1
|
Hua R, Wang Q, Yin H, Chen FX. Organophotocatalytic Remote Thiocyanation Reaction via Ring-Opening Functionalization of Cycloalkanols. Chemistry 2024; 30:e202400453. [PMID: 38634800 DOI: 10.1002/chem.202400453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/19/2024]
Abstract
The remote C(sp3)-SCN bond formation via ring-opening functionalization of cycloalkanols with N-thiocyanatosaccharin as the precursor of SCN radicals and pyrylium salt as the organic photocatalyst under visible light has been developed. Thus, various terminal keto thiocyanates were prepared without transition metals and oxidants in moderate to good yields. The simplicity, wide substrate scope and mild conditions feature its synthetic application capability.
Collapse
Affiliation(s)
- Ruirui Hua
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
| | - Qing Wang
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
| | - Hongquan Yin
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology, No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
| | - Fu-Xue Chen
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology, No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
| |
Collapse
|
2
|
Zhang N, Cheng Z, Xia Y, Chen Z, Xue F, Zhang Y, Wang B, Wu S, Liu C. Electrochemical Oxidative 1,2-Dithiocyanation: Access to Functionalized Alkenes and Alkynes. J Org Chem 2024. [PMID: 38757807 DOI: 10.1021/acs.joc.4c00707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Reported herein is the 1,2-dithiocyanation of alkenes and alkynes via an efficient and facile electrochemical method. This approach not only showed a broad substrate scope and good functional-group compatibility but also avoided stoichiometric oxidants. Different from previous reports, various internal alkynes could be tolerated to provide tetra-substituted alkenes. Further gram-scale-up experiments and synthetic transformation demonstrated a potential application in organic synthesis. This process underwent a radical pathway, as evidenced by our mechanistic studies.
Collapse
Affiliation(s)
- Ning Zhang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Zhen Cheng
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Yu Xia
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Ziren Chen
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Fei Xue
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Yonghong Zhang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Bin Wang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Shaofeng Wu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Chenjiang Liu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| |
Collapse
|
3
|
Behmagham F, Mustafa MA, Saraswat SK, Khalaf KA, Kaur M, Ghildiyal P, Vessally E. Recent investigations into deborylative (thio-/seleno-) cyanation of aryl boronic acids. RSC Adv 2024; 14:9184-9199. [PMID: 38505389 PMCID: PMC10949121 DOI: 10.1039/d4ra00487f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/11/2024] [Indexed: 03/21/2024] Open
Abstract
In this review, we intend to summarize the most important discoveries in the deborylative (thio-/seleno-) cyanation of aryl boronic acids from 2006 to the end of 2023. Thus, the review is divided into three parts. The first section focuses exclusively on cyanation of aryl boronic acids into aryl nitriles. The second section covers the available literature on the synthesis of aryl thiocyanates through thiocyanation of respective aryl boronic acids. The third will discuss selenocyanation of aryl boronic acids into aryl selenocyanates.
Collapse
Affiliation(s)
- Farnaz Behmagham
- Department of Chemistry, Islamic Azad University Miandoab Branch Miandoab Iran
| | | | | | | | - Mandeep Kaur
- Department of Chemistry, School of Sciences, Jain (Deemed-to-be) University Bengaluru Karnataka 560069 India
- Department of Sciences, Vivekananda Global University Jaipur Rajasthan 303012 India
| | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University Dehradun India
| | - Esmail Vessally
- Department of Chemistry, Payame Noor University P. O. Box 19395-3697 Tehran Iran
| |
Collapse
|
4
|
Biswas S, Ghosh S, Das I. Supporting Electrolyte-Free Electrochemical Oxidative C-H Sulfonylation and Thiocyanation of Fused Pyrimidin-4-Ones in an All-Green Electrolytic System. Chemistry 2024; 30:e202303118. [PMID: 37934155 DOI: 10.1002/chem.202303118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/28/2023] [Accepted: 11/07/2023] [Indexed: 11/08/2023]
Abstract
An electrooxidative C-H functionalization is a widely accepted route to obtain sulfur-containing arenes and heteroarenes. However, this process often involves using non-recyclable supporting electrolytes, (co)solvents like hexafluoroisopropanol, additives like acid, or catalysts. The use of additional reagents can increase costs and waste, reducing atom efficiency. Moreover, unlike other nitrogen-containing heterocycles, there have only been sporadic reports of electrochemical C-H functionalization in fused pyrimidin-4-ones, and an electrolyte-free process has yet to be developed. This work demonstrates that such anodic coupling reactions can be performed in an all-green electrolytic system without using such additional electrolytes or HFIP, maintaining a high atom economy. This C-H functionalization strategy utilizes inexpensive sodium sulfinates and ammonium thiocyanate as sulfonylating and thiocyanating agents in an undivided cell at a constant current, using a mixture of CH3 CN/H2 O as solvent at room temperature. Thus, fused pyrimidin-4-ones can be selectively converted into C3-sulfonylated and -thiocyanated derivatives in moderate to good yields.
