1
|
Viktorova VV, Obydennov DL, Mustafina AF, Ulitko MV, Kornev MY, Sosnovskikh VY. Regioselective synthesis of 5-azaindazoles based on the intramolecular amination reaction of 5-acyl-4-pyridones with hydrazines. Org Biomol Chem 2025; 23:2206-2220. [PMID: 39873668 DOI: 10.1039/d4ob01969e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
The labile tautomerism of N-unsubstituted 5-acyl-4-pyridones, which exist in the form of 4-pyridone or 4-hydroxypyridine depending on the solvent, has been demonstrated. This equilibrium determines the reactivity of pyridones and their ability to undergo substitution reactions of the OH group. A regioselective and convenient method for the construction of functionalized pyrazolo[4,3-c]pyridines (30-93%) based on the intramolecular amination reaction of 4-pyridones with hydrazines has been developed. The heterocyclization of N-alkyl-4-pyridones is accompanied by a dealkylation reaction. The reaction with hydroxylamine as a nucleophile can be used for the construction of the isoxazolo[4,5-c]pyridine core. Methods have been developed for further modification of the 5-azaindazole fragment via alkylation and decarboxylation. The antiproliferative properties of the prepared 5-azaindazoles were studied in relation to cancer (Hep-2, MCF) and normal cell lines (FH and Vero), and the compounds demonstrated relevant biological activity for further design of new molecules for antitumor therapy.
Collapse
Affiliation(s)
- Viktoria V Viktorova
- Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenina Ave., 620000 Ekaterinburg, Russian Federation.
| | - Dmitrii L Obydennov
- Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenina Ave., 620000 Ekaterinburg, Russian Federation.
| | - Alsu F Mustafina
- Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenina Ave., 620000 Ekaterinburg, Russian Federation.
| | - Maria V Ulitko
- Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenina Ave., 620000 Ekaterinburg, Russian Federation.
| | - Mikhail Y Kornev
- Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenina Ave., 620000 Ekaterinburg, Russian Federation.
| | - Vyacheslav Y Sosnovskikh
- Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenina Ave., 620000 Ekaterinburg, Russian Federation.
| |
Collapse
|
2
|
Zhuang HF, Gu J, Ye Z, He Y. Stereospecific 3-Aza-Cope Rearrangement Interrupted Asymmetric Allylic Substitution-Isomerization. Angew Chem Int Ed Engl 2025; 64:e202418951. [PMID: 39417348 DOI: 10.1002/anie.202418951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
Transition-metal catalyzed asymmetric allylic substitution with alkyl and heteroaryl carbon nucleophiles has been well-established. However, the asymmetric allylic arylation of acyclic internal alkenes with aryl nucleophiles remains challenging and underdeveloped. Herein we report a stereospecific 3-aza-Cope rearrangement interrupted asymmetric allylic substitution-isomerization (Int-AASI) that enables asymmetric allylic arylation. By means of this stepwise strategy, both enantioenriched allylic arylation products and axially chiral alkenes could be readily obtained in high enantioselectivities. Experimental studies support a mechanism involving a cascade of asymmetric allylic amination, stereospecific 3-aza-Cope rearrangement and alkene isomerization. Density functional theory studies detailed the reasons of achieving the high chemoselectivity, regioselectivity, stereoselectivity and stereospecificity, respectively.
Collapse
Affiliation(s)
- Hong-Feng Zhuang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jun Gu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zhiwen Ye
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ying He
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
3
|
Raje S, Sheikh Mohammad T, de Ruiter G. A Neutral PC NHCP Co(I)-Me Pincer Complex as a Catalyst for N-Allylic Isomerization with a Broad Substrate Scope. J Org Chem 2024; 89:4319-4325. [PMID: 38520345 PMCID: PMC11002938 DOI: 10.1021/acs.joc.3c02349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
Earth-abundant-metal catalyzed double bond transposition offers a sustainable and atom-economical route toward the synthesis of internal alkenes. With an emphasis specifically on internal olefins and ethers, the isomerization of allylic amines has been particularly under represented in the literature. Herein, we report an efficient methodology for the selective isomerization of N-allylic organic compounds, including amines, amides, and imines. The reaction is catalyzed by a neutral PCNHCP cobalt(I) pincer complex and proceeds via a π-allyl mechanism. The isomerization occurs readily at 80-90 °C, and it is compatible with a wide variety of functional groups. The in situ formed enamines could additionally be used for a one-pot inverse-electron-demand Diels-Alder reaction to furnish a series of diversely substituted heterobiaryls, which is further discussed in this report.
