1
|
Jha N, Guo W, Kong WY, Tantillo DJ, Kapur M. Regiocontrol via Electronics: Insights into a Ru-Catalyzed, Cu-Mediated Site-Selective Alkylation of Isoquinolones via a C-C Bond Activation of Cyclopropanols. Chemistry 2023; 29:e202301551. [PMID: 37403766 DOI: 10.1002/chem.202301551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/06/2023]
Abstract
A site-selective C(3)/C(4)-alkylation of N-pyridylisoquinolones is achieved by employing C-C bond activation of cyclopropanols under Ru(II)-catalyzed/Cu(II)-mediated conditions. The regioisomeric ratios of the products follow directly from the electronic nature of the cyclopropanols and isoquinolones used, with electron-withdrawing groups yielding predominantly the C(3)-alkylated products, whereas the electron-donating groups primarily generate the C(4)-alkylated isomers. Density functional theory calculations and detailed mechanistic investigations suggest the simultaneous existence of the singlet and triplet pathways for the C(3)- and C(4)-product formation. Further transformations of the products evolve the utility of the methodology thereby yielding scaffolds of synthetic relevance.
Collapse
Affiliation(s)
- Neha Jha
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, MP, India
| | - Wentao Guo
- Department of Chemistry, University of California-Davis, Davis, California, 95616, USA
| | - Wang-Yeuk Kong
- Department of Chemistry, University of California-Davis, Davis, California, 95616, USA
| | - Dean J Tantillo
- Department of Chemistry, University of California-Davis, Davis, California, 95616, USA
| | - Manmohan Kapur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, MP, India
| |
Collapse
|
2
|
Ahmed J, Haug GC, Nguyen VD, Porey A, Trevino R, Larionov OV. Catalytic Dienylation: An Emergent Strategy for the Stereoselective Construction of Conjugated Dienes and Polyenes. SYNTHESIS-STUTTGART 2023; 55:1642-1651. [PMID: 37457884 PMCID: PMC10348707 DOI: 10.1055/a-1924-2564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Stereoselective construction of conjugated dienes and polyenes has remained an enduring synthetic problem, due to the central roles they play in natural product synthesis, methodology, and medicine. This review focuses on the recent developments in dienylation as an emerging strategy for the direct installation of unsaturated four carbon atom units of conjugated π-systems, outlining the regio- and stereoselectivity, as well as the synthetic scope of reactions with various dienylating reagents and the mechanistic implications of the catalytic cross-coupling processes that are used to enable dienylation.
Collapse
Affiliation(s)
- Jasimuddin Ahmed
- Department of Chemistry, the University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Graham C Haug
- Department of Chemistry, the University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Viet D Nguyen
- Department of Chemistry, the University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Arka Porey
- Department of Chemistry, the University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Ramon Trevino
- Department of Chemistry, the University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Oleg V Larionov
- Department of Chemistry, the University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
3
|
Shan Y, Huang G, Yu JT, Pan C. Rh(III)‐catalyzed C6‐selective C–H 3‐oxoalkylation of 2‐pyridones with allylic alcohols. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yujia Shan
- Changzhou University School of Petrochemical Engineering CHINA
| | - Gao Huang
- Changzhou University School of Petrochemical Engineering CHINA
| | - Jin-Tao Yu
- Changzhou University School of Petrochemical Engineering Changzhou 213000 Changzhou CHINA
| | - Changduo Pan
- Jiangsu University of Technology School of Chemical and Environmental Engineering CHINA
| |
Collapse
|
4
|
Ramesh B, Jeganmohan M. Ru(II)- or Rh(III)-Catalyzed Annulation of Aromatic/Vinylic Acids with Alkylidenecyclopropanes via C-H Activation. J Org Chem 2022; 87:5668-5681. [PMID: 35414175 DOI: 10.1021/acs.joc.1c03141] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
An efficient and new route for the synthesis of (E)-4-benzylideneisochroman-1-ones through tandem cascade annulation of benzoic acids with alkylidenecyclopropanes using Ru(II) as a catalyst is demonstrated. It is important to note that the reaction delivers selectively E-stereoselective 4-benzylideneisochroman-1-one derivatives in moderate to good yields, which has completely diverse selectivity as compared with previous methods. Further, the annulation was explored with less-reactive β C-H activation of vinylic acids with alkylidenecyclopropanes, leading to the highly useful α-pyrone derivatives in the presence of an Rh(III) catalyst.