Collapse
Affiliation(s)
- Sumit Biswas
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, 700032, Kolkata, India
| | - Subhadeep Ghosh
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, 700032, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Indrajit Das
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, 700032, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| |
Collapse
|
5
|
Zhang D, Yang Q, Cai J, Ni C, Wang Q, Wang Q, Yang J, Geng R, Fang Z. Synthesis of 3-Thiocyanobenzothiophene via Difunctionalization of Active Alkyne Promoted by Electrochemical-Oxidation. Chemistry 2023; 29:e202203306. [PMID: 36453091 DOI: 10.1002/chem.202203306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
A novel and green method for the synthesis of 3-thiocyanatobenzothiophenes via electrochemical-oxidation promoted difunctionalization of active alkyne has been developed. In this protocol, inexpensive and easily available potassium thiocyanate was chosen as the thiocyanation reagent, 2-alkynylthioanisoles as the substrates, a variety of 3-thiocyanatobenzothiophenes were obtained in moderate to good yields under oxidant- and catalyst-free conditions. Moreover, the continuous flow system has good applicability for this transformation, the use of continuous flow system has overcome the disadvantage of low efficiency in traditional electrochemical amplification, and realized the stable and excellent yields of target products in the scale-up reactions.
Collapse
Affiliation(s)
- Dong Zhang
- School of Pharmacy, Yancheng Teachers University, 224007, Yancheng, China
| | - Qijun Yang
- School of Pharmacy, Yancheng Teachers University, 224007, Yancheng, China
| | - Jinlin Cai
- School of History and Public Administration, Yancheng Teachers University, 224007, Yancheng, China
| | - Chunjie Ni
- School of Pharmacy, Yancheng Teachers University, 224007, Yancheng, China
| | - Qingdong Wang
- School of Pharmacy, Yancheng Teachers University, 224007, Yancheng, China
| | - Qingming Wang
- School of Pharmacy, Yancheng Teachers University, 224007, Yancheng, China
| | - Jinming Yang
- School of Pharmacy, Yancheng Teachers University, 224007, Yancheng, China
| | - Rongqing Geng
- School of Pharmacy, Yancheng Teachers University, 224007, Yancheng, China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., 211816, Nanjing, P. R. China
| |
Collapse
|
6
|
Hu J, Wan H, Wang S, Yi H, Lei A. Electrochemical Thiocyanation/Cyclization Cascade to Access Thiocyanato-Containing Benzoxazines. Catalysts 2023. [DOI: 10.3390/catal13030631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Due to the importance of SCN-containing heteroarenes, developing novel and green synthetic protocols for the synthesis of SCN-containing compounds has drawn much attention over the last decades. We reported here an electrochemical oxidative cyclization of ortho-vinyl aniline to access various SCN-containing benzoxazines. Mild conditions, an extra catalyst-free and oxidant-free system, and good tolerance for air highlight the application potential of this method.
