1
|
Kadu VD, Thokal MS, Godase RK, Kotali BC, Wadkar PS. Metal-free approach for imidazole synthesis via one-pot N-α-C(sp 3)- H bond functionalization of benzylamines. RSC Adv 2024; 14:28332-28339. [PMID: 39239291 PMCID: PMC11375450 DOI: 10.1039/d4ra03939d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/11/2024] [Indexed: 09/07/2024] Open
Abstract
A metal-free one-pot method is established for the synthesis of tetrasubstituted imidazoles from the reaction of arylmethylamines and 1,2-dicarbonyls/benzoin. The N-α-C(sp3)-H bond functionalization of arylmethylamines using a catalytic amount of AcOH afforded polysubstituted imidazoles under aerobic conditions in significant yields of up to 95%.
Collapse
Affiliation(s)
- Vikas D Kadu
- School of Chemical Sciences, Punyashlok Ahilyadevi Holkar Solapur University Solapur 413255 Maharashtra India
| | - Machhindra S Thokal
- School of Chemical Sciences, Punyashlok Ahilyadevi Holkar Solapur University Solapur 413255 Maharashtra India
| | - Rajkumar K Godase
- School of Chemical Sciences, Punyashlok Ahilyadevi Holkar Solapur University Solapur 413255 Maharashtra India
| | - Bhagyashree C Kotali
- School of Chemical Sciences, Punyashlok Ahilyadevi Holkar Solapur University Solapur 413255 Maharashtra India
| | - Pooja S Wadkar
- School of Chemical Sciences, Punyashlok Ahilyadevi Holkar Solapur University Solapur 413255 Maharashtra India
| |
Collapse
|
2
|
Huynh TN, Ong KTN, Dinh PT, Nguyen AT, Nguyen TT. Elemental Sulfur Promoted Cyclization of Aryl Hydrazones and Aryl Isothiocyanates Yielding 2-Imino-1,3,4-thiadiazoles. J Org Chem 2024; 89:3202-3210. [PMID: 38329896 DOI: 10.1021/acs.joc.3c02675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
We report a method for using elemental sulfur to facilitate the cyclization of aryl hydrazones and aryl isothiocyanates, affording biorelated 2-imino-1,3,4-thiadiazoles. Reactions progressed in the presence of elemental sulfur, N-methylmorpholine base, and DMSO solvent, while were tolerant of a wide range of functionalities including halogen, nitro, cyano, methylsulfonyl, and heterocyclic groups. The method appears to offer a general pathway for using simple, cheap, and stable reagents to afford triaryl-substituted 2-imino-1,3,4-thiadiazoles under relatively mild conditions.
Collapse
Affiliation(s)
- Tan N Huynh
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 84, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 84, Vietnam
| | - Khanh T N Ong
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 84, Vietnam
- VNU-HCM Key Laboratory for Functional Organic Materials, Ho Chi Minh City 84, Vietnam
| | - Phuong T Dinh
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 84, Vietnam
- VNU-HCM Key Laboratory for Functional Organic Materials, Ho Chi Minh City 84, Vietnam
| | - Anh T Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 84, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 84, Vietnam
| | - Tung T Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 84, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 84, Vietnam
- VNU-HCM Key Laboratory for Functional Organic Materials, Ho Chi Minh City 84, Vietnam
| |
Collapse
|
3
|
Saha N, Wanjari PJ, Dubey G, Mahawar N, Bharatam PV. Metal-free synthesis of imidazoles and 2-aminoimidazoles. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
4
|
Xu H, Chen H, Hu X, Xuan G, Li P, Zhang Z. Synthesis of Fully Substituted 5-( o-Hydroxybenzoyl)imidazoles via Iodine-Promoted Domino Reaction of Aurones with Amidines. J Org Chem 2022; 87:16204-16212. [PMID: 36414000 DOI: 10.1021/acs.joc.2c01680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
An iodine-promoted domino reaction of aurones with amidines has been successfully explored. The reaction proceeds in a consecutive manner containing Michael addition, iodination, cyclization from intramolecular nucleophilic substitution, and dehydrogenative aromatization from spiro ring opening. Following this novel strategy, a variety of 1,2,4-trisubstituted 5-(o-hydroxybenzoyl)imidazoles were efficiently synthesized in moderate to good yields from readily available starting materials. A plausible mechanism has been proposed.
