1
|
Zhang H, Tan JP, Ren X, Wang F, Zheng JY, He J, Feng Y, Xu Z, Su Z, Wang T. Synergistically activating nucleophile strategy enabled organocatalytic asymmetric P-addition of cyclic imines. Chem Sci 2024; 15:12017-12025. [PMID: 39092128 PMCID: PMC11290440 DOI: 10.1039/d4sc02212b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/04/2024] [Indexed: 08/04/2024] Open
Abstract
Herein, we present an attractive organocatalytic asymmetric addition of P-nucleophiles to five-membered cyclic N-sulfonyl imines facilitated by phosphonium salt catalysis, enabling the highly enantioselective synthesis of tri- and tetra-substituted cyclic phosphorus-containing benzosultams. With this protocol, various cyclic α-aminophosphonates were efficiently synthesized with high yields and exceptional enantioselectivities (up to >99% ee) under mild reaction conditions. The utility and practicality of this method were demonstrated through gram-scale reactions and straightforward elaborations. Notably, the success of this approach relies on the deliberate selection of a synergistic organocatalytic system, which helps circumvent foreseeable side effects while handling secondary phosphine oxides (SPOs). Systematic mechanistic studies, incorporating experiments and DFT calculations, have revealed the critical importance of judiciously selecting bifunctional phosphonium salt catalysts for effectively activating P-nucleophiles while stereoselectively controlling the P-attack process.
Collapse
Affiliation(s)
- Hongkui Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
- School of Materials Science & Engineering, Changzhou University Changzhou 213164 P. R. China
| | - Jian-Ping Tan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering Xiangtan 411104 P. R. China
| | - Xiaoyu Ren
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| | - Fan Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| | - Jia-Yan Zheng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| | - Jiajia He
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| | - Yu Feng
- School of Materials Science & Engineering, Changzhou University Changzhou 213164 P. R. China
| | - Zhipeng Xu
- College of Water Resource and Hydropower, Sichuan University Chengdu 610064 P. R. China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| |
Collapse
|
2
|
Foubelo F, Nájera C, Retamosa MG, Sansano JM, Yus M. Catalytic asymmetric synthesis of 1,2-diamines. Chem Soc Rev 2024; 53:7983-8085. [PMID: 38990173 DOI: 10.1039/d3cs00379e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The asymmetric catalytic synthesis of 1,2-diamines has received considerable interest, especially in the last ten years, due to their presence in biologically active compounds and their applications for the development of synthetic building blocks, chiral ligands and organocatalysts. Synthetic strategies based on C-N bond-forming reactions involve mainly (a) ring opening of aziridines and azabenzonorbornadienes, (b) hydroamination of allylic amines, (c) hydroamination of enamines and (d) diamination of olefins. In the case of C-C bond-forming reactions are included (a) the aza-Mannich reaction of imino esters, imino nitriles, azlactones, isocyano acetates, and isothiocyanates with imines, (b) the aza-Henry reaction of nitroalkanes with imines, (c) imine-imine coupling reactions, and (d) reductive coupling of enamines with imines, and (e) [3+2] cycloaddition with imines. C-H bond forming reactions include hydrogenation of CN bonds and C-H amination reactions. Other catalytic methods include desymmetrization reactions of meso-diamines.
Collapse
Affiliation(s)
- Francisco Foubelo
- Departamento de Química Orgánica and Instituto de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain.
| | - Carmen Nájera
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain.
| | - Ma Gracia Retamosa
- Departamento de Química Orgánica and Instituto de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain.
| | - José M Sansano
- Departamento de Química Orgánica and Instituto de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain.
| | - Miguel Yus
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain.
