1
|
Roy A, Duari S, Maity S, Biswas S, Mishra AK, Biswas S. Regioselective Brønsted acid catalyzed ring opening of aziridines by phenols and thiophenols; a gateway to access functionalized indolines, indoles, benzothiazines, dihydrobenzo-thiazines, benzo-oxazines and benzochromenes. Org Biomol Chem 2024; 22:5653-5664. [PMID: 38919997 DOI: 10.1039/d4ob00196f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Brønsted acid catalyzed regioselective ring opening of aziridines by phenols and thiophenols have been reported. Involvement of a series of aziridines with a range of phenols and thiophenols offer the generality of the reported protocol. Completion of the reaction at room temperature within very short time brings the uniqueness of the developed technique. To emphasis on the application of the developed methodology, the products have been used for the further synthesis of a range of useful and novel heterocyclic molecules such as indolines, indoles, benzothiazines, dihydrobenzothiazines, benzo-oxazines and benzochromenes.
Collapse
Affiliation(s)
- Arnab Roy
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata - 700 009, West Bengal, India.
| | - Surajit Duari
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata - 700 009, West Bengal, India.
| | - Srabani Maity
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata - 700 009, West Bengal, India.
| | - Subrata Biswas
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata - 700 009, West Bengal, India.
| | - Abhishek Kumar Mishra
- Department of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow - 226031, U. P., India
| | - Srijit Biswas
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata - 700 009, West Bengal, India.
| |
Collapse
|
2
|
Wang L, Lv J, Zhang Y, Yang D. Asymmetric magnesium catalysis for important chiral scaffold synthesis. Org Biomol Chem 2024; 22:4778-4800. [PMID: 38809153 DOI: 10.1039/d4ob00521j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Magnesium catalysts are widely used in catalytic asymmetric reactions, and a series of catalytic strategies have been developed in recent years. Herein, in this review, we have tried to summarize asymmetric magnesium catalysis for the synthesis of important chiral scaffolds. Several important optically active motifs that are present in classic chiral ligands or natural products synthesized by Mg(II) catalytic methods are briefly discussed. Moreover, the representative mechanisms for different magnesium catalytic strategies, including in situ generated magnesium catalysts, are also shown in relation to synthetic routes for obtaining these important chiral scaffolds.
Collapse
Affiliation(s)
- Linqing Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China.
| | - Jiaming Lv
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China.
| | - Yongshuo Zhang
- Scientific Research and Innovation Expert Studio of China Inspection and Certification Group Liaoning Co., Ltd, Dalian, 116039, China
| | - Dongxu Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
3
|
Abe M, Coleman JS, Presley CC, Schley ND, Lindsley CW. Rapid sp 3-Enriched Scaffold Generation via a Selective Aziridine Amide Ring-Opening Reaction. J Org Chem 2024; 89:3500-3508. [PMID: 38340064 PMCID: PMC10913065 DOI: 10.1021/acs.joc.3c02952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024]
Abstract
Sp3-enriched small molecules play a critical role in developing drug candidates. While designing analogues with greater sp3 character, a methodology utilizing a less explored cyclic-aziridine amide ring-opening reaction to generate sp3-enriched scaffolds has been developed and reported. This methodology enables rapid access to substructures with higher fsp3 values, attracting greater attention within the past few decades. The reaction exhibits a wide reaction scope, featuring a highly sterically hindered phenolic ether, thiophenolic ethers, protected aniline formations, and aliphatic/heteroaromatic ring-containing aziridine amides as substrates. Additionally, this reaction provides access to congested tertiary ether formations through regioselective transformation, applicable to an extensive range of drug discovery targets, construction of complex small molecules, and natural product syntheses. The scaffolds developed show improved physicochemical properties.
Collapse
Affiliation(s)
- Masahito Abe
- Warren
Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University, Franklin, Tennessee 37067, United States
| | - Jeremy S. Coleman
- Warren
Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University, Franklin, Tennessee 37067, United States
| | - Christopher C. Presley
- Warren
Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University, Franklin, Tennessee 37067, United States
| | - Nathan D. Schley
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Craig W. Lindsley
- Warren
Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University, Franklin, Tennessee 37067, United States
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
4
|
Yang PJ, Chai Z. Catalytic enantioselective desymmetrization of meso-aziridines. Org Biomol Chem 2023; 21:465-478. [PMID: 36508282 DOI: 10.1039/d2ob01935c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
As a type of readily available small strained-ring heterocycle, meso-aziridines may undergo catalytic desymmetrizing transformations to empower the rapid construction of diverse nitrogen-containing structures bearing contiguous stereocenters, which have great relevance in natural product synthesis, drug development and the design and synthesis of chiral catalysts/ligands for asymmetric catalysis. This review outlines the advances achieved in the catalytic asymmetric desymmetrization of meso aziridines and highlights some promising avenues for further work in this realm.