Collapse
Affiliation(s)
- Hui Xu
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry Application, and School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Hong Chen
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry Application, and School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Xiao Hu
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry Application, and School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Guang Xuan
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry Application, and School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Pinhua Li
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry Application, and School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Ze Zhang
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry Application, and School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| |
Collapse
|
5
|
Ilkin VG, Beryozkina TV, Willocx D, Silaichev PS, Veettil SP, Dehaen W, Bakulev VA. Rhodium-Catalyzed Transannulation of 4,5-Fused 1-Sulfonyl-1,2,3-triazoles with Nitriles. The Selective Formation of 1-Sulfonyl-4,5-fused Imidazoles versus Secondary C-H Bond Migration. J Org Chem 2022; 87:12274-12286. [PMID: 36049015 DOI: 10.1021/acs.joc.2c01456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reactivity of readily available 4,5-fused-1-sulfonyl-1,2,3-triazoles was examined in the Rh(II)-catalyzed transannulation reaction with nitriles. We have come across the interesting observation that 1-sulfonyl cycloalkeno[d][1,2,3]triazoles that possess β-hydrogens resist intramolecular β-hydride migration and could serve as a new source of Rh-iminocarbenoids for intermolecular Rh(II)-catalyzed transannulation reactions. As a result, 1-sulfonyl cyclohexeno-, cyclohepteno-, dihydropyrano-, 5-phenyltetrahydrobenzo-, and 4,5-dihydronaphtho[d]imidazoles were synthesized from various nitriles in good yields. A one-pot methodology has also been executed for the synthesis of NH-imidazoles.
Collapse
Affiliation(s)
- Vladimir G Ilkin
- Technology for Organic Synthesis Department, Ural Federal University, 19 Mira Street, Yekaterinburg 620002, Russia.,Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
| | - Tetyana V Beryozkina
- Technology for Organic Synthesis Department, Ural Federal University, 19 Mira Street, Yekaterinburg 620002, Russia
| | - Daan Willocx
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
| | - Pavel S Silaichev
- Technology for Organic Synthesis Department, Ural Federal University, 19 Mira Street, Yekaterinburg 620002, Russia.,Department of Chemistry, Perm State University, 15 Bukireva Street, Perm 614990, Russia
| | - Santhini Pulikkal Veettil
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
| | - Wim Dehaen
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
| | - Vasiliy A Bakulev
- Technology for Organic Synthesis Department, Ural Federal University, 19 Mira Street, Yekaterinburg 620002, Russia
| |
Collapse
|
6
|
Tan Y, Jiang W, Ni P, Fu Y, Ding Q. One‐Pot Synthesis of Quinazolines via Elemental Sulfur‐Mediated Oxidative Condensation of Nitriles and 2‐(Aminomethyl)anilines. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuxing Tan
- Jiangxi Normal University Yaohu Campus CHINA
| | - Wujiu Jiang
- Jiangxi Normal University Yaohu Campus CHINA
| | | | - Yang Fu
- Jiangxi Normal University CHINA
| | | |
Collapse
|
7
|
Takeda A, Okai H, Watabe K, Iida H. Metal-Free Atom-Economical Synthesis of Tetra-Substituted Imidazoles via Flavin-Iodine Catalyzed Aerobic Cross-Dehydrogenative Coupling of Amidines and Chalcones. J Org Chem 2022; 87:10372-10376. [PMID: 35839306 DOI: 10.1021/acs.joc.2c00596] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Herein, we demonstrated the oxidative cross-dehydrogenative coupling between amidines and chalcones catalyzed by flavin and iodine. The riboflavin-iodine catalytic system played multiple roles in substrate- and O2-activation, enabling the facile and atom-economical synthesis of tetra-substituted imidazoles in good yields (60-87%). This metal-free reaction consumed only 1 equiv of molecular oxygen and generated 2 equiv of environmentally benign H2O as the only byproduct.
Collapse
Affiliation(s)
- Aki Takeda
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Hayaki Okai
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Kyoji Watabe
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Hiroki Iida
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| |
Collapse
|
8
|
Geng F, Wu S, Gan X, Hou W, Dong J, Zhou Y. TEMPO mediated oxidative annulation of aryl methyl ketones with amines/ammonium acetate for imidazole synthesis. Org Biomol Chem 2022; 20:5416-5422. [PMID: 35748805 DOI: 10.1039/d2ob00828a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile synthesis of 1H-imidazoles by direct oxidative annulation of aryl methyl ketones and primary amines has been developed in the presence of TEMPO under weakly acidic conditions. By replacing amines with ammonium acetate, 2H-imidazole skeletons were achieved for the first time from ketones. Substrates containing various functional groups, such as alkyl, aryl, naphthyl, halogen (F, Cl, Br, I), nitro, trifluoromethyl, sulfonyl ester, furyl, thienyl, and pyridyl groups, were readily transformed into the desired products. The application potential of this method was verified by the scale-up synthesis and Sonogashira coupling functionalization of imidazoles. Mechanistically, the α-TEMPO-enamine adduct may serve as the key reaction intermediate.