| |
Collapse
|
3
|
Synthesis of Tetrasubstituted Phosphorus Analogs of Aspartic Acid as Antiproliferative Agents. Molecules 2022; 27:molecules27228024. [PMID: 36432120 PMCID: PMC9693455 DOI: 10.3390/molecules27228024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
An efficient general method for the synthesis of a wide family of α-aminophosphonate analogs of aspartic acid bearing tetrasubstituted carbons is reported through an aza-Reformatsky reaction of α-iminophosphonates, generated from α-aminophosphonates, in an umpolung process. In addition, the α-aminophosphonate substrates showed in vitro cytotoxicity, inhibiting the growth of carcinoma human tumor cell lines A549 (carcinomic human alveolar basal epithelial cell) and SKOV3 (human ovarian carcinoma). In view of the possibilities in the diversity of the substituents that offer the synthetic methodology, an extensive profile structure-activity is presented, measuring IC50 values up to 0.34 µM in the A549 and 9.8 µM in SKOV3 cell lines.
Collapse
|
4
|
Sheng C, Ling Z, Ahmad T, Xie F, Zhang W. Copper‐Catalyzed Regioselective [3+3] Annulations of Alkynyl Ketimines with
α
‐Cyano Ketones: the Synthesis of Polysubstituted 4
H
‐Pyran Derivatives with a CF
3
‐Containing Quaternary Center. Chemistry 2022; 28:e202200128. [DOI: 10.1002/chem.202200128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Cheng Sheng
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontier Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Zheng Ling
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontier Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Tanveer Ahmad
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontier Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Fang Xie
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontier Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontier Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
- College of Chemistry Zhengzhou University Zhengzhou 450052 China
| |
Collapse
|
5
|
Li G, Zhang Y, Zeng H, Feng X, Su Z, Lin L. Water enables diastereodivergency in bispidine-based chiral amine-catalyzed asymmetric Mannich reaction of cyclic N-sulfonyl ketimines with ketones. Chem Sci 2022; 13:4313-4320. [PMID: 35509468 PMCID: PMC9006921 DOI: 10.1039/d2sc00446a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/20/2022] [Indexed: 01/23/2023] Open
Abstract
Tuning diastereoselectivity is a great challenge in asymmetric catalysis for the inherent stereochemical bias of the substrates. Here, we report a diastereodivergent asymmetric Mannich reaction of cyclic N-sulfonyl ketimines with ketones catalyzed by a bispidine-based chiral amine catalyst, in which additional water switches the diastereoselectivity efficiently. Both chiral anti- and syn-benzosultams with potential anti-HIV-1 activity are obtained in excellent yields and good to excellent ee values. Control experiments and density functional theory (DFT) calculations were applied to study the diastereodivergent mechanism, which reveal that the diastereodivergent catalysis should be state-determined, and the water reverses the energies of states to realize the diastereodivergency. The findings are quite new and might inspire more diastereodivergent asymmetric synthesis. A diastereodivergent asymmetric Mannich reaction of cyclic N-sulfonyl ketimines with ketones is realized by employing bispidine-based chiral amine as catalyst and additional water switching the diastereoselectivity.![]()
Collapse
Affiliation(s)
- Gonglin Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| | - Yan Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| | - Hongkun Zeng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| | - Lili Lin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China http://www.scu.edu.cn/chem_asl/
| |
Collapse
|
6
|
Xu ZH, Jia SK, Chang ZR, Hua YZ, Wang MC, Mei GJ. Facile access to saccharin‐fused 1,4‐dihydropyridines via [3 + 3] annulation reactions. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhi-Hua Xu
- Zhengzhou University College of Chemistry CHINA
| | - Shi-Kun Jia
- Zhengzhou University College of Chemistry CHINA