Collapse
Affiliation(s)
- Pei-Jun Yang
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Middle Beijing Road, Wuhu, Anhui 241000, China.,MOE Key Laboratory of Functional Molecular Solids, Anhui Laboratory of Molecule-Based Materials, Institute of Organic Chemistry, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, China.
| | - Zhuo Chai
- MOE Key Laboratory of Functional Molecular Solids, Anhui Laboratory of Molecule-Based Materials, Institute of Organic Chemistry, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, China.
| |
Collapse
|
5
|
|
6
|
Nájera C, Foubelo F, Sansano JM, Yus M. Enantioselective desymmetrization reactions in asymmetric catalysis. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132629] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
7
|
A tandem asymmetric oxidation-oxa-Michael sequence for dearomatization of β-naphthols. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.12.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Wang P, Cheng Y, Wu C, Luo R, Ma C, Zhou Y, Ma Z, Wang R, Su W, Fang L. Dearomatization-rearomatization strategy of tyrosine for peptide/protein modification through thiol-addition reactions. Chem Commun (Camb) 2021; 57:12968-12971. [PMID: 34792042 DOI: 10.1039/d1cc04191f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed a dearomatization-rearomatization strategy for the modification of peptides/proteins through a thiol-Michael addition to the electrophilic cyclohexadienone intermediate that is generated in situ via the oxidation of tyrosine. This strategy enriches the conjugation toolbox and has great potential for applications in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- Pengxin Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Drug Design & Synthesis, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu, China.,Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| | - Yulian Cheng
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| | - Chunlei Wu
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| | - Ruixiang Luo
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| | - Caibing Ma
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| | - Yimin Zhou
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| | - Zhilong Ma
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Drug Design & Synthesis, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Wu Su
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| | - Lijing Fang
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
9
|
Van Hecke K, Benton TR, Casper M, Mauldin D, Drake B, Morgan JB. Palladium-Catalyzed, Enantioselective Desymmetrization of N-Acylaziridines with Indoles. Org Lett 2021; 23:7916-7920. [PMID: 34609884 PMCID: PMC9022218 DOI: 10.1021/acs.orglett.1c02914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ring opening reactions of meso-aziridines generate chiral amine derivatives where the control of stereochemistry is possible through enantioselective catalysis. We report the use of a diphosphine-palladium(II) catalyst for the highly enantioselective desymmetrization of N-acylaziridines with indoles. The β-tryptamine products are isolated in moderate to high yield across a range of indole and aziridine substitution patterns. The synthetic utility of β-tryptamine products is demonstrated by conversion to the brominated pyrroloindoline derivative.
Collapse
Affiliation(s)
- Kinney Van Hecke
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Dobo Hall, Wilmington, North Carolina 28403, United States
| | - Tyler R Benton
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Dobo Hall, Wilmington, North Carolina 28403, United States
| | - Michael Casper
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Dobo Hall, Wilmington, North Carolina 28403, United States
| | - Dustin Mauldin
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Dobo Hall, Wilmington, North Carolina 28403, United States
| | - Brandon Drake
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Dobo Hall, Wilmington, North Carolina 28403, United States
| | - Jeremy B Morgan
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Dobo Hall, Wilmington, North Carolina 28403, United States
| |
Collapse
|
10
|
Woldegiorgis AG, Han Z, Lin X. Organocatalytic Asymmetric Dearomatization Reaction for the Synthesis of Axial Chiral Allene-Derived Naphthalenones Bearing Quaternary Stereocenters. Org Lett 2021; 23:6606-6611. [PMID: 34387497 DOI: 10.1021/acs.orglett.1c01849] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The highly regio-, diastereo-, and enantioselective dearomatization reaction of 1-substituted 2-naphthols and β,γ-alkynyl-α-imino esters with complete atom economy is disclosed via chiral phosphoric acid catalysis. This protocol provides facile and efficient access to asymmetric construction of a broad range of axially chiral allene-derived naphthalenones bearing quaternary stereocenters in good yields with high diastereoselectivities and enantioselectivities.