Collapse
Affiliation(s)
- Balu Ramesh
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036 Tamil Nadu, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036 Tamil Nadu, India
| |
Collapse
|
5
|
Wang HH, Wang XD, Yin GF, Zeng YF, Chen J, Wang Z. Recent Advances in Transition-Metal-Catalyzed C–H Alkylation with Three-Membered Rings. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Hui-Hong Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, People’s Republic of China
| | - Xiao-Dong Wang
- School of Pharmacy, Lanzhou University, No. 199 West Donggang Road, Lanzhou 730000, People’s Republic of China
| | - Gao-Feng Yin
- School of Pharmacy, Lanzhou University, No. 199 West Donggang Road, Lanzhou 730000, People’s Republic of China
| | - Yao-Fu Zeng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, People’s Republic of China
| | - Jinjin Chen
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, People’s Republic of China
| | - Zhen Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, People’s Republic of China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, People’s Republic of China
- School of Pharmacy, Lanzhou University, No. 199 West Donggang Road, Lanzhou 730000, People’s Republic of China
| |
Collapse
|
6
|
Liu YZ, Zeng YF, Shu B, Zheng YC, Xiao L, Chen SY, Song JL, Zhang X, Zhang SS. Rh( iii)-Catalyzed dienylation and cyclopropylation of indoles at the C4 position with alkylidenecyclopropanes. Org Chem Front 2022. [DOI: 10.1039/d2qo00763k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report a Rh(iii)-catalyzed C–H functionalization of indoles at the C4 position with alkylidenecyclopropanes (ACPs).
Collapse
Affiliation(s)
- Yan-Zhi Liu
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yao-Fu Zeng
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Bing Shu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Yi-Chuan Zheng
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Lin Xiao
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Shao-Yong Chen
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jia-Lin Song
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xuanxuan Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Shang-Shi Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| |
Collapse
|
7
|
Wu M, Wang S, Wang Y, Gao H, Yi W, Zhou Z. TFA‐Prompted/Rh(III)‐Catalysed Chemoselective C
3
− or C
2
−H Functionalization of Indoles with Methylenecyclopropanes. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Min Wu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 P. R. China
| | - Shengdong Wang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 P. R. China
| | - Yi Wang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 P. R. China
| | - Hui Gao
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 P. R. China
| | - Wei Yi
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 P. R. China
| | - Zhi Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & the Fifth Affiliated Hospital Guangzhou Medical University Guangzhou Guangdong 511436 P. R. China
| |
Collapse
|
8
|
Liu X, Chen J, Yang C, Wu Z, Li Z, Shi Y, Huang T, Yang Z, Wu Y. Three-Component Couplings among Heteroarenes, Difluorocyclopropenes, and Water via C-H Activation. Org Lett 2021; 23:6831-6835. [PMID: 34399575 DOI: 10.1021/acs.orglett.1c02392] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Three-component couplings have been realized for efficiently constructing various nitrogen-containing skeletons via C-H activation, where difluorocyclopropenes have been first identified as coupling partners. Many substrates including sp2 and sp3 C-H substrates were well tolerated, furnishing the corresponding products in good yields. Furthermore, a catalyst-dependent reaction was also developed, enabling divergent construction of two different frameworks. The application value of these reactions was demonstrated in gram-scale experiments with as little as 1 mol % catalyst.