| | | | | | | | - Guang-Jian Mei
- Zhengzhou University Chemistry Zhengzhou 450001 450001 Zhengzhou CHINA
| |
Collapse
|
7
|
Sheng C, Ling Z, Luo Y, Zhang W. Cu-catalyzed asymmetric addition of alcohols to β,γ-alkynyl-α-imino esters for the construction of linear chiral N,O-ketals. Nat Commun 2022; 13:400. [PMID: 35058446 PMCID: PMC8776757 DOI: 10.1038/s41467-022-28002-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/19/2021] [Indexed: 12/01/2022] Open
Abstract
N,O-acetals are part of many synthetic intermediates and important skeletons of numerous natural products and pharmaceutical drugs. The most straightforward method of the synthesis of N,O-acetals is the enantioselective addition of O-nucleophiles to imines. However, using this method for the synthesis of linear chiral N,O-ketals still remains challenging due to the instability of raw materials under acidic or basic conditions. Herein, we developed a Cu-catalyzed asymmetric addition of alcohols to β,γ-alkynyl-α-imino esters under mild conditions, providing the corresponding linear chiral N,O-ketals with up to 96% ee. The method tolerates some variation in the β,γ-alkynyl-α-imino ester and alcohol scope, including some glucose and natural amino acid derivatives. Computational results indicate that the Boc group of the substrates assist in the extraction of hydrogen atoms from the alcohols to promote the addition reactions. These products could be synthesized on a gram-scale and can be used in several transformations. This asymmetric addition system provides an efficient, mild, gram-scale, and transition-metal-catalyzed synthesis of linear chiral N,O-ketals. N,O-acetals are part of many synthetic intermediates and important skeletons of numerous natural products and pharmaceutical drugs. Here the authors show a Cu-catalyzed asymmetric addition of alcohols to β,γ-alkynyl-α-imino esters, providing the corresponding linear chiral N,O-ketals with up to 96% ee.
Collapse
|
8
|
Du Q, Zhang L, Gao F, Wang L, Zhang W. Progress in Transition Metal-Catalyzed Asymmetric Ring-Opening Reactions of Epoxides and Aziridines. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202207034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Enantioselective formal carbene insertion into C–N bond of aminal as a concise track to chiral α-amino-β2,2-amino acids and synthetic applications. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
10
|
Connon R, Roche B, Rokade BV, Guiry PJ. Further Developments and Applications of Oxazoline-Containing Ligands in Asymmetric Catalysis. Chem Rev 2021; 121:6373-6521. [PMID: 34019404 PMCID: PMC8277118 DOI: 10.1021/acs.chemrev.0c00844] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Indexed: 12/27/2022]
Abstract
The chiral oxazoline motif is present in many ligands that have been extensively applied in a series of important metal-catalyzed enantioselective reactions. This Review aims to provide a comprehensive overview of the most significant applications of oxazoline-containing ligands reported in the literature starting from 2009 until the end of 2018. The ligands are classified not by the reaction to which their metal complexes have been applied but by the nature of the denticity, chirality, and donor atoms involved. As a result, the continued development of ligand architectural design from mono(oxazolines), to bis(oxazolines), to tris(oxazolines) and tetra(oxazolines) and variations thereof can be more easily monitored by the reader. In addition, the key transition states of selected asymmetric transformations will be given to illustrate the features that give rise to high levels of asymmetric induction. As a further aid to the reader, we summarize the majority of schemes with representative examples that highlight the variation in % yields and % ees for carefully selected substrates. This Review should be of particular interest to the experts in the field but also serve as a useful starting point to new researchers in this area. It is hoped that this Review will stimulate both the development/design of new ligands and their applications in novel metal-catalyzed asymmetric transformations.