Collapse
|
7
|
Gao Y, Hua R, Yin H, Chen FX. Synthesis of thiocyanato-containing phenanthrenes and dihydronaphthalenes via Lewis acid-activated tandem electrophilic thiocyanation/carbocyclization of alkynes. Org Biomol Chem 2023; 21:2417-2422. [PMID: 36857671 DOI: 10.1039/d3ob00001j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
A tandem electrophilic thiocyanation and cyclization of arene-alkynes has been developed under mild conditions, affording thiocyanato-substituted phenanthrenes, dihydronaphthalenes, 2H-chromenes and dihydroquinolines in moderate to excellent yields. This reaction provides an efficient protocol for the construction of C-SCN and C-C bonds in one step. In this transformation, N-thiocyanato reagent serves as a convenient precursor to transfer SCN+ in the presence of trimethylchlorosilane, and the cyclization exhibited exclusive 6-endo-dig selectivity. Finally, a gram scale reaction and further derivatizations highlight the utility of this synthetic strategy.
Collapse
Affiliation(s)
- Yong Gao
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China.
| | - Ruirui Hua
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China.
| | - Hongquan Yin
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China. .,Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China
| | - Fu-Xue Chen
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China. .,Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology (Liangxiang Campus), Beijing 102488, China
| |
Collapse
|
8
|
Electrochemical oxythiocyanation of ortho-olefinic amides: access to diverse thiocyanated benzoxazines. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
9
|
Mulina OM, Bityukov OV, Vil’ VA, Terent’ev AO. Photo- and Electrochemically Initiated Thiocyanation Reactions. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022120028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
10
|
Yuan Y, Liu Y, Wang H, Zhang X. Fe(III)‐Mediated
para
‐Selective Nucleophilic Thiocyanation and Oxidation Reactions, Access to Thiocyanated Amidophenols and Amidoquinones. ChemistrySelect 2022. [DOI: 10.1002/slct.202203719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ye Yuan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology College of Chemistry & Pharmacy Northwest A&F University 22 Xinong Road, Yangling 712100 Shaanxi P. R. China
| | - Yibo Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology College of Chemistry & Pharmacy Northwest A&F University 22 Xinong Road, Yangling 712100 Shaanxi P. R. China
| | - HongLing Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology College of Chemistry & Pharmacy Northwest A&F University 22 Xinong Road, Yangling 712100 Shaanxi P. R. China
| | - Xiang Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology College of Chemistry & Pharmacy Northwest A&F University 22 Xinong Road, Yangling 712100 Shaanxi P. R. China
| |
Collapse
|
11
|
Zhang LM, Yuan DF, Fu ZH, Li HR, Li M, Wen LR, Zhang LB. Electrochemical synthesis of α-thiocyanato-α-carbonyl sulfoxonium ylides. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
12
|
Chen H, Shi X, Liu X, Zhao L. Recent progress of direct thiocyanation reactions. Org Biomol Chem 2022; 20:6508-6527. [PMID: 35942781 DOI: 10.1039/d2ob01018f] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thiocyanates are common in natural products, synthetic drugs and bioactive molecules. Many thiocyanate derivatives show excellent antibacterial, antiparasitic and anticancer activities. Thiocyanation can introduce SCN groups into parent molecules for constructing SCN-containing small organic molecules. Among them, the direct introduction method mainly includes nucleophilic reaction, electrophilic reaction and free radical reaction, which can simply and quickly introduce SCN groups at the target sites to construct thiocyanates, and has broad application prospects. In this review, we summarize the research progress of direct thiocyanation in recent years.
Collapse
Affiliation(s)
- Haixin Chen
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| | - Xiaotian Shi
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| | - Xiang Liu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| | - Limin Zhao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| |
Collapse
|
13
|
Jiang C, Zhu Y, Li H, Liu P, Sun P. Direct Cyanation of Thiophenols or Thiols to Access Thiocyanates under Electrochemical Conditions. J Org Chem 2022; 87:10026-10033. [PMID: 35866614 DOI: 10.1021/acs.joc.2c00995] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A novel electrochemical cross-coupling method for the synthesis of thiocyanates via the direct cyanation of readily available thiophenols or thiols with trimethylsilyl cyanide (TMSCN) was developed. This approach was also suitable for selenols. External oxidant-free, transition-metal-free and mild operating conditions were the main advantages of this protocol. A series of thiocyanates and selenocyanates could be obtained in moderate to high yields.