Collapse
Affiliation(s)
- Xuexin Liu
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jian Chen
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chunyan Yang
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhouping Wu
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhiyang Li
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuesen Shi
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tianle Huang
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhongzhen Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry of Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry of Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Singh A, Dey A, Volla CMR. Rh(III)-Catalyzed Stereoselective C-C Bond Cleavage of ACPs with N-Phenoxyacetamides: The Critical Role of the Nucleophilic Directing Group. J Org Chem 2021; 86:10474-10483. [PMID: 34296871 DOI: 10.1021/acs.joc.1c01135] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rh(III)-catalyzed redox-neutral chemodivergent coupling of N-phenoxyacetamides and alkylidenecyclopropanes (ACPs) has been documented. The reaction proceeds via C-H activation, regioselective migratory insertion and stereoselective β-carbon elimination followed by β-hydride elimination, resulting in o-dienylation of phenols in nonpolar solvents, whereas [3 + 2]-annulation leading to dihydrobenzofurans was realized in polar fluorinated solvents. It was observed that the nucleophilic directing group controls the elimination of β-carbon and so plays a vital role for achieving high stereoselectivities. The synthetic utility of the dienylation and annulation was demonstrated by carrying out gram scale reactions and further derivatization.
Collapse
Affiliation(s)
- Anurag Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Arnab Dey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Chandra M R Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
10
|
Huang G, Shan Y, Yu JT, Pan C. Rh III -Catalyzed C6-Selective Oxidative C-H/C-H Crosscoupling of 2-Pyridones with Thiophenes. Chemistry 2021; 27:12294-12299. [PMID: 34156130 DOI: 10.1002/chem.202101769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 12/24/2022]
Abstract
A rhodium(III)-catalyzed C6-selective dehydrogenative cross-coupling of 2-pyridones with thiophenes was developed for the synthesis of 6-thiophenyl pyridin-2(1H)-one derivatives. In this reaction, the excellent site selectivity was controlled by the 2-pyridyl directing group on the nitrogen of the pyridone ring. Control experiments indicated that the N-pyridyl was essential for the transformation. To the best of our knowledge, this procedure is the first successful example of the direct C6 heteroarylation of 2-pyridones with electron-rich thiophene derivatives. 4-Pyridone was also used as substrate to generate the corresponding C2 heteroarylated product. Moreover, this pyridyl directing group was readily removable to generate the biheteroaryl structures with a free N-H group.
Collapse
Affiliation(s)
- Gao Huang
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou, 213164, P. R. China
| | - Yujia Shan
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou, 213164, P. R. China
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou, 213164, P. R. China
| | - Changduo Pan
- School of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou, 213001, P. R. China
| |
Collapse
|
11
|
Xu X, Zhang L, Zhao H, Pan Y, Li J, Luo Z, Han J, Xu L, Lei M. Cobalt(III)-Catalyzed Regioselective C6 Olefination of 2-Pyridones Using Alkynes: Olefination/Directing Group Migration and Olefination. Org Lett 2021; 23:4624-4629. [PMID: 34106716 DOI: 10.1021/acs.orglett.1c01368] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Co(III)-catalyzed highly regio- and stereoselective direct C6 olefination of 2-pyridones with alkynes has been developed with the assistance of chelation. Upon variation of the reaction conditions, 2-pyridones react well with diaryl alkynes via a C6 olefination/directing group migration pathway to give the tetrasubstituted 6-vinyl-2-pyridones, but the C6-H olefination with terminal alkynes works effectively to afford only the C6-olefinated 2-pyridones. A judicious choice of a solvent and an additive is crucial for catalysis. The protocols feature 100% atom economy, excellent site selectivity, high stereoselectivity, an ample substrate scope, and good compatibility of functional groups. Synthetic applications are demonstrated, and experimental studies and density functional theory calculations are conducted to gain mechanistic insight into the two transformations.