Collapse
Affiliation(s)
- Robert Connon
- Synthesis
and Solid State Pharmaceutical Centre, Centre for Synthesis and Chemical
Biology, School of Chemistry, University
College Dublin, Dublin
4, Ireland
| | - Brendan Roche
- Synthesis
and Solid State Pharmaceutical Centre, Centre for Synthesis and Chemical
Biology, School of Chemistry, University
College Dublin, Dublin
4, Ireland
| | - Balaji V. Rokade
- BiOrbic
Research Centre, Centre for Synthesis and Chemical Biology, School
of Chemistry, University College Dublin, Dublin 4, Ireland
| | - Patrick J. Guiry
- Synthesis
and Solid State Pharmaceutical Centre, Centre for Synthesis and Chemical
Biology, School of Chemistry, University
College Dublin, Dublin
4, Ireland
- BiOrbic
Research Centre, Centre for Synthesis and Chemical Biology, School
of Chemistry, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
11
|
Xu C, Reep C, Jarvis J, Naumann B, Captain B, Takenaka N. Asymmetric Catalytic Ketimine Mannich Reactions and Related Transformations. Catalysts 2021; 11:712. [PMID: 34745653 PMCID: PMC8570560 DOI: 10.3390/catal11060712] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The catalytic enantioselective ketimine Mannich and its related reactions provide direct access to chiral building blocks bearing an α-tertiary amine stereogenic center, a ubiquitous structural motif in nature. Although ketimines are often viewed as challenging electrophiles, various approaches/strategies to circumvent or overcome the adverse properties of ketimines have been developed for these transformations. This review showcases the selected examples that highlight the benefits and utilities of various ketimines and remaining challenges associated with them in the context of Mannich, allylation, and aza-Morita-Baylis-Hillman reactions as well as their variants.
Collapse
Affiliation(s)
- Changgong Xu
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901-6975, USA
| | - Carlyn Reep
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901-6975, USA
| | - Jamielyn Jarvis
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901-6975, USA
| | - Brandon Naumann
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901-6975, USA
| | - Burjor Captain
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146-0431, USA
| | - Norito Takenaka
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901-6975, USA
| |
Collapse
|
12
|
Maestro A, del Corte X, López-Francés A, Martínez de Marigorta E, Palacios F, Vicario J. Asymmetric Synthesis of Tetrasubstituted α-Aminophosphonic Acid Derivatives. Molecules 2021; 26:3202. [PMID: 34071844 PMCID: PMC8199250 DOI: 10.3390/molecules26113202] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022] Open
Abstract
Due to their structural similarity with natural α-amino acids, α-aminophosphonic acid derivatives are known biologically active molecules. In view of the relevance of tetrasubstituted carbons in nature and medicine and the strong dependence of the biological activity of chiral molecules into their absolute configuration, the synthesis of α-aminophosphonates bearing tetrasubstituted carbons in an asymmetric fashion has grown in interest in the past few decades. In the following lines, the existing literatures for the synthesis of optically active tetrasubstituted α-aminophosphonates are summarized, comprising diastereoselective and enantioselective approaches.
Collapse
Affiliation(s)
- Aitor Maestro
- Departamento de Química Orgánica I, Centro de Investigación y Estudios Avanzados “Lucio Lascaray”-Facultad de Farmacia, University of the Basque Country, UPV/EHU Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.M.); (X.d.C.); (A.L.-F.); (E.M.d.M.)
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Xabier del Corte
- Departamento de Química Orgánica I, Centro de Investigación y Estudios Avanzados “Lucio Lascaray”-Facultad de Farmacia, University of the Basque Country, UPV/EHU Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.M.); (X.d.C.); (A.L.-F.); (E.M.d.M.)
| | - Adrián López-Francés
- Departamento de Química Orgánica I, Centro de Investigación y Estudios Avanzados “Lucio Lascaray”-Facultad de Farmacia, University of the Basque Country, UPV/EHU Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.M.); (X.d.C.); (A.L.-F.); (E.M.d.M.)
| | - Edorta Martínez de Marigorta
- Departamento de Química Orgánica I, Centro de Investigación y Estudios Avanzados “Lucio Lascaray”-Facultad de Farmacia, University of the Basque Country, UPV/EHU Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.M.); (X.d.C.); (A.L.-F.); (E.M.d.M.)
| | - Francisco Palacios
- Departamento de Química Orgánica I, Centro de Investigación y Estudios Avanzados “Lucio Lascaray”-Facultad de Farmacia, University of the Basque Country, UPV/EHU Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.M.); (X.d.C.); (A.L.-F.); (E.M.d.M.)