Collapse
Affiliation(s)
- Sakthi Raje
- Schulich Faculty of Chemistry, Technion—Israel Institute of Technology, Technion City, 3200008 Haifa, Israel
| | - Tofayel Sheikh Mohammad
- Schulich Faculty of Chemistry, Technion—Israel Institute of Technology, Technion City, 3200008 Haifa, Israel
| | - Graham de Ruiter
- Schulich Faculty of Chemistry, Technion—Israel Institute of Technology, Technion City, 3200008 Haifa, Israel
| |
Collapse
|
4
|
Escolano M, Gaviña D, Alzuet-Piña G, Díaz-Oltra S, Sánchez-Roselló M, Pozo CD. Recent Strategies in the Nucleophilic Dearomatization of Pyridines, Quinolines, and Isoquinolines. Chem Rev 2024; 124:1122-1246. [PMID: 38166390 PMCID: PMC10902862 DOI: 10.1021/acs.chemrev.3c00625] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Dearomatization reactions have become fundamental chemical transformations in organic synthesis since they allow for the generation of three-dimensional complexity from two-dimensional precursors, bridging arene feedstocks with alicyclic structures. When those processes are applied to pyridines, quinolines, and isoquinolines, partially or fully saturated nitrogen heterocycles are formed, which are among the most significant structural components of pharmaceuticals and natural products. The inherent challenge of those transformations lies in the low reactivity of heteroaromatic substrates, which makes the dearomatization process thermodynamically unfavorable. Usually, connecting the dearomatization event to the irreversible formation of a strong C-C, C-H, or C-heteroatom bond compensates the energy required to disrupt the aromaticity. This aromaticity breakup normally results in a 1,2- or 1,4-functionalization of the heterocycle. Moreover, the combination of these dearomatization processes with subsequent transformations in tandem or stepwise protocols allows for multiple heterocycle functionalizations, giving access to complex molecular skeletons. The aim of this review, which covers the period from 2016 to 2022, is to update the state of the art of nucleophilic dearomatizations of pyridines, quinolines, and isoquinolines, showing the extraordinary ability of the dearomative methodology in organic synthesis and indicating their limitations and future trends.
Collapse
Affiliation(s)
- Marcos Escolano
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Daniel Gaviña
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Gloria Alzuet-Piña
- Department of Inorganic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Santiago Díaz-Oltra
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - María Sánchez-Roselló
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Carlos Del Pozo
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
5
|
Tu HF, Nie YH, Zheng C, You SL. Ir‐Catalyzed Intermolecular Asymmetric Allylic Amination with Pyridones. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hang-Fei Tu
- Shanghai Institute of Organic Chemistry CHINA
| | - Yu-Han Nie
- Shanghai Institute of Organic Chemistry CHINA
| | - Chao Zheng
- Shanghai Institute of Organic Chemistry CHINA
| | - Shu-Li You
- Shanghai Institute of Organic Chemistry CHINA
| |
Collapse
|
6
|
Wang J, Qi X, Min XL, Yi W, Liu P, He Y. Tandem Iridium Catalysis as a General Strategy for Atroposelective Construction of Axially Chiral Styrenes. J Am Chem Soc 2021; 143:10686-10694. [PMID: 34228930 DOI: 10.1021/jacs.1c04400] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Axially chiral styrenes are of great interest since they may serve as a class of novel chiral ligands in asymmetric synthesis. However, only recently have strategies been developed for their enantioselective preparation. Thus, the development of novel and efficient methodologies is highly desirable. Herein, we reported the first tandem iridium catalysis as a general strategy for the synthesis of axially chiral styrenes enabled by Asymmetric Allylic Substitution-Isomerization (AASI) using cinnamyl carbonate analogues as electrophiles and naphthols as nucleophiles. In this approach, axially chiral styrenes were generated through two independent iridium-catalytic cycles: iridium-catalyzed asymmetric allylic substitution and in situ isomerization via stereospecific 1,3-hydride transfer catalyzed by the same iridium catalyst. Both experimental and computational studies demonstrated that the isomerization proceeded by iridium-catalyzed benzylic C-H bond oxidative addition, followed by terminal C-H reductive elimination. Amid the central-to-axial chirality transfer, the hydroxyl of naphthol plays a crucial role in ensuring the stereospecificity by coordinating with the Ir(I) center. The process accommodated broad functional group compatibility. The products were generated in excellent yields with excellent to high enantioselectivities, which could be transformed to various axially chiral molecules.