Collapse
Affiliation(s)
| | - Zhao Han
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Xufeng Lin
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
11
|
Das BG, Shah S, Das A, Singh VK. Cu-Catalyzed Chemodivergent, Stereoselective Propargylic Dearomatization and Etherification of 2-Naphthols. Org Lett 2021; 23:6262-6266. [PMID: 34374540 DOI: 10.1021/acs.orglett.1c02027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first stereoselective propargylic dearomatization of 2-naphthol derivatives is reported using a chiral CuII-L10 complex. The reaction shows chemodivergent reactivity and produced propargyl dearomatization and etherification product for differently substituted 2-naphthols. Both the reactions generate the desired products in high yields with excellent chemo- and stereoselectivities (up to 99% ee, dr = 9:1) by using only 2 mol % catalyst loading. Dearomatization products contain a contiguous all-carbon quaternary-tertiary stereocenter and a terminal alkyne functionality.
Collapse
Affiliation(s)
- Braja Gopal Das
- Department of Chemistry, Indian Institution of Technology Kanpur, Kanpur-208016, Uttar Pradesh, India
| | - Sadhna Shah
- Department of Chemistry, Indian Institution of Technology Kanpur, Kanpur-208016, Uttar Pradesh, India
| | - Arko Das
- Department of Chemistry, Indian Institution of Technology Kanpur, Kanpur-208016, Uttar Pradesh, India
| | - Vinod K Singh
- Department of Chemistry, Indian Institution of Technology Kanpur, Kanpur-208016, Uttar Pradesh, India
| |
Collapse
|
12
|
Connon R, Roche B, Rokade BV, Guiry PJ. Further Developments and Applications of Oxazoline-Containing Ligands in Asymmetric Catalysis. Chem Rev 2021; 121:6373-6521. [PMID: 34019404 PMCID: PMC8277118 DOI: 10.1021/acs.chemrev.0c00844] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Indexed: 12/27/2022]
Abstract
The chiral oxazoline motif is present in many ligands that have been extensively applied in a series of important metal-catalyzed enantioselective reactions. This Review aims to provide a comprehensive overview of the most significant applications of oxazoline-containing ligands reported in the literature starting from 2009 until the end of 2018. The ligands are classified not by the reaction to which their metal complexes have been applied but by the nature of the denticity, chirality, and donor atoms involved. As a result, the continued development of ligand architectural design from mono(oxazolines), to bis(oxazolines), to tris(oxazolines) and tetra(oxazolines) and variations thereof can be more easily monitored by the reader. In addition, the key transition states of selected asymmetric transformations will be given to illustrate the features that give rise to high levels of asymmetric induction. As a further aid to the reader, we summarize the majority of schemes with representative examples that highlight the variation in % yields and % ees for carefully selected substrates. This Review should be of particular interest to the experts in the field but also serve as a useful starting point to new researchers in this area. It is hoped that this Review will stimulate both the development/design of new ligands and their applications in novel metal-catalyzed asymmetric transformations.
Collapse
Affiliation(s)
- Robert Connon
- Synthesis
and Solid State Pharmaceutical Centre, Centre for Synthesis and Chemical
Biology, School of Chemistry, University
College Dublin, Dublin
4, Ireland
| | - Brendan Roche
- Synthesis
and Solid State Pharmaceutical Centre, Centre for Synthesis and Chemical
Biology, School of Chemistry, University
College Dublin, Dublin
4, Ireland
| | - Balaji V. Rokade
- BiOrbic
Research Centre, Centre for Synthesis and Chemical Biology, School
of Chemistry, University College Dublin, Dublin 4, Ireland
| | - Patrick J. Guiry
- Synthesis
and Solid State Pharmaceutical Centre, Centre for Synthesis and Chemical
Biology, School of Chemistry, University
College Dublin, Dublin
4, Ireland
- BiOrbic
Research Centre, Centre for Synthesis and Chemical Biology, School
of Chemistry, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
13
|
Zhu WQ, Zhang ZW, Han WY, Fang YC, Yang P, Li LQ, Chen YZ. Aziridine used as a vinylidene unit in palladium-catalyzed [2 + 2 + 1] domino annulation. Org Chem Front 2021. [DOI: 10.1039/d1qo00458a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A series of chromone fused methylenecyclopentanes are efficiently constructed in moderate to good yields by Pd-catalyzed [2 + 2 + 1] annulation, in which aziridine is used as a vinylidene unit by cleavage of two C–N bonds for the first time.