| | - Javier Vicario
- Departamento de Química Orgánica I, Centro de Investigación y Estudios Avanzados “Lucio Lascaray”-Facultad de Farmacia, University of the Basque Country, UPV/EHU Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.M.); (X.d.C.); (A.L.-F.); (E.M.d.M.)
| |
Collapse
|
13
|
Wu L, Wei H, Shen J, Chen J, Zhang W. Development of Earth-Abundant Metals-Catalyzed Enantioselective Alkenylations Using Alkenyl Metal Reagents. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21070338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
14
|
Cao H, Li J, Zhang F, Cahard D, Ma J. Asymmetric Synthesis of Chiral Amino Carboxylic‐Phosphonic Acid Derivatives. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001345] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hao‐Qiang Cao
- Department of Chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education) and Tianjin Collaborative Innovation Center of Chemical Science & Engineering Tianjin University Tianjin 300072 People's Republic of China
| | - Jun‐Kuan Li
- Department of Chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education) and Tianjin Collaborative Innovation Center of Chemical Science & Engineering Tianjin University Tianjin 300072 People's Republic of China
| | - Fa‐Guang Zhang
- Department of Chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education) and Tianjin Collaborative Innovation Center of Chemical Science & Engineering Tianjin University Tianjin 300072 People's Republic of China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University, Binhai New City Fuzhou 350207 People's Republic of China
| | - Dominique Cahard
- CNRS UMR 6014 COBRA Normandie Université 76821 Mont Saint Aignan France
| | - Jun‐An Ma
- Department of Chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education) and Tianjin Collaborative Innovation Center of Chemical Science & Engineering Tianjin University Tianjin 300072 People's Republic of China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University, Binhai New City Fuzhou 350207 People's Republic of China
| |
Collapse
|
15
|
Homma C, Takeshima A, Kano T, Maruoka K. Construction of chiral α- tert-amine scaffolds via amine-catalyzed asymmetric Mannich reactions of alkyl-substituted ketimines. Chem Sci 2020; 12:1445-1450. [PMID: 34163907 PMCID: PMC8179053 DOI: 10.1039/d0sc05269h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Stereoselective Mannich reactions of aldehydes with ketimines provide chiral β-amino aldehydes that bear an α-tert-amine moiety. However, the structural variation of the ketimines is limited due to the formation of inseparable E/Z isomers, low reactivity, and other synthetic difficulties. In this study, a highly diastereodivergent synthesis of hitherto difficult-to-access β-amino aldehydes that bear a chiral α-tert-amine moiety was achieved using the amine-catalyzed Mannich reactions of aldehydes with less-activated Z-ketimines that bear both alkyl and alkynyl groups.
Collapse
Affiliation(s)
- Chihiro Homma
- Department of Chemistry, Graduate School of Science, Kyoto University Sakyo Kyoto 606-8502 Japan
| | - Aika Takeshima
- Department of Chemistry, Graduate School of Science, Kyoto University Sakyo Kyoto 606-8502 Japan
| | - Taichi Kano
- Department of Chemistry, Graduate School of Science, Kyoto University Sakyo Kyoto 606-8502 Japan
| | - Keiji Maruoka
- Graduate School of Science, Graduate School of Pharmaceutical Sciences, Kyoto University Kyoto 606-8502 Japan .,School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou 510006 China
| |
Collapse
|
16
|
Eder I, Haider V, Zebrowski P, Waser M. Recent Progress in the Asymmetric Syntheses of α‐Heterofunctionalized (Masked) α‐ and β‐Amino Acid Derivatives. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Isabella Eder
- Institute of Organic Chemistry Johannes Kepler University Linz Altenbergerstr. 69 4040 Linz Austria
| | - Victoria Haider
- Institute of Organic Chemistry Johannes Kepler University Linz Altenbergerstr. 69 4040 Linz Austria