Collapse
Affiliation(s)
- Cong Jiang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Yan Zhu
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Heng Li
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Ping Liu
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Peipei Sun
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
14
|
He WB, Zhao SJ, Chen JY, Jiang J, Chen X, Xu X, He WM. External electrolyte-free electrochemical one-pot cascade synthesis of 4-thiocyanato-1H-pyrazoles. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Photocatalyst-free visible-light-mediated three-component reaction of α-diazoesters, cyclic ethers and NaSCN to access organic thiocyanates. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Bityukov OV, Kirillov AS, Serdyuchenko PY, Kuznetsova MA, Demidova VN, Vil' VA, Terent'ev AO. Electrochemical thiocyanation of barbituric acids. Org Biomol Chem 2022; 20:3629-3636. [PMID: 35420113 DOI: 10.1039/d2ob00343k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electrochemical thiocyanation of barbituric acids with NH4SCN was disclosed in an undivided cell under constant current conditions. The electrosynthesis is the most efficient at a record high current density (janode ≈50-70 mA cm-2). NH4SCN has a dual role as the source of the SCN group and as the electrolyte. Electrochemical thiocyanation of barbituric acids starts with the generation of (SCN)2 from the thiocyanate anion. The addition of thiocyanogen to the double bond of the enol tautomer of barbituric acid gives thiocyanated barbituric acid. A variety of thiocyanated barbituric acids bearing different functional groups were obtained in 18-95% yields and were shown to exhibit promising antifungal activity.
Collapse
Affiliation(s)
- Oleg V Bityukov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Andrey S Kirillov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Pavel Yu Serdyuchenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation. .,D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, Moscow 125047, Russian Federation
| | - Maria A Kuznetsova
- All-Russian Research Institute for Phytopathology, B. Vyazyomy, 143050, Moscow Region, Russian Federation
| | - Valentina N Demidova
- All-Russian Research Institute for Phytopathology, B. Vyazyomy, 143050, Moscow Region, Russian Federation
| | - Vera A Vil'
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| |
Collapse
|
17
|
Karmaker PG, Alam MA, Huo F. Recent advances in photochemical and electrochemically induced thiocyanation: a greener approach for SCN-containing compound formation. RSC Adv 2022; 12:6214-6233. [PMID: 35424569 PMCID: PMC8981651 DOI: 10.1039/d1ra09060g] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/10/2022] [Indexed: 12/28/2022] Open
Abstract
Techniques utilizing photo- and electrochemically induced reactions have been developed to accelerate organic processes. These techniques use light or electrical energy (electron transfer) as a direct energy source without using an initiator or reagent. Thiocyanates are found in biologically active and pharmacological compounds and can be converted into various functional groups. It is one of the most prominent organic scaffolds. Significant development in photo- and electro-chemically induced thiocyanation procedures has been made in recent years for the conception of carbon-sulfur bonds and synthesis of pharmaceutically important molecules. This review discusses different photo- and electro-chemically driven thiocyanation C(sp3)-SCN, C(sp2)-SCN, and C(sp)-SCN bond conception processes that may be useful to green organothiocyanate synthesis. We focus on the synthetic and mechanistic characteristics of organic photo- and electrochemically accelerated C-SCN bond formation thiocyanation reactions to highlight major advances in this novel green and sustainable research field.