Collapse
Affiliation(s)
- Xin Xu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Lin Zhang
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haoqiang Zhao
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Yixiao Pan
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Jiajie Li
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Zhenli Luo
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Jiahong Han
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Lijin Xu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
12
|
Kittikool T, Phakdeeyothin K, Chantarojsiri T, Yotphan S. Manganese‐Promoted Regioselective Direct
C3
‐Phosphinoylation of 2‐Pyridones. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Tanakorn Kittikool
- Department of Chemistry and Center of Excellence for Innovation in Chemistry Faculty of Science Mahidol University Rama VI Road 10400 Bangkok Thailand
| | - Kunita Phakdeeyothin
- Department of Chemistry and Center of Excellence for Innovation in Chemistry Faculty of Science Mahidol University Rama VI Road 10400 Bangkok Thailand
| | - Teera Chantarojsiri
- Department of Chemistry and Center of Excellence for Innovation in Chemistry Faculty of Science Mahidol University Rama VI Road 10400 Bangkok Thailand
| | - Sirilata Yotphan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry Faculty of Science Mahidol University Rama VI Road 10400 Bangkok Thailand
| |
Collapse
|
13
|
Zhang H, Lin S, Gao H, Zhang K, Wang Y, Zhou Z, Yi W. Chemodivergent assembly of ortho-functionalized phenols with tunable selectivity via rhodium(III)-catalyzed and solvent-controlled C-H activation. Commun Chem 2021; 4:81. [PMID: 36697536 PMCID: PMC9814747 DOI: 10.1038/s42004-021-00518-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/07/2021] [Indexed: 01/28/2023] Open
Abstract
Ortho-functionalized phenols and their derivatives represent prominent structural motifs and building blocks in medicinal and synthetic chemistry. While numerous synthetic approaches exist, the development of atom-/step-economic and practical methods for the chemodivergent assembly of diverse ortho-functionalized phenols based on fixed catalyst/substrates remains challenging. Here, by selectively controlling the reactivities of different sites in methylenecyclopropane core, Rh(III)-catalyzed redox-neutral and tunable C-H functionalizations of N-phenoxyacetamides are realized, providing access to both ortho-functionalized phenols bearing linear dienyl, cyclopropyl or allyl ether groups, and cyclic 3-ethylidene 2,3-dihydrobenzofuran frameworks under mild cross-coupling conditions. These divergent transformations feature broad substrate compatibility, synthetic applications and excellent site-/regio-/chemoselectivity. Experimental and computational mechanistic studies reveal that distinct catalytic modes involving selective β-C/β-H elimination, π-allylation, inter-/intramolecular nucleophilic substitution cascade and β-H' elimination processes enabled by different solvent-mediated and coupling partner-controlled reaction conditions are crucial for achieving chemodivergence, among which a structurally distinct Rh(V) species derived from a five-membered rhodacycle is proposed as the corresponding active intermediates.
Collapse
Affiliation(s)
- Haiman Zhang
- grid.410737.60000 0000 8653 1072Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong China
| | - Shuang Lin
- grid.410737.60000 0000 8653 1072Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong China
| | - Hui Gao
- grid.410737.60000 0000 8653 1072Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong China
| | - Kaixin Zhang
- grid.410737.60000 0000 8653 1072Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong China ,grid.12981.330000 0001 2360 039XSchool of Chemical Engineering and Technology, Sun Yat-Sen University, Guangzhou, Guangdong China
| | - Yi Wang
- grid.410737.60000 0000 8653 1072Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong China
| | - Zhi Zhou
- grid.410737.60000 0000 8653 1072Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong China
| | - Wei Yi
- grid.410737.60000 0000 8653 1072Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong China
| |
Collapse
|
14
|
Ramesh B, Jeganmohan M. Cobalt(iii)-catalyzed redox-neutral [4+2]-annulation of N-chlorobenzamides/acrylamides with alkylidenecyclopropanes at room temperature. Chem Commun (Camb) 2021; 57:3692-3695. [PMID: 33725082 DOI: 10.1039/d1cc00654a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
An efficient synthesis of substituted 3,4-dihydroisoquinolinones through [4+2]-annulation of N-chlorobenzamides/acrylamides having a monodentate directing group with alkylidenecyclopropanes in the presence of a less expensive, highly abundant and air stable Co(iii) catalyst via a C-H activation is demonstrated. In this reaction, the N-Cl bond of N-chlorobenzamide serves as an internal oxidant and thus an external metal oxidant is avoided. The 3,4-dihydroisoquinolinone derivatives are converted successfully into the highly useful imidoyl chloride derivatives. The deuterium labeling and kinetic isolabelling studies reveal that the C-H activation is a rate-determining step in this cyclization reaction.