| | - Paul Zebrowski
- Institute of Organic Chemistry Johannes Kepler University Linz Altenbergerstr. 69 4040 Linz Austria
| | - Mario Waser
- Institute of Organic Chemistry Johannes Kepler University Linz Altenbergerstr. 69 4040 Linz Austria
| |
Collapse
|
17
|
Wang M, Zhou M, Zhang L, Zhang Z, Zhang W. A step-economic and one-pot access to chiral C α-tetrasubstituted α-amino acid derivatives via a bicyclic imidazole-catalyzed direct enantioselective C-acylation. Chem Sci 2020; 11:4801-4807. [PMID: 34122937 PMCID: PMC8159231 DOI: 10.1039/d0sc00808g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cα-Tetrasubstituted α-amino acids are ubiquitous and unique structural units in bioactive natural products and pharmaceutical compounds. The asymmetric synthesis of these molecules has attracted a lot of attention, but a more efficient method is still greatly desired. Here we describe the first sequential four-step acylation reaction for the efficient synthesis of chiral Cα-tetrasubstituted α-amino acid derivatives from simple N-acylated amino acids via an auto-tandem catalysis using a single nucleophilic catalyst. The synthetic efficiency is improved via a direct enantioselective C-acylation; the methodology affords the corresponding Cα-tetrasubstituted α-amino acid derivatives with excellent enantioselectivities (up to 99% ee). This step-economic, one-pot, and auto-tandem strategy provides facile access to important chiral building blocks, such as peptides, serines, and oxazolines, which are often used in medicinal and synthetic chemistry. The first four-step sequential reaction for the synthesis of Cα-tetrasubstituted chiral α-amino acid derivatives via auto-tandem catalysis has been developed.![]()
Collapse
Affiliation(s)
- Mo Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University Shanghai 200240 China .,School of Pharmacy, Shanghai Jiao Tong University Shanghai 200240 China
| | - Muxing Zhou
- School of Pharmacy, Shanghai Jiao Tong University Shanghai 200240 China
| | - Lu Zhang
- School of Pharmacy, Shanghai Jiao Tong University Shanghai 200240 China
| | - Zhenfeng Zhang
- School of Pharmacy, Shanghai Jiao Tong University Shanghai 200240 China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University Shanghai 200240 China .,School of Pharmacy, Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
18
|
Maestro A, Marigorta EM, Palacios F, Vicario J. α‐Iminophosphonates: Useful Intermediates for Enantioselective Synthesis of α‐Aminophosphonates. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000039] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Aitor Maestro
- Departamento de Química Orgánica I Centro de Investigación y Estudios Avanzados “Lucio Lascaray” Facultad de FarmaciaUniversidad del País Vasco UPV/EHU Paseo de la Universidad 7 01006 Vitoria-Gasteiz Spain
| | - Edorta Martinez Marigorta
- Departamento de Química Orgánica I Centro de Investigación y Estudios Avanzados “Lucio Lascaray” Facultad de FarmaciaUniversidad del País Vasco UPV/EHU Paseo de la Universidad 7 01006 Vitoria-Gasteiz Spain
| | - Francisco Palacios
- Departamento de Química Orgánica I Centro de Investigación y Estudios Avanzados “Lucio Lascaray” Facultad de FarmaciaUniversidad del País Vasco UPV/EHU Paseo de la Universidad 7 01006 Vitoria-Gasteiz Spain
| | - Javier Vicario
- Departamento de Química Orgánica I Centro de Investigación y Estudios Avanzados “Lucio Lascaray” Facultad de FarmaciaUniversidad del País Vasco UPV/EHU Paseo de la Universidad 7 01006 Vitoria-Gasteiz Spain
| |
Collapse
|
19
|
Kaur J, Kaur BP, Chimni SS. Recent advances in the catalytic synthesis of 3-aminooxindoles: an update. Org Biomol Chem 2020; 18:4692-4708. [DOI: 10.1039/d0ob00777c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
3-Substituted-3-aminooxindoles are versatile scaffolds and these motifs constitute the core structure of number of natural products and biologically active compounds.
