1
|
Hölter N, Rendel NH, Spierling L, Kwiatkowski A, Kleinmans R, Daniliuc CG, Wenger OS, Glorius F. Phenothiazine Sulfoxides as Active Photocatalysts for the Synthesis of γ-Lactones. J Am Chem Soc 2025; 147:12908-12916. [PMID: 40174889 PMCID: PMC12007001 DOI: 10.1021/jacs.5c01988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 04/04/2025]
Abstract
N-substituted phenothiazines are prominent and highly effective organic photoredox catalysts, particularly known for their strong reducing capabilities. Despite their wide utility, the closely related phenothiazine sulfoxides, which easily form upon oxidation, have been largely overlooked and have not been explored in the context of photocatalysis. Herein, we describe the discovery and application of N-phenylphenothiazine sulfoxide as a photocatalyst for the reductive activation of cyclic malonyl peroxides, giving access to complex γ-lactones starting from simple olefins. Detailed mechanistic studies were carried out to better understand the in situ formation of the active catalyst species from a commercial precursor, as well as the catalyst species interconversion and the photocatalytic mechanism for the formation of γ-lactone products. Specifically, we employed a broad range of mechanistic tools, including time-resolved spectroscopy, spectroelectrochemistry, transient UV-vis absorption spectroscopy, cyclic voltammetry, isotopic labeling, radical trapping experiments, NMR spectroscopy, and density functional theory (DFT) calculations. The synthetic utility of this protocol is demonstrated in a substrate scope study, highlighting the facile access to complex spirocyclic γ-lactones, which are widely recognized for their biological importance.
Collapse
Affiliation(s)
- Niklas Hölter
- Organisch-Chemisches
Institut, University of Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Nils H. Rendel
- Organisch-Chemisches
Institut, University of Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Leander Spierling
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
| | - Adrian Kwiatkowski
- Organisch-Chemisches
Institut, University of Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Roman Kleinmans
- Organisch-Chemisches
Institut, University of Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Constantin G. Daniliuc
- Organisch-Chemisches
Institut, University of Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Oliver S. Wenger
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
| | - Frank Glorius
- Organisch-Chemisches
Institut, University of Münster, Corrensstraße 36, 48149 Münster, Germany
| |
Collapse
|
2
|
Stoikov II, Antipin IS, Burilov VA, Kurbangalieva AR, Rostovskii NV, Pankova AS, Balova IA, Remizov YO, Pevzner LM, Petrov ML, Vasilyev AV, Averin AD, Beletskaya IP, Nenajdenko VG, Beloglazkina EK, Gromov SP, Karlov SS, Magdesieva TV, Prishchenko AA, Popkov SV, Terent’ev AO, Tsaplin GV, Kustova TP, Kochetova LB, Magdalinova NA, Krasnokutskaya EA, Nyuchev AV, Kuznetsova YL, Fedorov AY, Egorova AY, Grinev VS, Sorokin VV, Ovchinnikov KL, Kofanov ER, Kolobov AV, Rusinov VL, Zyryanov GV, Nosov EV, Bakulev VA, Belskaya NP, Berezkina TV, Obydennov DL, Sosnovskikh VY, Bakhtin SG, Baranova OV, Doroshkevich VS, Raskildina GZ, Sultanova RM, Zlotskii SS, Dyachenko VD, Dyachenko IV, Fisyuk AS, Konshin VV, Dotsenko VV, Ivleva EA, Reznikov AN, Klimochkin YN, Aksenov DA, Aksenov NA, Aksenov AV, Burmistrov VV, Butov GM, Novakov IA, Shikhaliev KS, Stolpovskaya NV, Medvedev SM, Kandalintseva NV, Prosenko OI, Menshchikova EB, Golovanov AA, Khashirova SY. Organic Chemistry in Russian Universities. Achievements of Recent Years. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2024; 60:1361-1584. [DOI: 10.1134/s1070428024080013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/28/2024] [Accepted: 03/31/2024] [Indexed: 01/06/2025]
|
3
|
Vil’ VA, Barsegyan YA, Kuhn L, Terent’ev AO, Alabugin IV. Creating, Preserving, and Directing Carboxylate Radicals in Ni-Catalyzed C(sp 3)–H Acyloxylation of Ethers, Ketones, and Alkanes with Diacyl Peroxides. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Vera A. Vil’
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| | - Yana A. Barsegyan
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| | - Leah Kuhn
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Fl 32306, United States
| | - Alexander O. Terent’ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| | - Igor V. Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Fl 32306, United States
| |
Collapse
|
4
|
4,4′-(Butane-1,4-diyl)bis(4-methyl-1,2-dioxolane-3,5-dione). MOLBANK 2022. [DOI: 10.3390/m1497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Over the past decades, studies of cyclic diacyl peroxides have shown superior or even fundamentally new reactivity compared to their acyclic counterparts in various reactions. Previously, the scope of cyclic diacyl peroxides was limited to the mono peroxy compounds. The first doubled cyclic diacyl peroxide is presented herein. The diperoxide was characterized by NMR spectroscopy, mass spectrometry, and IR spectroscopy. The structure of 4,4′-(butane-1,4-diyl)bis(4-methyl-1,2-dioxolane-3,5-dione) was confirmed by X-ray diffraction analysis. The novel diperoxide was prepared in a 55% overall yield in three steps from dibromobutane and diethyl methylmalonate.