Collapse
Affiliation(s)
- Furong Geng
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China. .,School of Physics and Chemistry, Hunan First Normal University, Changsha 410205, China.
| | - Shaofeng Wu
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Xinyang Gan
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Wenjuan Hou
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Jianyu Dong
- School of Physics and Chemistry, Hunan First Normal University, Changsha 410205, China.
| | - Yongbo Zhou
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
9
|
Kadu VD, Khadul SP, Kothe GJ, Mali GA. Rapid One‐Pot Aerobic Oxidative
N
‐α‐C(sp
3
)‐
H
Functionalization of Arylmethylamines to Access Tetrasubstituted Imidazoles. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Vikas D. Kadu
- School of Chemical Sciences Punyashlok Ahilyadevi Holkar Solapur University Solapur 413255 Maharashtra India
| | - Siddheshwar P. Khadul
- School of Chemical Sciences Punyashlok Ahilyadevi Holkar Solapur University Solapur 413255 Maharashtra India
| | - Gokul J. Kothe
- School of Chemical Sciences Punyashlok Ahilyadevi Holkar Solapur University Solapur 413255 Maharashtra India
| | - Ganesh A. Mali
- School of Chemical Sciences Punyashlok Ahilyadevi Holkar Solapur University Solapur 413255 Maharashtra India
| |
Collapse
|
10
|
Foley DJ, Waldmann H. Ketones as strategic building blocks for the synthesis of natural product-inspired compounds. Chem Soc Rev 2022; 51:4094-4120. [PMID: 35506561 DOI: 10.1039/d2cs00101b] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Natural product-inspired compound collections serve as excellent sources for the identification of new bioactive compounds to treat disease. However, such compounds must necessarily be more structurally-enriched than traditional screening compounds, therefore inventive synthetic strategies and reliable methods are needed to prepare them. Amongst the various possible starting materials that could be considered for the synthesis of natural product-inspired compounds, ketones can be especially valuable due to the vast variety of complexity-building synthetic transformations that they can take part in, their high prevalence as commercial building blocks, and relative ease of synthesis. With a view towards developing a unified synthetic strategy for the preparation of next generation bioactive compound collections, this review considers whether ketones could serve as general precursors in this regard, and summarises the opulence of synthetic transformations available for the annulation of natural product ring-systems to ketone starting materials.
Collapse
Affiliation(s)
- Daniel J Foley
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand. .,Max-Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Herbert Waldmann
- Max-Planck Institute of Molecular Physiology, Dortmund, Germany.,Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
11
|
Wang S, Li R, Jiang S, Huang H, Shao W, Deng G. Selective Synthesis of Diverse Heterocycles via Metal‐Free Oxidative Coupling of
beta
‐Tetralone and Nitrogen Nucleophiles. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shuowen Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry Xiangtan University Xiangtan 411105 People's Republic of China
| | - Rong Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry Xiangtan University Xiangtan 411105 People's Republic of China
| | - Shuxin Jiang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry Xiangtan University Xiangtan 411105 People's Republic of China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry Xiangtan University Xiangtan 411105 People's Republic of China
| | - Wen Shao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry Xiangtan University Xiangtan 411105 People's Republic of China
| | - Guo‐Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry Xiangtan University Xiangtan 411105 People's Republic of China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology) Guangzhou 510640 People's Republic of China
| |
Collapse
|
12
|
Zhao M, Yang Z, Yang D. Recent Progress in Synthesis of Polysubstituted Imidazoles by Cyclization Reaction. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202107014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Wang S, Jiang P, Li R, Yang M, Deng G. Progress in Selective Construction of Functional Aromatics with Cyclohexanone. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202107032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Lv L, Chen Y, Shatskiy A, Liu J, Liu X, Kärkäs MD, Wang X. Silver‐Catalyzed [3+1+1] Annulation of Nitrones with Isocyanoacetates as an Approach to 1,4,5‐Trisubstituted Imidazoles. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Lanlan Lv
- School of Chemistry and Materials Science Jiangsu Key Laboratory of Green Synthesis for Functional Materials Jiangsu Normal University Xuzhou Jiangsu 221116 China
| | - Yan Chen
- School of Chemistry and Materials Science Jiangsu Key Laboratory of Green Synthesis for Functional Materials Jiangsu Normal University Xuzhou Jiangsu 221116 China
| | - Andrey Shatskiy
- Department of Chemistry KTH Royal Institute of Technology 100 44 Stockholm Sweden
| | - Jian‐Quan Liu
- School of Chemistry and Materials Science Jiangsu Key Laboratory of Green Synthesis for Functional Materials Jiangsu Normal University Xuzhou Jiangsu 221116 China
- Department of Chemistry KTH Royal Institute of Technology 100 44 Stockholm Sweden
| | - Xiaoyi Liu
- School of Chemistry and Materials Science Jiangsu Key Laboratory of Green Synthesis for Functional Materials Jiangsu Normal University Xuzhou Jiangsu 221116 China
| | - Markus D. Kärkäs
- Department of Chemistry KTH Royal Institute of Technology 100 44 Stockholm Sweden
| | - Xiang‐Shan Wang
- School of Chemistry and Materials Science Jiangsu Key Laboratory of Green Synthesis for Functional Materials Jiangsu Normal University Xuzhou Jiangsu 221116 China
| |
Collapse
|
15
|
Nguyen KX, Pham PH, Nguyen TT, Yang CH, Pham HTB, Nguyen TT, Wang H, Phan NTS. Trisulfur-Radical-Anion-Triggered C(sp 2)-H Amination of Electron-Deficient Alkenes. Org Lett 2020; 22:9751-9756. [PMID: 33261315 DOI: 10.1021/acs.orglett.0c03846] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A trisulfur-radical-anion (S3̇-)-triggered C(sp2)-H amination of α,β-unsaturated carbonyl derivatives with simple amines has been demonstrated. This protocol provides convenient access to a variety of synthetically valuable N-unprotected and secondary β-enaminones with absolute Z selectivity and tertiary β-enaminones with E selectivity. Mechanistic probe and electronic structure theory calculations suggest that S3̇- initiates the nucleophilic attacks via a thiirane intermediate.