Collapse
Affiliation(s)
- Wen-Qing Zhu
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries
- School of Environmental and Chemical Engineering
- Xi'an Polytechnic University
- Xi'an
- P. R. China
| | - Zi-Wei Zhang
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries
- School of Environmental and Chemical Engineering
- Xi'an Polytechnic University
- Xi'an
- P. R. China
| | - Wen-Yong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Green Pharmaceuticals Engineering Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
| | - Yu-Chen Fang
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries
- School of Environmental and Chemical Engineering
- Xi'an Polytechnic University
- Xi'an
- P. R. China
| | - Ping Yang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Green Pharmaceuticals Engineering Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
| | - Lin-Qiang Li
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Green Pharmaceuticals Engineering Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- Green Pharmaceuticals Engineering Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
| |
Collapse
|
14
|
Wang Y, Zhang WY, Xie JH, Yu ZL, Tan JH, Zheng C, Hou XL, You SL. Enantioselective Desymmetrization of Bisphenol Derivatives via Ir-Catalyzed Allylic Dearomatization. J Am Chem Soc 2020; 142:19354-19359. [PMID: 33140959 DOI: 10.1021/jacs.0c09638] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Spirocyclic hexadienones with multiple stereogenic centers are frequently found in natural products but remain challenging targets to synthesize. Herein, we report the enantioselective desymmetrization of bisphenol derivatives via Ir-catalyzed allylic dearomatization reactions, affording spirocyclic hexadienone derivatives with up to three contiguous stereogenic centers in good yields (up to 90%) and excellent enantioselectivity (up to 99% ee). The high efficiency of this reaction is exemplified by the short reaction time (30 min), low catalyst loading (down to 0.2 mol %), and ability to perform the reaction on a gram-scale. The total syntheses of (+)-tatanan B and (+)-tatanan C were also realized using this Ir-catalyzed allylic dearomatization reaction as a key step.
Collapse
Affiliation(s)
- Ye Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Wen-Yun Zhang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Jia-Hao Xie
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Zong-Lun Yu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Jia-Hao Tan
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Xue-Long Hou
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
15
|
Urbano A, Vallejo S, Cabrera-Afonso MJ, Yonte E. Chirality Transfer from the Oxidative Dearomatization of Axially Chiral Binols with Oxone under Mild Conditions. Org Lett 2020; 22:6122-6126. [DOI: 10.1021/acs.orglett.0c02194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Antonio Urbano
- Departamento de Quı́mica Orgánica, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), UAM, 28049 Madrid, Spain
| | - Sara Vallejo
- Departamento de Quı́mica Orgánica, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | - María J. Cabrera-Afonso
- Departamento de Quı́mica Orgánica, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | - Elena Yonte
- Departamento de Quı́mica Orgánica, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| |
Collapse
|
16
|
Yi J, Wu Z, You S. Copper‐Catalyzed Oxidative Dearomatization of 2‐Naphthols
via
Etherification. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900242] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ji‐Cheng Yi
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Lu, Shanghai 200032 China
- School of Physical Science and TechnologyShanghaiTech University 100 Haike Road, Shanghai 201210 China
| | - Zhi‐Jie Wu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Lu, Shanghai 200032 China
- School of Physical Science and TechnologyShanghaiTech University 100 Haike Road, Shanghai 201210 China
| | - Shu‐Li You
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Lu, Shanghai 200032 China
- School of Physical Science and TechnologyShanghaiTech University 100 Haike Road, Shanghai 201210 China
| |
Collapse
|
17
|
Chiral phosphoric acid catalyzed aminative dearomatization of α-naphthols/Michael addition sequence. Nat Commun 2019; 10:3150. [PMID: 31316064 PMCID: PMC6637135 DOI: 10.1038/s41467-019-11109-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/11/2019] [Indexed: 01/22/2023] Open
Abstract
Asymmetric dearomatization reactions have recently emerged as a powerful tool for the rapid build-up of the molecular complexity. Chiral three-dimensional polycyclic molecules bearing contiguous stereogenic centers can be synthesized from readily available planar aromatic feedstocks. Here we report that an intermolecular asymmetric dearomatization reaction of α-naphthols bearing a tethered nucleophile at the C4 position of the naphthol ring is achieved by a chiral phosphoric acid. The reaction proceeds via a highly chemo- and regioselective aminative dearomatization/Michael addition sequence, affording a wide array of functionalized cyclic ketones in good yields (up to 93%) with excellent enantioselectivity (up to >99% ee). The catalyst loading can be reduced to 0.1 mol%. Preliminary mechanistic investigations identify that the enantioselectivity is established in the dearomatization step, while the Michael addition is the rate-limiting step. A working model accounting for the origin of the stereochemistry is proposed based on DFT calculations.