Collapse
|
5
|
Polimera SR, Ilangovan A, Meanwell NA, Subbaiah MAM. Synthetic Access to α-Oxoketene Aminals by the Nucleophilic Addition of Enol Silane-Derived Palladium(II) Enolates to Carbodiimides. J Org Chem 2022; 87:14778-14792. [PMID: 36285601 DOI: 10.1021/acs.joc.2c02107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Synthetically important α-oxoketene aminal intermediates can now be accessed from readily available and inexpensive carbodiimides as starting materials via the nucleophilic addition of palladium enolates derived from enol silane precursors. This operationally simple method features mild reaction conditions, including open air atmosphere, ligand-free metal catalysis, broad substrate scope, and multi-gram scalability. Select synthetic applications that take advantage of the enamine character of α-oxoketene aminals and involve C-nucleophilic additions to electrophilic systems, including an α,β-unsaturated ester, an azo dicarboxylate, an aralkyl halide, and an aldehyde, are demonstrated.
Collapse
Affiliation(s)
- Subba Rao Polimera
- Department of Medicinal Chemistry, Biocon Bristol Myers Squibb R&D Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, Karnataka 560099, India.,Department of Chemistry, Bharathidasan University, Palkalaiperur, Thiruchirapalli, Tamil Nadu 620024, India
| | - Andivelu Ilangovan
- Department of Chemistry, Bharathidasan University, Palkalaiperur, Thiruchirapalli, Tamil Nadu 620024, India
| | - Nicholas A Meanwell
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Murugaiah A M Subbaiah
- Department of Medicinal Chemistry, Biocon Bristol Myers Squibb R&D Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, Karnataka 560099, India
| |
Collapse
|
6
|
Vil' VA, Gorlov ES, Shuingalieva DV, Kunitsyn AY, Krivoshchapov NV, Medvedev MG, Alabugin IV, Terent'ev AO. Activation of O-Electrophiles via Structural and Solvent Effects: S N2@O Reaction of Cyclic Diacyl Peroxides with Enol Acetates. J Org Chem 2022; 87:13980-13989. [PMID: 36223346 DOI: 10.1021/acs.joc.2c01634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The reactions of O-electrophiles, such as organic peroxides, with carbon nucleophiles are an umpolung alternative to the common approaches to C-O bond formation. Nucleophilic substitution at the oxygen atom of cyclic diacyl peroxides by enol acetates with the following deacylation leads to α-acyloxyketones with an appended carboxylic acid in 28-87% yields. The effect of fluorinated alcohols on the oxidative functionalization of enol acetates by cyclic diacyl peroxides was studied experimentally and computationally. Computational analysis reveals that the key step proceeds as a direct substitution nucleophilic bimolecular (SN2) reaction at oxygen (SN2@O). CF3CH2OH has a dual role in assisting in both steps of the reaction cascade: it lowers the energy of the SN2@O activation step by hydrogen bonding to a remote carbonyl and promotes the deacylation of the cationic intermediate.