Collapse
Affiliation(s)
- Khang X Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam.,Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Phuc H Pham
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam.,Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Thao T Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam.,Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam.,Tra Vinh University, 126 Nguyen Thien Thanh, Ward 5, Tra Vinh City, Tra Vinh Province, Vietnam
| | - Chou-Hsun Yang
- Department of Chemistry, University of Colorado Denver, Denver, Colorado 80204, United States
| | - Hoai T B Pham
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam.,Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam.,Department of Chemistry, University of Colorado Denver, Denver, Colorado 80204, United States
| | - Tung T Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam.,Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Haobin Wang
- Department of Chemistry, University of Colorado Denver, Denver, Colorado 80204, United States
| | - Nam T S Phan
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam.,Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| |
Collapse
|
16
|
Tran LT, Ho TH, Phan NTA, Nguyen TT, Phan NTS. Sulfur-mediated annulation of 1,2-phenylenediamines towards benzofuro- and benzothieno-quinoxalines. Org Biomol Chem 2020; 18:5652-5659. [PMID: 32648870 DOI: 10.1039/d0ob00887g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We report a method for condensation between ortho-phenylenediamines and ortho-hydroxyacetophenones to afford benzofuroquinoxalines. The reactions proceeded in the presence of an elemental sulfur mediator, DABCO base, and DMSO solvent. Functionalities such as nitrile, ester, and halogen groups were compatible. The conditions could be applicable for the synthesis of benzothienoquinoxalines from ortho-chloroacetophenones.
Collapse
Affiliation(s)
- Loan T Tran
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam.
| | | | | | | | | |
Collapse
|
17
|
Nguyen TB. Recent Advances in the Synthesis of Heterocycles via Reactions Involving Elemental Sulfur. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000535] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Thanh Binh Nguyen
- Institut de Chimie des Substances NaturellesCNRS UPR 2301Université Paris-SudUniversité Paris-Saclay 1, avenue de la Terrasse Gif-sur-Yvette 91198 France
| |
Collapse
|
18
|
Liu KJ, Deng JH, Zeng TY, Chen XJ, Huang Y, Cao Z, Lin YW, He WM. 1,2-Diethoxyethane catalyzed oxidative cleavage of gem-disubstituted aromatic alkenes to ketones under minimal solvent conditions. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.01.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Wang Z, Li C, Huang H, Deng GJ. Elemental Sulfur-Promoted Aerobic Dehydrogenative Aromatization of Cyclohexanones with Amines. J Org Chem 2020; 85:9415-9423. [DOI: 10.1021/acs.joc.0c01122] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Zhen Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Cheng Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
20
|
Abstract
The review highlights the recent advances (2018-present) in the regiocontrolled synthesis of substituted imidazoles. These heterocycles are key components to functional molecules that are used in a variety of everyday applications. An emphasis has been placed on the bonds constructed during the formation of the imidazole. The utility of these methodologies based around the functional group compatibility of the process and resultant substitution patterns around the ring are described, including discussion of scope and limitations, reaction mechanisms and future challenges.