Collapse
Affiliation(s)
- Pran Gopal Karmaker
- School of Chemistry and Chemical Engineering, Analytical Testing Center, Institute of Micro & Nano Intelligent Sensing, Neijiang Normal University Neijiang 641100 P. R. China
| | - Md Asraful Alam
- School of Chemical Engineering, Zhengzhou University Zhengzhou 450001 Henan China
| | - Feng Huo
- School of Chemistry and Chemical Engineering, Analytical Testing Center, Institute of Micro & Nano Intelligent Sensing, Neijiang Normal University Neijiang 641100 P. R. China
| |
Collapse
|
18
|
Gao M, Vuagnat M, Jubault P, Besset T. N
‐Thiocyanato‐2,10‐camphorsultam Derivatives: Design and Applications of Original Electrophilic Thiocyanating Reagents. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mélissa Gao
- Normandie Univ INSA Rouen UNIROUEN CNRS COBRA (UMR 6014) 76000 Rouen France
| | - Martin Vuagnat
- Normandie Univ INSA Rouen UNIROUEN CNRS COBRA (UMR 6014) 76000 Rouen France
| | - Philippe Jubault
- Normandie Univ INSA Rouen UNIROUEN CNRS COBRA (UMR 6014) 76000 Rouen France
| | - Tatiana Besset
- Normandie Univ INSA Rouen UNIROUEN CNRS COBRA (UMR 6014) 76000 Rouen France
| |
Collapse
|
19
|
Matsubara R, Dong C, Hayashi M. Direct Arylation of Furoxan Using Potassium Aryltrifluoroborates. HETEROCYCLES 2022. [DOI: 10.3987/com-22-14720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Wang Z, Liu R, Qu C, Zhao XE, Lv Y, Yue H, Wei W. Elemental sulfur as the “S” source: visible-light-mediated four-component reactions leading to thiocyanates. Org Chem Front 2022. [DOI: 10.1039/d2qo00539e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An eco-friendly and photocatalyst-free visible-light-promoted four-component reaction of α-diazoesters, elemental sulfur, cyclic ethers and TMSCN leading to thiocyanates is described.
Collapse
Affiliation(s)
- Zhiwei Wang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Ruisheng Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Chengming Qu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Xian-En Zhao
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Yufen Lv
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Huilan Yue
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, China
| | - Wei Wei
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, China
| |
Collapse
|
21
|
Li H, Chen P, Wu Z, Lu Y, Peng J, Chen J, He W. Electrochemical Oxidative Cross-Dehydrogenative Coupling of Five-Membered Aromatic Heterocycles with NH 4SCN. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202207009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Li JC, Gao WX, Liu MC, Zhou YB, Wu HY. α-Selective C(sp 3)-H Thio/Selenocyanation of Ketones with Elemental Chalcogen. J Org Chem 2021; 86:17294-17306. [PMID: 34784197 DOI: 10.1021/acs.joc.1c02431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A facile method is disclosed for the synthesis of α-thio/selenocyanato ketones through regioselective C-H thio/selenocyanation of ketones. The advantages include the use of easily available starting materials, high efficiency, simple operation, and easy scale-up. Control experiments provide evidence that the reaction proceeded via a radical way, while kinetic isotope effect experiments reveal that the cleavage of the C-H bond serves as the rate-limiting step.
Collapse
Affiliation(s)
- Jin-Cheng Li
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Wen-Xia Gao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Miao-Chang Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Yun-Bing Zhou
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Hua-Yue Wu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| |
Collapse
|
23
|
Kalaramna P, Goswami A. Temperature‐Controlled Chemoselective Synthesis of Thiosulfonates and Thiocyanates: Novel Reactivity of KXCN (X=S, Se) towards Organosulfonyl Chlorides. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Pratibha Kalaramna
- Department of Chemistry, SS Bhatnagar Building, Main Campus Indian Institute of Technology Ropar Rupnagar Punjab 140001 India
| | - Avijit Goswami
- Department of Chemistry, SS Bhatnagar Building, Main Campus Indian Institute of Technology Ropar Rupnagar Punjab 140001 India
| |
Collapse
|
24
|
Wu D, Duan Y, Liang K, Yin H, Chen FX. AIBN-initiated direct thiocyanation of benzylic sp 3 C-H with N-thiocyanatosaccharin. Chem Commun (Camb) 2021; 57:9938-9941. [PMID: 34498624 DOI: 10.1039/d1cc04302a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Direct thiocyanations of benzylic compounds have been implemented. Here, a new strategy, involving a free radical reaction pathway initiated by AIBN, was used to construct the benzylic sp3 C-SCN bond. In this way, the disadvantage of other strategies involving introducing leaving groups in advance to synthesize benzyl thiocyanate compounds was overcome. The currently developed protocol also involved the use of readily available raw materials and resulted in high product yields (up to 100%), both being great advantages for synthesizing benzyl thiocyanates.