Collapse
Affiliation(s)
- Vera A Vil'
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| | - Evgenii S Gorlov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| | - Diana V Shuingalieva
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation.,D. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, Moscow 125047, Russian Federation
| | - Artem Yu Kunitsyn
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| | - Nikolai V Krivoshchapov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| | - Michael G Medvedev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| |
Collapse
|
7
|
Harry NA, Ujwaldev SM. Recent advances in [5+2] cycloadditions. CURR ORG CHEM 2022. [DOI: 10.2174/1385272826666220510152025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
The existence of a seven-membered cyclic core in several natural products and biomolecules vitalized the research on its synthesis. [5+2] cycloaddition has become a promising strategy for the construction of seven-membered ring systems by the formation of carbon-carbon bonds in a single step, with strong regioselectivity and stereoselectivity. This review mainly focuses on recent developments in the area of [5+2] cycloaddition since 2019. Total synthesis of natural products involving [5+2] cycloaddition as key step leading to heptacyclic core is also discussed. Synthesis of fused and bridged ring systems via the reactions involving inter and intramolecular [5+2] cycloadditions like oxidopyrylium-mediated [5+2] cycloadditions, [5+2] cycloadditions of vinyl cyclopropanes (VCPs), vinyl phenols, etc is explained in the review with the latest examples. This review provides a useful guide for researchers exploring this powerful strategy to create more elegant heptacycles in their future research.
Collapse
|
8
|
Polimera SR, A M Subbaiah M, Ilangovan A. The Ligand Free Palladium(II)-Catalyzed Regioselective 1,2-Addition of Enol Silanes to Quinones to Access 4-Hydroxy-4-(2-oxo-2-arylethyl)cyclohexadien-1-ones and Synthetic Applications. J Org Chem 2021; 86:14356-14370. [PMID: 34554740 DOI: 10.1021/acs.joc.1c00857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In contrast to the conventional 1,4-addition process, regioselective 1,2-addition of silyl enol ethers to quinones can now be achieved via a palladium(II) enolate pathway that provides access to 4-hydroxy-4-(2-oxo-2-arylethyl)cyclohexa-2,5-dien-1-one derivatives. This quinone alkylation protocol proceeds under mild reaction conditions at ambient temperature under open air and does not require either an external ligand for the palladium or the use of a base. Additionally, the cyclohexadienone products have been exploited as synthetic precursors for the construction of fused heteroaryl systems.
Collapse
Affiliation(s)
- Subba Rao Polimera
- Department of Medicinal Chemistry, BBRC, Syngene, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore 560009, India.,Department of Chemistry, Bharathidasan University, Palkalaiperur, Thiruchirapalli, Tamil Nadu 620024, India
| | - Murugaiah A M Subbaiah
- Department of Medicinal Chemistry, BBRC, Syngene, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore 560009, India
| | - Andivelu Ilangovan
- Department of Chemistry, Bharathidasan University, Palkalaiperur, Thiruchirapalli, Tamil Nadu 620024, India
| |
Collapse
|
9
|
Alabugin IV, Kuhn L, Medvedev MG, Krivoshchapov NV, Vil' VA, Yaremenko IA, Mehaffy P, Yarie M, Terent'ev AO, Zolfigol MA. Stereoelectronic power of oxygen in control of chemical reactivity: the anomeric effect is not alone. Chem Soc Rev 2021; 50:10253-10345. [PMID: 34263287 DOI: 10.1039/d1cs00386k] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although carbon is the central element of organic chemistry, oxygen is the central element of stereoelectronic control in organic chemistry. Generally, a molecule with a C-O bond has both a strong donor (a lone pair) and a strong acceptor (e.g., a σ*C-O orbital), a combination that provides opportunities to influence chemical transformations at both ends of the electron demand spectrum. Oxygen is a stereoelectronic chameleon that adapts to the varying situations in radical, cationic, anionic, and metal-mediated transformations. Arguably, the most historically important stereoelectronic effect is the anomeric effect (AE), i.e., the axial preference of acceptor groups at the anomeric position of sugars. Although AE is generally attributed to hyperconjugative interactions of σ-acceptors with a lone pair at oxygen (negative hyperconjugation), recent literature reports suggested alternative explanations. In this context, it is timely to evaluate the fundamental connections between the AE and a broad variety of O-functional groups. Such connections illustrate the general role of hyperconjugation with oxygen lone pairs in reactivity. Lessons from the AE can be used as the conceptual framework for organizing disjointed observations into a logical body of knowledge. In contrast, neglect of hyperconjugation can be deeply misleading as it removes the stereoelectronic cornerstone on which, as we show in this review, the chemistry of organic oxygen functionalities is largely based. As negative hyperconjugation releases the "underutilized" stereoelectronic power of unshared electrons (the lone pairs) for the stabilization of a developing positive charge, the role of orbital interactions increases when the electronic demand is high and molecules distort from their equilibrium geometries. From this perspective, hyperconjugative anomeric interactions play a unique role in guiding reaction design. In this manuscript, we discuss the reactivity of organic O-functionalities, outline variations in the possible hyperconjugative patterns, and showcase the vast implications of AE for the structure and reactivity. On our journey through a variety of O-containing organic functional groups, from textbook to exotic, we will illustrate how this knowledge can predict chemical reactivity and unlock new useful synthetic transformations.