Collapse
Affiliation(s)
- Dmitrii A Shabalin
- A.E. Favorsky Irkutsk Institute of Chemistry SB RAS, 1 Favorsky St, Irkutsk, 664033, Russian Federation
| | - Jason E Camp
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
21
|
Huynh TV, Doan KV, Luong NTK, Nguyen DTP, Doan SH, Nguyen TT, Phan NTS. New synthesis of 2-aroylbenzothiazoles via metal-free domino transformations of anilines, acetophenones, and elemental sulfur. RSC Adv 2020; 10:18423-18433. [PMID: 35517240 PMCID: PMC9053705 DOI: 10.1039/d0ra01750g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/04/2020] [Indexed: 11/27/2022] Open
Abstract
A new synthesis of 2-aroylbenzothiazoles via iodine-promoted domino transformations of anilines, acetophenones, and elemental sulfur was demonstrated. The highlights of this tandem synthesis are (1) easily available anilines and acetophenones as feedstock; (2) transition metal-free conditions; (3) inexpensive, nontoxic, easy handling, and abundant elemental sulfur as a building block. This synthetic strategy would complement the existing methods in the synthesis of this important heterocyclic scaffold. To our best knowledge, the formation of 2-aroylbenzothiazoles from simple anilines, acetophenones, and elemental sulfur was not previously reported in the literature. A new synthesis of 2-aroylbenzothiazoles via iodine-promoted domino transformations of anilines, acetophenones, and elemental sulfur was demonstrated.![]()
Collapse
Affiliation(s)
- Tien V Huynh
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam +84 8 38637504 +84 8 38647256 ext. 5681.,Vietnam National University Ho Chi Minh City Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam.,Faculty of Chemical Technology, Ho Chi Minh City University of Food Industry (HUFI) 140 Le Trong Tan, Tan Phu District Ho Chi Minh City Vietnam
| | - Khang V Doan
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam +84 8 38637504 +84 8 38647256 ext. 5681.,Vietnam National University Ho Chi Minh City Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| | - Ngoc T K Luong
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam +84 8 38637504 +84 8 38647256 ext. 5681.,Vietnam National University Ho Chi Minh City Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam.,Faculty of Chemical Technology, Ho Chi Minh City University of Food Industry (HUFI) 140 Le Trong Tan, Tan Phu District Ho Chi Minh City Vietnam
| | - Duyen T P Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam +84 8 38637504 +84 8 38647256 ext. 5681.,Vietnam National University Ho Chi Minh City Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam.,Faculty of Chemical Technology, Ho Chi Minh City University of Food Industry (HUFI) 140 Le Trong Tan, Tan Phu District Ho Chi Minh City Vietnam
| | - Son H Doan
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam +84 8 38637504 +84 8 38647256 ext. 5681.,Vietnam National University Ho Chi Minh City Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| | - Tung T Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam +84 8 38637504 +84 8 38647256 ext. 5681.,Vietnam National University Ho Chi Minh City Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| | - Nam T S Phan
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam +84 8 38637504 +84 8 38647256 ext. 5681.,Vietnam National University Ho Chi Minh City Linh Trung Ward, Thu Duc District Ho Chi Minh City Vietnam
| |
Collapse
|
22
|
Zhao J, Luo Z, Xu J. Synthesis of 1,4‐Benzothiazines via KI/DMSO/O
2
‐Mediated Three‐Component Oxidative Cyclization/Coupling. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jinwu Zhao
- School of PharmacyGuangdong Medical University Dongguan 523808 People's Republic of China
| | - Zhigao Luo
- School of PharmacyGuangdong Medical University Dongguan 523808 People's Republic of China
| | - Jingxiu Xu
- School of PharmacyGuangdong Medical University Dongguan 523808 People's Republic of China
| |
Collapse
|
23
|
Wang H, Xu Z, Deng G, Huang H. Selective Formation of 2‐(2‐Aminophenyl)benzothiazoles via Copper‐Catalyzed Aerobic C−C Bond Cleavage of Isatins. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901670] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Hongfen Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of ChemistryXiangtan University Xiangtan 411105 People's Republic of China
| | - Zhenhua Xu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of ChemistryXiangtan University Xiangtan 411105 People's Republic of China
| | - Guo‐Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of ChemistryXiangtan University Xiangtan 411105 People's Republic of China
- Beijing National Laboratory for Molecular SciencesChinese Academy of Sciences (CAS) Beijing 100190 People's Republic of China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of ChemistryXiangtan University Xiangtan 411105 People's Republic of China
| |
Collapse
|
24
|
Facile synthesis of 1,3,4-oxadiazoles via iodine promoted oxidative annulation of methyl-azaheteroarenes and hydrazides. Tetrahedron 2020. [DOI: 10.1016/j.tet.2019.130887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Tuo X, Chen S, Jiang P, Ni P, Wang X, Deng GJ. Iodine-catalyzed convergent aerobic dehydro-aromatization toward benzazoles and benzazines. RSC Adv 2020; 10:8348-8351. [PMID: 35497844 PMCID: PMC9049994 DOI: 10.1039/c9ra10964a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/15/2020] [Indexed: 02/02/2023] Open
Abstract