Collapse
Affiliation(s)
- Di Wu
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing 102488, China.
| | - Yongjie Duan
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing 102488, China.
| | - Kun Liang
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing 102488, China.
| | - Hongquan Yin
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing 102488, China.
| | - Fu-Xue Chen
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing 102488, China.
| |
Collapse
|
25
|
Zheng C, Jiang C, Huang S, Zhao K, Fu Y, Ma M, Hong J. Transition-Metal-Free Synthesis of Aryl Trifluoromethyl Thioethers through Indirect Trifluoromethylthiolation of Sodium Arylsulfinate with TMSCF 3. Org Lett 2021; 23:6982-6986. [PMID: 34474573 DOI: 10.1021/acs.orglett.1c02656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we report an indirect trifluoromethylthiolation of sodium arylsulfinates. This transition-metal-free reaction significantly provides an environmentally friendly and practical synthetic method for aryl trifluoromethyl thioethers using commercial Ruppert-Prakash reagent TMSCF3. This approach is also a potential alternative to the current industrial production method owing to facile substrates, excellent functional group compatibility, and operational simplicity.
Collapse
Affiliation(s)
- Changge Zheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.,School of Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, Xinjiang Uygur Autonomous Region, P. R. China
| | - Chao Jiang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Shuai Huang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Kui Zhao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Yingying Fu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Mingyu Ma
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Jianquan Hong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
26
|
Gao M, Vuagnat M, Chen MY, Pannecoucke X, Jubault P, Besset T. Design and Use of Electrophilic Thiocyanating and Selenocyanating Reagents: An Interesting Trend for the Construction of SCN- and SeCN-Containing Compounds. Chemistry 2021; 27:6145-6160. [PMID: 33283371 DOI: 10.1002/chem.202004974] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Indexed: 01/01/2023]
Abstract
Organothiocyanate and organoselenocyanate compounds are of paramount importance in organic chemistry as they are key intermediates to access sulfur- and selenium-containing compounds. Therefore, among the different synthetic pathways to get SCN- and SeCN-containing molecules, original methodologies using electrophilic reagents have recently been explored. This Minireview will showcase the recent advances that have been made. In particular, the design of several electrophilic sources and their applications for the thiocyanation and the selenocyanation of various classes of compounds will be highlighted and discussed.
Collapse
Affiliation(s)
- Mélissa Gao
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Martin Vuagnat
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Mu-Yi Chen
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Xavier Pannecoucke
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Philippe Jubault
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Tatiana Besset
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| |
Collapse
|
27
|
Todorović U, Klose I, Maulide N. Straightforward Access to Thiocyanates via Dealkylative Cyanation of Sulfoxides. Org Lett 2021; 23:2510-2513. [PMID: 33724046 PMCID: PMC8022320 DOI: 10.1021/acs.orglett.1c00460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Thiocyanates, versatile
building blocks in organic synthesis, are
shown to be easily accessible via an interrupted Pummerer reaction
of sulfoxides. This facile dealkylative functionalization proceeds
under mild conditions through electrophilic activation of the sulfoxide
partner. The resulting thiocyanate itself can serve as a handle for
diversification in a straightforward one-pot procedure.
Collapse
Affiliation(s)
- Uroš Todorović
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Immo Klose
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Nuno Maulide
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| |
Collapse
|
28
|
Sacramento M, Costa GP, Barcellos AM, Perin G, Lenardão EJ, Alves D. Transition-metal-free C-S, C-Se, and C-Te Bond Formation from Organoboron Compounds. CHEM REC 2021; 21:2855-2879. [PMID: 33735500 DOI: 10.1002/tcr.202100021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/23/2022]
Abstract
The present review describes the successful application of organoboron compounds in transition-metal-free C-S, C-Se, and C-Te bond formations. We presented studies regarding these C-Chalcogen bond formations using organoboron reagents, such as boronic acids, boronic esters, borate anions, and several sources of chalcogen atoms/moieties. Moreover, a broad range of transition-metal-free approaches to synthesize sulfides, selenides, and tellurides were described using conventional heating methods, which are sometimes green since they use green solvents, safe reagents, among others. Furthermore, protocols using alternative energy sources, including ultrasound, microwave irradiation, photocatalysis, and electrolytic processes, were also shown to be suitable. These protocols were applied to prepare a broad scope of functionalized chalcogenides with high molecular diversity. These studies and their proposed mechanisms were also reported herein in addition to the reuse of reaction promoters.
