Collapse
Affiliation(s)
- Daniel Kaiser
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Immo Klose
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Rik Oost
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - James Neuhaus
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Nuno Maulide
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| |
Collapse
|
33
|
Guan Z, Wang H, Huang Y, Wang Y, Wang S, Lei A. Electrochemical Oxidative Aryl(alkyl)trifluoromethylation of Allyl Alcohols via 1,2-Migration. Org Lett 2019; 21:4619-4622. [DOI: 10.1021/acs.orglett.9b01518] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Zhipeng Guan
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, People’s Republic of China
| | - Huamin Wang
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, People’s Republic of China
| | - Yange Huang
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, People’s Republic of China
| | - Yunkun Wang
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, People’s Republic of China
| | - Shengchun Wang
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, People’s Republic of China
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, People’s Republic of China
| |
Collapse
|
34
|
Oppong-Quaicoe A, DeBoef B. FeCl 2-Mediated Rearrangement of Allylic Alcohols. ACS OMEGA 2019; 4:6077-6083. [PMID: 31459755 PMCID: PMC6648291 DOI: 10.1021/acsomega.9b00163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 02/26/2019] [Indexed: 06/10/2023]
Abstract
A mild, one-pot procedure to produce 3-substituted allylic alcohols from α,β-unsaturated ketones is described. The addition of an organolithium nucleophile produces a tertiary allylic alcohol as an intermediate, which undergoes a 1,3-OH-migration assisted by FeCl2. The proposed mechanism indicates that a syn-facial migration occurs for the major product. Yields as high as 98% for the one-pot reaction are reported.
Collapse
|
35
|
Zhang Z, Zhu L, Li C. Copper‐Catalyzed Carbotrifluoromethylation of Unactivated Alkenes Driven by Trifluoromethylation of Alkyl Radicals. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900075] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Zhenzhen Zhang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic ChemistryChinese Academy of Sciences, 345 Lingling Road Shanghai 200032 China
| | - Lin Zhu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic ChemistryChinese Academy of Sciences, 345 Lingling Road Shanghai 200032 China
| | - Chaozhong Li
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic ChemistryChinese Academy of Sciences, 345 Lingling Road Shanghai 200032 China
- School of Materials and Chemical EngineeringNingbo University of Technology, No. 201 Fenghua Road, Ningbo Zhejiang 315211 China
| |
Collapse
|
36
|
Shang TY, Lu LH, Cao Z, Liu Y, He WM, Yu B. Recent advances of 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN) in photocatalytic transformations. Chem Commun (Camb) 2019; 55:5408-5419. [DOI: 10.1039/c9cc01047e] [Citation(s) in RCA: 283] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this review, the recent advances of the application of 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN) as a photoredox catalyst in the past three years (2016–2018) for various organic reactions are summarized.
Collapse
Affiliation(s)
- Tian-Yi Shang
- College of Biological and Pharmaceutical Engineering
- Xinyang Agriculture & Forestry University
- Xinyang
- China
| | - Ling-Hui Lu
- Department of Chemistry
- Hunan University of Science and Engineering
- Yongzhou 425100
- China
| | - Zhong Cao
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation
- Changsha University of Science and Technology
- Changsha
- China
| | - Yan Liu
- College of Biological and Pharmaceutical Engineering
- Xinyang Agriculture & Forestry University
- Xinyang
- China
- School of Chemistry and Chemical Engineering
| | - Wei-Min He
- Department of Chemistry
- Hunan University of Science and Engineering
- Yongzhou 425100
- China
| | - Bing Yu
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- China
| |
Collapse
|
37
|
Sivaguru P, Wang Z, Zanoni G, Bi X. Cleavage of carbon–carbon bonds by radical reactions. Chem Soc Rev 2019; 48:2615-2656. [DOI: 10.1039/c8cs00386f] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This review provides insights into the in situ generated radicals triggered carbon–carbon bond cleavage reactions.
Collapse
Affiliation(s)
- Paramasivam Sivaguru
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Northeast Normal University
- Changchun 130024
- China
| | - Zikun Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Northeast Normal University
- Changchun 130024
- China
| | | | - Xihe Bi
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Northeast Normal University
- Changchun 130024
- China
| |
Collapse
|
38
|
Yang T, Lu M, Lin Z, Huang M, Cai S. Visible-light-promoted oxidation/condensation of benzyl alcohols with dialkylacetamides to cinnamides. Org Biomol Chem 2019; 17:449-453. [DOI: 10.1039/c8ob02938e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
An oxidative cross-coupling reaction of benzyl alcohols with dialkylacetamides was developed to construct cinnamides under visible-light-enabled photocatalytic conditions.
Collapse
Affiliation(s)
- Tianlong Yang
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province
- School of Chemistry
- Chemical Engineering and Environment
- Minnan Normal University
- Zhangzhou
| | - Maojian Lu
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province
- School of Chemistry
- Chemical Engineering and Environment
- Minnan Normal University
- Zhangzhou
| | - Zhaowei Lin
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province
- School of Chemistry
- Chemical Engineering and Environment
- Minnan Normal University
- Zhangzhou
| | - Mingqiang Huang
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province
- School of Chemistry
- Chemical Engineering and Environment
- Minnan Normal University
- Zhangzhou
| | - Shunyou Cai
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province
- School of Chemistry
- Chemical Engineering and Environment
- Minnan Normal University
- Zhangzhou
| |
Collapse
|
39
|
Lu M, Qin H, Lin Z, Huang M, Weng W, Cai S. Visible-Light-Enabled Oxidative Alkylation of Unactivated Alkenes with Dimethyl Sulfoxide through Concomitant 1,2-Aryl Migration. Org Lett 2018; 20:7611-7615. [DOI: 10.1021/acs.orglett.8b03340] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maojian Lu
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry, Chemical Engineering, and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Honggui Qin
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry, Chemical Engineering, and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Zhaowei Lin
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry, Chemical Engineering, and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Mingqiang Huang
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry, Chemical Engineering, and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Wen Weng
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry, Chemical Engineering, and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Shunyou Cai
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, School of Chemistry, Chemical Engineering, and Environment, Minnan Normal University, Zhangzhou 363000, China
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University, Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|