An iodine-catalyzed aerobic dehydro-aromatization has been developed, providing straightforward and efficient access to various benzoazoles and benzoazines. The present transition-metal-free protocol enables the dehydro-aromatization of tetrahydrobenzazoles and tetrahydroquinolines with molecular oxygen as the green oxidant, along with some other N-heterocycles. Hence, a broad range of heteroaromatic compounds are generated in moderate to good yields under facile reaction conditions. An iodine-catalyzed aerobic dehydro-aromatization has been developed, providing a straightforward and efficient access to various benzoazoles and benzoazines.![]()
Collapse
Affiliation(s)
- Xiaolong Tuo
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| | - Shanping Chen
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| | - Pingyu Jiang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| | - Penghui Ni
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| | - Xiaodong Wang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| | - Guo-Jun Deng
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
- China
| |
Collapse
|
26
|
Sabbasani VR, Wang K, Streeter MD, Spiegel DA. One‐Step Synthesis of 2,5‐Diaminoimidazoles and Total Synthesis of Methylglyoxal‐Derived Imidazolium Crosslink (MODIC). Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Venkata R. Sabbasani
- Department of Chemistry Yale University 225 Prospect Street New Haven CT 06511 USA
| | - Kung‐Pern Wang
- Department of Chemistry Yale University 225 Prospect Street New Haven CT 06511 USA
| | - Matthew D. Streeter
- Department of Chemistry Yale University 225 Prospect Street New Haven CT 06511 USA
| | - David A. Spiegel
- Department of Chemistry Yale University 225 Prospect Street New Haven CT 06511 USA
| |
Collapse
|
27
|
Sabbasani VR, Wang K, Streeter MD, Spiegel DA. One-Step Synthesis of 2,5-Diaminoimidazoles and Total Synthesis of Methylglyoxal-Derived Imidazolium Crosslink (MODIC). Angew Chem Int Ed Engl 2019; 58:18913-18917. [PMID: 31713976 PMCID: PMC6973230 DOI: 10.1002/anie.201911156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Indexed: 01/28/2023]
Abstract
Here we describe a general method for the synthesis of 2,5-diaminoimidazoles, which involves a thermal reaction between α-aminoketones and substituted guanylhydrazines without the need for additives. As one of the few known ways to access the 2,5-diaminoimidazole motif, our method greatly expands the number of reported diaminoimidazoles and further supports our previous observations that these compounds spontaneously adopt the non-aromatic 4(H) tautomer. The reaction works successfully on both cyclic and acyclic amino ketone starting materials, as well as a range of substituted guanylhydrazines. Following optimization, the method was applied to the efficient synthesis of the advanced glycation end product (AGE) methylglyoxal-derived imidazolium crosslink (MODIC). We expect that this method will enable rapid access to a variety of biologically important 2,5-diaminoimidazole-containing products.
Collapse
Affiliation(s)
| | - Kung‐Pern Wang
- Department of ChemistryYale University225 Prospect StreetNew HavenCT06511USA
| | - Matthew D. Streeter
- Department of ChemistryYale University225 Prospect StreetNew HavenCT06511USA
| | - David A. Spiegel
- Department of ChemistryYale University225 Prospect StreetNew HavenCT06511USA
| |
Collapse
|
28
|
Tikhonova TA, Lyssenko KA, Zavarzin IV, Volkova YA. Synthesis of Dibenzo[ d, f][1,3]Diazepines via Elemental Sulfur-Mediated Cyclocondensation of 2,2'-Biphenyldiamines with 2-Chloroacetic Acid Derivatives. J Org Chem 2019; 84:15817-15826. [PMID: 31729874 DOI: 10.1021/acs.joc.9b02002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The three-component reaction of 2,2'-biphenyldiamines with 2-chloroacetic acid derivatives and elemental sulfur was developed for the practical synthesis of unknown 2-carboxamide-substituted dibenzo[d,f][1,3]diazepines. This protocol is distinguished by efficiency in water and good tolerance to functional groups and can be adapted to a large-scale synthesis. The chemoselective preparation of a variety of 2-S,N,O-substituted dibenzo[d,f][1,3]diazepines was accomplished using the developed method.
Collapse
Affiliation(s)
- Tatyana A Tikhonova
- N. D. Zelinsky Institute of Organic Chemistry , Russian Academy of Sciences , 47 Leninsky prosp ., Moscow 119991 , Russia
| | - Konstantin A Lyssenko
- Department of Chemistry , Lomonosov Moscow State University , Leninskie Gory 1-3 , Moscow 119991 , Russia.,Plekhanov Russian University of Economics , Stremyanny per. 36 , Moscow 117997 , Russia
| | - Igor V Zavarzin
- N. D. Zelinsky Institute of Organic Chemistry , Russian Academy of Sciences , 47 Leninsky prosp ., Moscow 119991 , Russia
| | - Yulia A Volkova
- N. D. Zelinsky Institute of Organic Chemistry , Russian Academy of Sciences , 47 Leninsky prosp ., Moscow 119991 , Russia
| |
Collapse
|
29
|
Kozlov M, Komkov A, Losev T, Tyurin A, Dmitrenok A, Zavarzin I, Volkova Y. Flexible Synthesis of Phosphoryl-Substituted Imidazolines, Tetrahydropyrimidines, and Thioamides by Sulfur-Mediated Processes. J Org Chem 2019; 84:11533-11541. [PMID: 31393714 DOI: 10.1021/acs.joc.9b01384] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The solvent-free sulfur-mediated reactions of phosphinic chlorides with alkyl diamines were developed for the practical synthesis of unknown phosphoryl-substituted 4,5-dihydro-1H-imidazoles, 1,4,5,6-tetrahydropyrimidines, and thioamides. Their good tolerance to functional groups, broad substrate scope, and easy scalability were shown. The chemoselective preparation of a variety of phosphoryl-substituted bis(thioamides) was accomplished via the adjustment of a solvent.