Collapse
|
18
|
Li D, Wang L, Yang Y, Zhang M, Peng T, Yang D, Wang R. Construction of Optically Active 2H‐ and 3H‐Pyrroles by Cyclization and Chirality Maintaining1,5‐Ester Shift Reactions. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900481] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Dan Li
- Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical SciencesLanzhou University Lanzhou 730000 People's Republic of China
| | - Linqing Wang
- Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical SciencesLanzhou University Lanzhou 730000 People's Republic of China
| | - Yuling Yang
- Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical SciencesLanzhou University Lanzhou 730000 People's Republic of China
| | - Minmin Zhang
- Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical SciencesLanzhou University Lanzhou 730000 People's Republic of China
| | - Tianyu Peng
- Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical SciencesLanzhou University Lanzhou 730000 People's Republic of China
| | - Dongxu Yang
- Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical SciencesLanzhou University Lanzhou 730000 People's Republic of China
| | - Rui Wang
- Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical SciencesLanzhou University Lanzhou 730000 People's Republic of China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 People's Republic of China
| |
Collapse
|
19
|
Wang Y, Liu BY, Yang G, Chai Z. Synthesis of 2-Aminophosphates via S N2-Type Ring Openings of Aziridines with Organophosphoric Acids. Org Lett 2019; 21:4475-4479. [PMID: 31184161 DOI: 10.1021/acs.orglett.9b01302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of 2-aminophosphates is achieved by a SN2-type ring opening reaction of various N-protected or free aziridines with phosphoric acids in a regiospecific and/or enantiospecific way. A one-pot, two-step procedure is also developed enabling direct access to 2-aminophosphates from olefins without isolation of the aziridine intermediates.
Collapse
Affiliation(s)
- Yang Wang
- MOE Key Laboratory of Functionalized Molecular Solids, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science , Anhui Normal University , Wuhu , Anhui 241002 , China
| | - Bing-Yi Liu
- MOE Key Laboratory of Functionalized Molecular Solids, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science , Anhui Normal University , Wuhu , Anhui 241002 , China
| | - Gaosheng Yang
- MOE Key Laboratory of Functionalized Molecular Solids, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science , Anhui Normal University , Wuhu , Anhui 241002 , China
| | - Zhuo Chai
- MOE Key Laboratory of Functionalized Molecular Solids, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science , Anhui Normal University , Wuhu , Anhui 241002 , China
| |
Collapse
|
20
|
Yang B, Zhai X, Feng S, Hu D, Deng Y, Shao Z. Organocatalyzed Intermolecular Asymmetric Allylic Dearomatization of Both α- and β-Naphthols. Org Lett 2018; 21:330-334. [PMID: 30585495 DOI: 10.1021/acs.orglett.8b03934] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The first highly stereoselective intermolecular catalytic asymmetric dearomatization (CADA) of α-naphthols through C-C formation and the first asymmetric allylic dearomatization of naphthols by chiral organocatalysis have been achieved. These new and complete atom-economic reactions provide enantioriched α- and β-naphthalenones bearing an all-carbon quaternary center.
Collapse
Affiliation(s)
- Binmiao Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology , Yunnan University , Kunming 650091 , China
| | - Xuejie Zhai
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology , Yunnan University , Kunming 650091 , China
| | - Shubo Feng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology , Yunnan University , Kunming 650091 , China
| | - Dongyan Hu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology , Yunnan University , Kunming 650091 , China
| | - Yuhua Deng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology , Yunnan University , Kunming 650091 , China
| | - Zhihui Shao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology , Yunnan University , Kunming 650091 , China
| |
Collapse
|