Collapse
Affiliation(s)
- Manoela Sacramento
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Gabriel P Costa
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Angelita M Barcellos
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Gelson Perin
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Eder J Lenardão
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Diego Alves
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| |
Collapse
|
29
|
Gulea M, Donnard M. Sustainable Synthetic Approaches Involving Thiocyanation and Sulfur- Cyanation: An Update. CURRENT GREEN CHEMISTRY 2020. [DOI: 10.2174/2213346107999200616105745] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This review highlights the achievements in the synthesis of organic thiocyanates (OTCs)
over the past five years (late 2015 to mid-2019) and is intended as a follow-up on our tutorial review
published in Chemical Society Reviews in 2016. The discussion places a special emphasis on sustainable
synthetic approaches involving thiocyanation or sulfur-cyanation. The large number of contributions
within this short period of time clearly indicates that the chemistry of OTCs provides a growing
interest and a rapid evolution.
Collapse
Affiliation(s)
- Mihaela Gulea
- Universite de Strasbourg, Laboratoire d’Innovation Therapeutique (LIT), UMR7200, CNRS, Faculte de Pharmacie, 74 Route du Rhin, 67401 Illkirch, France
| | - Morgan Donnard
- Universite de Strasbourg, CNRS, Universite de Haute-Alsace, LIMA – UMR7042, Ecole Europeenne de Chimie, Polymeres et Materiaux (ECPM), 67000 Strasbourg, France
| |
Collapse
|
30
|
Lim T, Ryoo JY, Han MS. Transition-Metal-Free Borylation of Aryl Bromide Using a Simple Diboron Source. J Org Chem 2020; 85:10966-10972. [PMID: 32806093 DOI: 10.1021/acs.joc.0c01065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In this study, we developed a simple transition-metal-free borylation reaction of aryl bromides. Bis-boronic acid (BBA), was used, and the borylation reaction was performed using a simple procedure at a mild temperature. Under mild conditions, aryl bromides were converted to arylboronic acids directly without any deprotection steps and purified by conversion to trifluoroborate salts. The functional group tolerance was considerably high. The mechanism study suggested that this borylation reaction proceeds via a radical pathway.
Collapse
Affiliation(s)
- Taeho Lim
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Jeong Yup Ryoo
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Min Su Han
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
31
|
Fu Z, Hao G, Fu Y, He D, Tuo X, Guo S, Cai H. Transition metal-free electrocatalytic halodeborylation of arylboronic acids with metal halides MX (X = I, Br) to synthesize aryl halides. Org Chem Front 2020. [DOI: 10.1039/c9qo01139k] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient and regioselective ipso-halogenation of diverse arylboronic acids with metal halide salts MX (X = I, Br) has been well established under electrochemical conditions.
Collapse
Affiliation(s)
- Zhengjiang Fu
- College of Chemistry
- Nanchang University
- Nanchang
- China
- State Key Laboratory of Structural Chemistry
| | - Guangguo Hao
- College of Chemistry
- Nanchang University
- Nanchang
- China
| | - Yaping Fu
- College of Chemistry
- Nanchang University
- Nanchang
- China
| | - Dongdong He
- College of Chemistry
- Nanchang University
- Nanchang
- China
| | - Xun Tuo
- College of Chemistry
- Nanchang University
- Nanchang
- China
| | - Shengmei Guo
- College of Chemistry
- Nanchang University
- Nanchang
- China
| | - Hu Cai
- College of Chemistry
- Nanchang University
- Nanchang
- China
| |
Collapse
|
32
|
Zhang YA, Ding Z, Liu P, Guo WS, Wen LR, Li M. Access to SCN-containing thiazolines via electrochemical regioselective thiocyanothiocyclization of N-allylthioamides. Org Chem Front 2020. [DOI: 10.1039/d0qo00300j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
An electrochemical thiocyclization of N-allylthioamides has been developed for the synthesis of SCN-containing 2-thiazolines and NCS-containing thiazines.