Collapse
Affiliation(s)
- Mikhail Kozlov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences , 47 Leninsky prosp. , 119991 Moscow , Russian Federation
| | - Alexander Komkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences , 47 Leninsky prosp. , 119991 Moscow , Russian Federation
| | - Timofey Losev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences , 47 Leninsky prosp. , 119991 Moscow , Russian Federation
| | - Alexey Tyurin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences , 47 Leninsky prosp. , 119991 Moscow , Russian Federation
| | - Andrey Dmitrenok
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences , 47 Leninsky prosp. , 119991 Moscow , Russian Federation
| | - Igor Zavarzin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences , 47 Leninsky prosp. , 119991 Moscow , Russian Federation
| | - Yulia Volkova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences , 47 Leninsky prosp. , 119991 Moscow , Russian Federation
| |
Collapse
|
30
|
Liu W, Zhang Y, He J, Yu Y, Yuan J, Ye X, Zhang Z, Xue L, Cao H. Transition-Metal-Free Three-Component Reaction: Additive Controlled Synthesis of Sulfonylated Imidazoles. J Org Chem 2019; 84:11348-11358. [PMID: 31379165 DOI: 10.1021/acs.joc.9b01818] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Two efficient transition-metal-free highly regioselective pathways for constructing sulfonylated imidazoles via three-component reactions of amidines, ynals, and sodium sulfonates have been developed. The generations of different sulfonylated imidazoles were simply controlled by additives. In addition, this method features environmental friendliness, good functional group tolerance, and high atom economy, which makes it practical.
Collapse
Affiliation(s)
- Wei Liu
- School of Chemistry and Chemical Engineering , Guangdong Pharmaceutical University , Zhongshan , 528458 , P.R. of China
| | - Yu Zhang
- School of Chemistry and Chemical Engineering , Guangdong Pharmaceutical University , Zhongshan , 528458 , P.R. of China
| | - Jiaming He
- School of Chemistry and Chemical Engineering , Guangdong Pharmaceutical University , Zhongshan , 528458 , P.R. of China
| | - Yue Yu
- School of Chemistry and Chemical Engineering , Guangdong Pharmaceutical University , Zhongshan , 528458 , P.R. of China
| | - Jiajun Yuan
- School of Chemistry and Chemical Engineering , Guangdong Pharmaceutical University , Zhongshan , 528458 , P.R. of China
| | - Xiaoyi Ye
- School of Chemistry and Chemical Engineering , Guangdong Pharmaceutical University , Zhongshan , 528458 , P.R. of China
| | - Ziwu Zhang
- School of Chemistry and Chemical Engineering , Guangdong Pharmaceutical University , Zhongshan , 528458 , P.R. of China
| | - Liang Xue
- School of Chemistry and Chemical Engineering , Guangdong Pharmaceutical University , Zhongshan , 528458 , P.R. of China
| | - Hua Cao
- School of Chemistry and Chemical Engineering , Guangdong Pharmaceutical University , Zhongshan , 528458 , P.R. of China
| |
Collapse
|
31
|
Deng S, Chen H, Ma X, Zhou Y, Yang K, Lan Y, Song Q. S 8-Catalyzed triple cleavage of bromodifluoro compounds for the assembly of N-containing heterocycles. Chem Sci 2019; 10:6828-6833. [PMID: 31391905 PMCID: PMC6657413 DOI: 10.1039/c9sc01333d] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/31/2019] [Indexed: 12/15/2022] Open
Abstract
An unprecedented S8-catalyzed selective triple-cleavage of bromodifluoroacetamides is disclosed for the first time.
An unprecedented S8-catalyzed selective triple-cleavage of bromodifluoroacetamides is disclosed for the first time. Valuable 2-amido substituted benzimidazoles, benzoxazoles and benzothiazoles were obtained in good to excellent yields in a cascade protocol in this strategy. Mechanistic studies suggested that a C2 source was generated in situ by selective cleavage of three C–X bonds, including two inert C(sp3)–F bonds on bromodifluoroacetamides, while leaving C–C bonds intact. This strategy will undoubtedly further consummate the role of halo difluoro compounds and enrich both fluorine chemistry and pharmaceutical sciences.