Collapse
Affiliation(s)
- Jasneet Kaur
- Post-Graduate Department of Chemistry
- Khalsa College Amritsar
- India
| | - Banni Preet Kaur
- Department of Chemistry
- U.G.C. Centre of Advance Study-II
- Guru Nanak Dev University
- Amritsar
- India
| | - Swapandeep Singh Chimni
- Department of Chemistry
- U.G.C. Centre of Advance Study-II
- Guru Nanak Dev University
- Amritsar
- India
| |
Collapse
|
20
|
Iwanejko J, Brol A, Szyja BM, Daszkiewicz M, Wojaczyńska E, Olszewski TK. Aminophosphonates and aminophosphonic acids with tetrasubstituted stereogenic center: diastereoselective synthesis from cyclic ketimines. Org Biomol Chem 2019; 17:7352-7359. [PMID: 31338507 DOI: 10.1039/c9ob01346f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
New chiral tetrasubstituted aminophosphonic acid derivatives of hexahydroquinoxalin-2(1H)-one were synthesised via highly diastereoselective hydrophosphonylation of the corresponding imines with tris(trimethylsilyl) phosphite as phosphorus nucleophile. High asymmetric induction, good yields, mild reaction conditions, and ease of purification of the final products are the key advantages of the presented protocol.
Collapse
Affiliation(s)
- Jakub Iwanejko
- Department of Organic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | | | | | | | | | | |
Collapse
|
21
|
Zhang C, Yang J, Zhou W, Tan Q, Yang Z, He L, Zhang M. Enantioselective Mannich Reaction of Glycine Iminoesters with N-Phosphinoyl Imines: A Bifunctional Approach. Org Lett 2019; 21:8620-8624. [DOI: 10.1021/acs.orglett.9b03223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Changhui Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Jiao Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Wenqiang Zhou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Qiuyuan Tan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Zhao Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Ling He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Min Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
22
|
Fan Y, Lu J, Sha F, Li Q, Wu XY. Cu(I)-Catalyzed Asymmetric Mannich Reaction of Glycine Schiff Bases to Ketimines. J Org Chem 2019; 84:11639-11648. [PMID: 31449410 DOI: 10.1021/acs.joc.9b01566] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A copper-catalyzed asymmetric Mannich reaction between glycine Schiff bases and ketimines has been developed. This method afforded 2-oxindole-based chiral syn-α,β-diamino acid derivatives in high yields (89-99%) with good to excellent diastereoselectivities (≤98:2 dr) and excellent enantioselectivities (95-99% ee).
Collapse
Affiliation(s)
- Ying Fan
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China
| | - Jian Lu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China
| | - Feng Sha
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China
| | - Qiong Li
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China
| | - Xin-Yan Wu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China
| |
Collapse
|
23
|
Kim J, Shin M, Cho SH. Copper-Catalyzed Diastereoselective and Enantioselective Addition of 1,1-Diborylalkanes to Cyclic Ketimines and α-Imino Esters. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02931] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jeongho Kim
- Department of Chemistry, POSTECH, 37673, Pohang, Korea
| | | | | |
Collapse
|
24
|
Yang WL, Sun ZT, Zhang J, Li Z, Deng WP. Enantioselective synthesis of 3-amino-hydrobenzofuran-2,5-diones via Cu(i)-catalyzed intramolecular conjugate addition of imino esters. Org Chem Front 2019. [DOI: 10.1039/c8qo01335g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The copper-catalyzed enantioselective intramolecular conjugate addition of imino esters for desymmetrization of cyclohexadienones was described, providing access to enantioenriched 3-amino-hydrobenzofuran-2,5-diones.
Collapse
Affiliation(s)
- Wu-Lin Yang
- Shanghai Key Laboratory of Chemical Biology
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Zhong-Tao Sun
- Shanghai Key Laboratory of New Drug Design
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Jian Zhang
- Shanghai Key Laboratory of New Drug Design
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Wei-Ping Deng
- Shanghai Key Laboratory of New Drug Design
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|