Collapse
Affiliation(s)
- Jie Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Xiaotian Qi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Xiao-Long Min
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Wenbin Yi
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ying He
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| |
Collapse
|
7
|
Stojanović M, Bugarski S, Baranac-Stojanović M. Synthesis of 2,3-Dihydro-4-pyridones and 4-Pyridones by the Cyclization Reaction of Ester-Tethered Enaminones. J Org Chem 2020; 85:13495-13507. [PMID: 33092340 DOI: 10.1021/acs.joc.0c01537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
2,3-Dihydro-4-pyridone skeleton is an important building block in organic synthesis because it features several reaction sites with nucleophilic or electrophilic properties. Herein, we disclose a method for its formation by intramolecular cyclization of ester-tethered enaminones, which can easily be synthesized from readily available materials, such as amines, activated alkynes, and activated alkenes. 2,3-Dihydro-4-pyridones have been isolated in 41-90% yields. We also demonstrate the transformation of these heterocycles into another important class of compounds, 4-pyridones, by utilizing 2,3,5,6-tetrachloro-p-benzoquinone (chloranil) as an oxidizing agent. The latter products were isolated in 65-94% yields.
Collapse
Affiliation(s)
- Milovan Stojanović
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy-Center for Chemistry, Njegoševa 12, P.O. Box 473, 11000 Belgrade, Serbia
| | - Slobodan Bugarski
- University of Belgrade-Faculty of Chemistry, Studentski trg 12-16, P.O. Box 158, 11000 Belgrade, Serbia
| | - Marija Baranac-Stojanović
- University of Belgrade-Faculty of Chemistry, Studentski trg 12-16, P.O. Box 158, 11000 Belgrade, Serbia
| |
Collapse
|
8
|
Wang P, Jiang Q, Zhao R, Xie X, Tang S, Wang X. Enantioselective α-Functionalization of 1,3-Dithianes by Iridium-Catalyzed Allylic Substitution. J Org Chem 2020; 85:12456-12467. [PMID: 32909434 DOI: 10.1021/acs.joc.0c01683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An iridium-catalyzed asymmetric allylic substitution reaction with 2-alkoxy carbonyl-1,3-dithianes has been achieved with high regio- and enantioselectivities. The transformation provides a new method for the enantioselective α-functionalization of dithianes. The corresponding dithiane-containing products are easily converted into many other derivatives with high yields and enantioselectivities.