Collapse
Affiliation(s)
- Balu Ramesh
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, India.
| | | |
Collapse
|
15
|
Shen Z, Maksso I, Kuniyil R, Rogge T, Ackermann L. Rhodaelectro-catalyzed chemo-divergent C-H activations with alkylidenecyclopropanes for selective cyclopropylations. Chem Commun (Camb) 2021; 57:3668-3671. [PMID: 33724282 DOI: 10.1039/d0cc08123j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Herein, we report on selectivity control in C-H activations with alkylidenecyclopropanes (ACPs) for the chemo-selective assembly of cyclopropanes or dienes. Thus, unprecedented rhodaelectro-catalyzed C-H activations were realized with diversely decorated ACPs with a wide substrate scope and electricity as the sole oxidant.
Collapse
Affiliation(s)
- Zhigao Shen
- Institut für Organsiche und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstrasse 2, Göttingen 37077, Germany.
| | | | | | | | | |
Collapse
|
16
|
Xu G, Chen Q, Wu F, Bai D, Chang J, Li X. Rh(III)-Catalyzed Chemodivergent Coupling of N-Phenoxyacetamides and Alkylidenecyclopropanes via C-H Activation. Org Lett 2021; 23:2927-2932. [PMID: 33787271 DOI: 10.1021/acs.orglett.1c00565] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rh(III)-catalyzed C-H activation of N-phenoxyacetamides and chemodivergent coupling to alkylidenecyclopropanes (ACPs) have been accomplished. With the assistance of the ring strain of ACPs, the coupling can be transannulative or nonannulative, delivering 3-ethylidenedihydrobenzofurans or dienes, respectively, under different reaction conditions, and the selectivity is mainly solvent-controlled. All of the reactions proceeded under mild conditions with a good substrate scope and excellent chemo- and diastereoselectivity.
Collapse
Affiliation(s)
- Guiqing Xu
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Qi Chen
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Fen Wu
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Dachang Bai
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Junbiao Chang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xingwei Li
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.,School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an 710062, China
| |
Collapse
|
17
|
Kimura N, Katta S, Kitazawa Y, Kochi T, Kakiuchi F. Iron-Catalyzed Ortho C-H Homoallylation of Aromatic Ketones with Methylenecyclopropanes. J Am Chem Soc 2021; 143:4543-4549. [PMID: 33729786 DOI: 10.1021/jacs.1c00237] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We report here a C-H homoallylation reaction of aromatic ketones with methylenecyclopropanes (MCPs) only using a catalytic amount of Fe(PMe3)4. A variety of aromatic ketones and MCPs are applicable to the reaction to form ortho-homoallylated aromatic ketones selectively via regioselective scission of the three-membered rings. The homoallylated products are amenable to further elaborations, providing functionalized 1,2-dihydronaphthalenes.
Collapse
Affiliation(s)
- Naoki Kimura
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Shiori Katta
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Yoichi Kitazawa
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Takuya Kochi
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Fumitoshi Kakiuchi
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
18
|
Zhu Y, Hui L, Zhang S. A Palladium(0)‐Catalyzed C4 Site‐Selective C−H Difluoroalkylation of Isoquinolin‐1(
2H
)‐Ones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- You‐Quan Zhu
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071
| | - Li‐Wen Hui
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071
| | - Shi‐Bo Zhang
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071
| |
Collapse
|
19
|
Mo J, Messinis AM, Oliveira JCA, Demeshko S, Meyer F, Ackermann L. Iron-Catalyzed Triazole-Enabled C–H Activation with Bicyclopropylidenes. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jiayu Mo
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Antonis M. Messinis
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - João C. A. Oliveira
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Serhiy Demeshko
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
| | - Franc Meyer
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, 37077 Göttingen, Germany