Collapse
Affiliation(s)
- Yan-An Zhang
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Zhong Ding
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Peng Liu
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Wei-Si Guo
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Li-Rong Wen
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| | - Ming Li
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| |
Collapse
|
33
|
Meng F, Zhang H, He H, Xu N, Fang Q, Guo K, Cao S, Shi Y, Zhu Y. Copper‐Catalyzed Domino Cyclization/Thiocyanation of Unactivated Olefins: Access to SCN‐Containing Pyrazolines. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901104] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Fei Meng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Honglin Zhang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Han He
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Ning Xu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Qin Fang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Kang Guo
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Shujun Cao
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Yun Shi
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
- College of Plant ProtectionNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Yingguang Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| |
Collapse
|
34
|
Song XF, Ye AH, Xie YY, Dong JW, Chen C, Zhang Y, Chen ZM. Lewis-Acid-Mediated Thiocyano Semipinacol Rearrangement of Allylic Alcohols for Construction of α-Quaternary Center β-Thiocyano Carbonyls. Org Lett 2019; 21:9550-9554. [PMID: 31742419 DOI: 10.1021/acs.orglett.9b03722] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
An electrophilic thiocyano semipinacol rearrangement of allylic alcohols has been achieved for the first time by using N-thiocyano-dibenzenesulfonimide (NTSI). This approach provides a direct, simple, and efficient strategy for the formation of thiocyano carbonyl compounds with moderate to excellent yields. Meanwhile, an all-carbon quaternary center was rapidly constructed. In addition, an asymmetric version of this tandem reaction was preliminarily investigated.
Collapse
Affiliation(s)
- Xu-Feng Song
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, & Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| | - Ai-Hui Ye
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, & Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| | - Yu-Yang Xie
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, & Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| | - Jia-Wei Dong
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, & Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| | - Chao Chen
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, & Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| | - Ye Zhang
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, & Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| | - Zhi-Min Chen
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, & Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| |
Collapse
|
35
|
Ye AH, Zhang Y, Xie YY, Luo HY, Dong JW, Liu XD, Song XF, Ding T, Chen ZM. TMSCl-Catalyzed Electrophilic Thiocyano Oxyfunctionalization of Alkenes Using N-Thiocyano-dibenzenesulfonimide. Org Lett 2019; 21:5106-5110. [PMID: 31247772 DOI: 10.1021/acs.orglett.9b01706] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Numerous electrophilic thiocyano oxyfunctionalization reactions of alkenes have been achieved using N-thiocyano-dibenzenesulfonimide, which is a new electrophilic thiocyanation reagent and could be easily prepared in two steps from dibenzenesulfonimide. This approach provides efficient, simple, and modular methods for the formation of SCN-containing heterocycles such as lactones, tetrahydrofurans, dihydrofurans, and dihydrobenzofurans in moderate to excellent yields. Meanwhile, diverse oxa-quaternary centers were rapidly constructed. Additionally, this protocol is free of transition metals and features broad substrate toleraance and mild reaction conditions.
Collapse
Affiliation(s)
- Ai-Hui Ye
- Affiliated Sixth People's Hospital South Campus and School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| | - Ye Zhang
- Affiliated Sixth People's Hospital South Campus and School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| | - Yu-Yang Xie
- Affiliated Sixth People's Hospital South Campus and School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| | - Hui-Yun Luo
- Affiliated Sixth People's Hospital South Campus and School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| | - Jia-Wei Dong
- Affiliated Sixth People's Hospital South Campus and School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| | - Xiao-Dong Liu
- Affiliated Sixth People's Hospital South Campus and School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| | - Xu-Feng Song
- Affiliated Sixth People's Hospital South Campus and School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| | - Tongmei Ding
- Affiliated Sixth People's Hospital South Campus and School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| | - Zhi-Min Chen
- Affiliated Sixth People's Hospital South Campus and School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P. R. China
| |
Collapse
|