Collapse
Affiliation(s)
- Panpan Wang
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Qian Jiang
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Ruibo Zhao
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xingang Xie
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Shouchu Tang
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, Lanzhou 730000, P. R. China.,School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiaolei Wang
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
9
|
Sun C, Qi X, Min XL, Bai XD, Liu P, He Y. Asymmetric allylic substitution-isomerization to axially chiral enamides via hydrogen-bonding assisted central-to-axial chirality transfer. Chem Sci 2020; 11:10119-10126. [PMID: 34094274 PMCID: PMC8162293 DOI: 10.1039/d0sc02828b] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Axially chiral enamides bearing a N–C axis have been recently studied and were proposed to be valuable chiral building blocks, but a stereoselective synthesis has not been achieved. Here, we report the first enantioselective synthesis of axially chiral enamides via a highly efficient, catalytic approach. In this approach, C(sp2)–N bond formation is achieved through an iridium-catalyzed asymmetric allylation, and then in situ isomerization of the initial products through an organic base promoted 1,3-H transfer, leading to the enamide products with excellent central-to-axial transfer of chirality. Computational and experimental studies revealed that the 1,3-H transfer occurs via a stepwise deprotonation/re-protonation pathway with a chiral ion-pair intermediate. Hydrogen bonding interactions with the enamide carbonyl play a significant role in promoting both the reactivity and stereospecificity of the stepwise 1,3-H transfer. The mild and operationally simple formal N-vinylation reaction delivered a series of configurationally stable axially chiral enamides with good to excellent yields and enantioselectivities. Axially chiral enamides bearing a N–C axis have been recently studied and were proposed to be valuable chiral building blocks, but a stereoselective synthesis has not been achieved.![]()
Collapse
Affiliation(s)
- Chao Sun
- School of Chemical Engineering, Nanjing University of Science & Technology Nanjing 210094 China
| | - Xiaotian Qi
- Department of Chemistry, University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Xiao-Long Min
- School of Chemical Engineering, Nanjing University of Science & Technology Nanjing 210094 China
| | - Xue-Dan Bai
- School of Chemical Engineering, Nanjing University of Science & Technology Nanjing 210094 China
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh Pittsburgh Pennsylvania 15260 USA .,Department of Chemical and Petroleum Engineering, University of Pittsburgh Pittsburgh Pennsylvania 15261 USA
| | - Ying He
- School of Chemical Engineering, Nanjing University of Science & Technology Nanjing 210094 China
| |
Collapse
|
10
|
Huang J, Hu G, An S, Chen D, Li M, Li P. Synthesis of N-Alkylpyridin-4-ones and Thiazolo[3,2- a]pyridin-5-ones through Pummerer-Type Reactions. J Org Chem 2019; 84:9758-9769. [PMID: 31290663 DOI: 10.1021/acs.joc.9b01672] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
N-Alkylated 4-pyridones were obtained through a one-pot procedure involving either normal or interrupted Pummerer reactions between triflic anhydride-activated sulfoxides and 4-fluoropyridine derivatives, followed by hydrolysis. On the other hand, triflic anhydride-activated benzyl 6-fluoro-2-pyridyl sulfoxide could react with alkenes or alkynes to afford thiazolo[3,2-a]pyridin-5-ones, via the pyridinium salt intermediates.
Collapse
Affiliation(s)
- Jingjia Huang
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, Faculty of Science , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Gang Hu
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, Faculty of Science , Beijing University of Chemical Technology , Beijing 100029 , China.,Department of Chemistry , Baotou Teacher's College , Baotou 014030 , China
| | - Shaoyu An
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, Faculty of Science , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Dongding Chen
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, Faculty of Science , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Minglei Li
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, Faculty of Science , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Pingfan Li
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, Faculty of Science , Beijing University of Chemical Technology , Beijing 100029 , China
| |
Collapse
|
11
|
Bai XD, Zhang QF, He Y. Enantioselective iridium catalyzed α-alkylation of azlactones by a tandem asymmetric allylic alkylation/aza-Cope rearrangement. Chem Commun (Camb) 2019; 55:5547-5550. [DOI: 10.1039/c9cc01450k] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
An enantioselective and regioselective α-alkylation of azlactones was developed by iridium catalysis using asymmetric allylic alkylation.
Collapse
Affiliation(s)
- Xue-Dan Bai
- School of Chemical Engineering
- Nanjing University of Science & Technology
- Nanjing
- China
| | - Qing-Feng Zhang
- School of Chemical Engineering
- Nanjing University of Science & Technology
- Nanjing
- China
| | - Ying He
- School of Chemical Engineering
- Nanjing University of Science & Technology
- Nanjing
- China
| |
Collapse
|