- WISCh (Wöhler-Research Institute for Sustainable Chemistry), Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- WISCh (Wöhler-Research Institute for Sustainable Chemistry), Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| |
Collapse
|
20
|
I
2
‐Promoted Direct C−H Sulfenylation of Isoquinolin‐1(2
H
)‐ones with Sulfonyl Chlorides. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Kim S, Jeoung D, Kim K, Lee SB, Lee SH, Park MS, Ghosh P, Mishra NK, Hong S, Kim IS. Site‐Selective C–H Amidation of 2‐Aryl Quinazolinones Using Nitrene Surrogates. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Saegun Kim
- School of Pharmacy Sungkyunkwan University 16419 Suwon Republic of Korea
| | - Daeun Jeoung
- School of Pharmacy Sungkyunkwan University 16419 Suwon Republic of Korea
| | - Kunyoung Kim
- School of Pharmacy Sungkyunkwan University 16419 Suwon Republic of Korea
| | - Seok Beom Lee
- College of Pharmacy Seoul National University 08826 Seoul Republic of Korea
| | - Suk Hun Lee
- School of Pharmacy Sungkyunkwan University 16419 Suwon Republic of Korea
| | - Min Seo Park
- School of Pharmacy Sungkyunkwan University 16419 Suwon Republic of Korea
| | - Prithwish Ghosh
- School of Pharmacy Sungkyunkwan University 16419 Suwon Republic of Korea
| | | | - Suckchang Hong
- College of Pharmacy Seoul National University 08826 Seoul Republic of Korea
| | - In Su Kim
- School of Pharmacy Sungkyunkwan University 16419 Suwon Republic of Korea
| |
Collapse
|
22
|
Dumas A, Garsi JB, Poissonnet G, Hanessian S. Ni-Catalyzed Reductive and Merged Photocatalytic Cross-Coupling Reactions toward sp 3/sp 2-Functionalized Isoquinolones: Creating Diversity at C-6 and C-7 to Address Bioactive Analogues. ACS OMEGA 2020; 5:27591-27606. [PMID: 33134723 PMCID: PMC7594327 DOI: 10.1021/acsomega.0c04181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
Naturally occurring isoquinolones have gained considerable attention over the years for their bioactive properties. While the late-stage introduction of various functionalities at certain positions, namely, C-3, C-4, and C-8, has been widely documented, the straightforward introduction of challenging sp3 carbon-linked acyclic aminoalkyl or aza- and oxacyclic appendages at C-6 and C-7 remains largely underexplored. Interest in 6-substituted azacyclic analogues has recently garnered attention in connection with derivatives exhibiting anticancer activity. Reported here is the first application of the versatile and recently emerging field of Ni-catalyzed reductive cross-coupling reactions to the synthesis of 6- and 7- hetero(cyclo)alkyl-substituted isoquinolones. In a second and complementary approach, a new set of C-6- and C-7-substituted positional isomers of hetero(cyclo)alkyl appendages were obtained from the merging of photocatalytic and Ni-catalyzed coupling reactions. In both cases, 6- and 7-bromo isoquinolones served as dual-purpose reacting partners with readily available tosylates and carboxylic acids, respectively.
Collapse
Affiliation(s)
- Adrien Dumas
- Department
of Chemistry, Université de Montréal, PO Box 6128, Station Centre-Ville, Montréal, QC, Canada H3C 3J7
| | - Jean-Baptiste Garsi
- Department
of Chemistry, Université de Montréal, PO Box 6128, Station Centre-Ville, Montréal, QC, Canada H3C 3J7
| | - Guillaume Poissonnet
- CentEX
Chemistry, Institut de Recherches Servier, 11 rue des Moulineaux, 92150 Suresnes, France
| | - Stephen Hanessian
- Department
of Chemistry, Université de Montréal, PO Box 6128, Station Centre-Ville, Montréal, QC, Canada H3C 3J7
| |
Collapse
|
23
|
Wei HZ, Li QZ, Wei Y, Shi M. Rapid construction of cyclopenta[ b]naphthalene frameworks from propargylic alcohol tethered methylenecyclopropanes. Org Biomol Chem 2020; 18:7396-7400. [PMID: 32930310 DOI: 10.1039/d0ob01732a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We have developed a new synthetic methodology for the rapid construction of cyclopenta[b]naphthalene frameworks from the reaction of propargylic alcohol tethered methylenecyclopropanes with mesyl chloride in the presence of triethylamine through cascade cyclization. The reaction can be performed under mild conditions without the use of transition metals, affording the target products in moderate to good yields, and this cyclization reaction process can be scaled up to a gram-scale synthesis.
Collapse
Affiliation(s)
- Hao-Zhao Wei
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Quan-Zhe Li
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Lu, Shanghai, 200032, China.