Collapse
Affiliation(s)
- Shuilin Deng
- Institute of Next Generation Matter Transformation , College of Chemical Engineering , College of Material Sciences Engineering at Huaqiao University , 668 Jimei Boulevard , Xiamen , Fujian 361021 , China .
| | - Haohua Chen
- School of Chemistry and Chemical Engineering , Chongqing University , Chongqing 400030 , P. R. China
| | - Xingxing Ma
- Institute of Next Generation Matter Transformation , College of Chemical Engineering , College of Material Sciences Engineering at Huaqiao University , 668 Jimei Boulevard , Xiamen , Fujian 361021 , China .
| | - Yao Zhou
- Institute of Next Generation Matter Transformation , College of Chemical Engineering , College of Material Sciences Engineering at Huaqiao University , 668 Jimei Boulevard , Xiamen , Fujian 361021 , China .
| | - Kai Yang
- College of Chemistry , Fuzhou University , Fuzhou , Fujian 350108 , China
| | - Yu Lan
- School of Chemistry and Chemical Engineering , Chongqing University , Chongqing 400030 , P. R. China.,College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou 450001 , P. R. China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation , College of Chemical Engineering , College of Material Sciences Engineering at Huaqiao University , 668 Jimei Boulevard , Xiamen , Fujian 361021 , China . .,College of Chemistry , Fuzhou University , Fuzhou , Fujian 350108 , China.,State Key Laboratroy of Organometallic Chemistry , Shanghai Institute of Organic Chemistry , Chinese Academy of Sciences , Shanghai 200032 , P. R. China
| |
Collapse
|
32
|
Mani GS, Donthiboina K, Shankaraiah N, Kamal A. Iodine-promoted one-pot synthesis of 1,3,4-oxadiazole scaffolds via sp3 C–H functionalization of azaarenes. NEW J CHEM 2019. [DOI: 10.1039/c9nj03573g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient metal-free one-pot protocol has been developed for the construction of 1,3,4-oxadiazole derivatives via iodine-mediated oxidative amination of benzylic C–H bonds of azaarenes.
Collapse
Affiliation(s)
- Geeta Sai Mani
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad 500037
- India
| | - Kavitha Donthiboina
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad 500037
- India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad 500037
- India
| | - Ahmed Kamal
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad 500037
- India
- Medicinal Chemistry and Pharmacology
| |
Collapse
|
33
|
Weng WZ, Gao YH, Zhang X, Liu YH, Shen YJ, Zhu YP, Sun YY, Meng QG, Wu AX. Oxidative C(sp3)–H functionalization of methyl-azaheteroarenes: a facile route to 1,2,4-triazolo[4,3-a]pyridines. Org Biomol Chem 2019; 17:2087-2091. [DOI: 10.1039/c9ob00033j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
An oxidative [4 + 1] annulation for triazolo[4,3-a]pyridine–quinoline linked diheterocycle synthesis via functionalization of the sp3 C–H bonds of 2-methyl-azaheteroarenes has been developed.
Collapse
Affiliation(s)
- Wei-Zhao Weng
- School of Pharmacy
- Key Laboratory of Molecular Pharmacology and Drug Evaluation
- Ministry of Education
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong
- Yantai University
| | - Yin-He Gao
- School of Pharmacy
- Key Laboratory of Molecular Pharmacology and Drug Evaluation
- Ministry of Education
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong
- Yantai University
| | - Xue Zhang
- School of Pharmacy
- Key Laboratory of Molecular Pharmacology and Drug Evaluation
- Ministry of Education
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong
- Yantai University
| | - Yan-Hua Liu
- School of Pharmacy
- Key Laboratory of Molecular Pharmacology and Drug Evaluation
- Ministry of Education
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong
- Yantai University
| | - Ying-Jie Shen
- School of Pharmacy
- Key Laboratory of Molecular Pharmacology and Drug Evaluation
- Ministry of Education
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong
- Yantai University
| | - Yan-Ping Zhu
- School of Pharmacy
- Key Laboratory of Molecular Pharmacology and Drug Evaluation
- Ministry of Education
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong
- Yantai University
| | - Yuan-Yuan Sun
- School of Pharmacy
- Key Laboratory of Molecular Pharmacology and Drug Evaluation
- Ministry of Education
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong
- Yantai University
| | - Qing-Guo Meng
- School of Pharmacy
- Key Laboratory of Molecular Pharmacology and Drug Evaluation
- Ministry of Education
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong
- Yantai University
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan
| |
Collapse
|
34
|
Chen J, Chang D, Xiao F, Deng GJ. Three-Component Ordered Annulation of Amines, Ketones, and Nitrovinylarenes: Access to Fused Pyrroles and Substituted Indoles under Metal-Free Conditions. J Org Chem 2018; 84:568-578. [DOI: 10.1021/acs.joc.8b02410] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jinjin Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Dan Chang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Fuhong Xiao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
35
|
Wang Z, Chen X, Xie H, Wang D, Huang H, Deng GJ. Synthesis of o-Arylenediamines through Elemental Sulfur-Promoted Aerobic Dehydrogenative Aromatization of Cyclohexanones with Arylamines. Org Lett 2018; 20:5470-5473. [DOI: 10.1021/acs.orglett.8b02387] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zhen Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Xiangui Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Hao Xie
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Dahan Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|