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China and State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Lu, Shanghai, 200032, China.
| |
Collapse
|
24
|
Biswas A, Maity S, Pan S, Samanta R. Transition Metal‐Catalysed Direct C−H Bond Functionalizations of 2‐Pyridone Beyond C3‐Selectivity. Chem Asian J 2020; 15:2092-2109. [PMID: 32500612 DOI: 10.1002/asia.202000506] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/02/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Aniruddha Biswas
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur 721302, West Bengal India
| | - Saurabh Maity
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur 721302, West Bengal India
- Current Address: Institute of Organic and Biomolecular ChemistryGeorg-August University Goettingen 37077 Germany
| | - Subarna Pan
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur 721302, West Bengal India
| | - Rajarshi Samanta
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur 721302, West Bengal India
| |
Collapse
|
25
|
Vivek Kumar S, Banerjee S, Punniyamurthy T. Transition metal-catalyzed coupling of heterocyclic alkenes via C–H functionalization: recent trends and applications. Org Chem Front 2020. [DOI: 10.1039/d0qo00279h] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Heterocyclic alkenes and their derivatives are an important class of reactive feedstock and valuable synthons. This review highlights the transition-metal-catalyzed coupling of heterocyclic alkenes via a C–H functionalization strategy.
Collapse
|
26
|
Li Q, Yuan X, Li B, Wang B. The regioselective annulation of alkylidenecyclopropanes by Rh(iii)-catalyzed C–H/C–C activation to access spirocyclic benzosultams. Chem Commun (Camb) 2020; 56:1835-1838. [DOI: 10.1039/c9cc09621c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of spirocyclic benzosultams fromN-sulfonyl ketimine and alkylidenecyclopropanes under Rh(iii) catalysis has been developed. This transformation enables the formation of two C–C bonds and a double bond with highE-selectivity.
Collapse
Affiliation(s)
- Qiuyun Li
- State Key Laboratory of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Xin Yuan
- Tanggu No. 1 High School
- Tianjin 300450
- People's Republic of China
| | - Bin Li
- State Key Laboratory of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Baiquan Wang
- State Key Laboratory of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| |
Collapse
|
27
|
Shah TA, De PB, Pradhan S, Banerjee S, Punniyamurthy T. Exploiting Strained Rings in Chelation Guided C−H Functionalization: Integration of C−H Activation with Ring Cleavage. Chem Asian J 2019; 14:4520-4533. [DOI: 10.1002/asia.201901067] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/17/2019] [Indexed: 02/01/2023]
Affiliation(s)
- Tariq A. Shah
- Department of ChemistryIndian Institute of Technology Guwahati Guwahati 781039 India
| | - Pinaki Bhusan De
- Department of ChemistryIndian Institute of Technology Guwahati Guwahati 781039 India
| | - Sourav Pradhan
- Department of ChemistryIndian Institute of Technology Guwahati Guwahati 781039 India
| | - Sonbidya Banerjee
- Department of ChemistryIndian Institute of Technology Guwahati Guwahati 781039 India
| | | |
Collapse
|
28
|
Liu R, Wei Y, Shi M. A rhodium(iii)-catalyzed tunable coupling reaction of indole derivatives with alkylidenecyclopropanes via C-H activation. Chem Commun (Camb) 2019; 55:7558-7561. [PMID: 31190032 DOI: 10.1039/c9cc03134k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We herein report a rhodium(iii)-catalyzed cross coupling of indole derivatives with alkylidenecyclopropanes (ACPs) in the presence of KCl, affording the alkene products exclusively with E-selectivity via C-H bond activation. The beta-H elimination to afford the conjugated diene derivatives has been suppressed by the addition of KCl. A plausible reaction mechanism has been proposed along with derivatization of the obtained product to demonstrate the practical usefulness of this synthetic protocol.
Collapse
Affiliation(s)
- Ruixing Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Min Shi
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China. and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, Guangdong 518000, China
| |
Collapse
|
29
|
Dey A, Thrimurtulu N, Volla CMR. Cobalt-Catalyzed Annulation Reactions of Alkylidenecyclopropanes: Access to Spirocyclopropanes at Room Temperature. Org Lett 2019; 21:3871-3875. [DOI: 10.1021/acs.orglett.9b01392] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Arnab Dey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Neetipalli Thrimurtulu
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Chandra M. R. Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|