Collapse
Affiliation(s)
- Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA.
| | - Leah Kuhn
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA.
| | - Michael G Medvedev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.,A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova St., 119991 Moscow, Russian Federation
| | - Nikolai V Krivoshchapov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.,Lomonosov Moscow State University, Leninskie Gory 1 (3), Moscow, 119991, Russian Federation
| | - Vera A Vil'
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Ivan A Yaremenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Patricia Mehaffy
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA.
| | - Meysam Yarie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 65167, Iran
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 65167, Iran
| |
Collapse
|
10
|
Bityukov OV, Vil’ VA, Terent’ev AO. Synthesis of Acyclic Geminal Bis-peroxides. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428021060014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Meninno S, Villano R, Lattanzi A. Magnesium Monoperphthalate (MMPP): a Convenient Oxidant for the Direct Rubottom Oxidation of Malonates, β‐Keto Esters, and Amides. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Sara Meninno
- Dipartimento di Chimica e Biologia “A. Zambelli” Università di Salerno Via Giovanni Paolo II 132 84084 Fisciano Italy
| | - Rosaria Villano
- Istituto di Chimica Biomolecolare - CNR Via Campi Flegrei 34 80078 Pozzuoli Italy
| | - Alessandra Lattanzi
- Dipartimento di Chimica e Biologia “A. Zambelli” Università di Salerno Via Giovanni Paolo II 132 84084 Fisciano Italy
| |
Collapse
|
12
|
Anderson TE, Andia AA, Woerpel KA. Chemiluminescence-promoted oxidation of alkyl enol ethers by NHPI under mild conditions and in the dark. Tetrahedron 2021; 82:131874. [PMID: 33994596 PMCID: PMC8117068 DOI: 10.1016/j.tet.2020.131874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The hydroperoxidation of alkyl enol ethers using N-hydroxyphthalimide and molecular oxygen occurred in the absence of catalyst, initiator, or light. The reaction proceeds through a radical mechanism that is initiated by N-hydroxyphthalimide-promoted autoxidation of the enol ether substrate. The resulting dioxetane products decompose in a chemiluminescent reaction that allows for photochemical activation of N-hydroxyphthalimide in the absence of other light sources.
Collapse
Affiliation(s)
- T. E. Anderson
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, United States
| | - Alexander A. Andia
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, United States
| | - K. A. Woerpel
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, United States
| |
Collapse
|
13
|
Vil' VA, Gorlov ES, Yu B, Terent'ev AO. Oxidative α-acyloxylation of acetals with cyclic diacyl peroxides. Org Chem Front 2021. [DOI: 10.1039/d1qo00494h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Selective functionalization of the non-activated acetal α-position with formal retaining of the acetal fragment was realized using cyclic diacyl peroxides.
Collapse
Affiliation(s)
- Vera A. Vil'
- N. D. Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- Moscow
- Russian Federation
- All-Russian Research Institute for Phytopathology B. Vyazyomy
| | - Evgenii S. Gorlov
- N. D. Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- Moscow
- Russian Federation
| | - Bing Yu
- Green Catalysis Center
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Alexander O. Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- Moscow
- Russian Federation
- All-Russian Research Institute for Phytopathology B. Vyazyomy
| |
Collapse
|
14
|
Affiliation(s)
- Moriah Locklear
- Department of Chemistry; University of Nebraska-Lincoln; 68588-0304 Lincoln NE USA
| | - Patrick H. Dussault
- Department of Chemistry; University of Nebraska-Lincoln; 68588-0304 Lincoln NE USA
| |
Collapse
|
15
|
Curle JM, Perieteanu MC, Humphreys PG, Kennedy AR, Tomkinson NCO. Alkene Syn- and Anti-Oxyamination with Malonoyl Peroxides. Org Lett 2020; 22:1659-1664. [PMID: 31999132 PMCID: PMC7146911 DOI: 10.1021/acs.orglett.0c00253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
Malonoyl peroxide 6 is an effective reagent for the syn- or anti-oxyamination of alkenes. Reaction
of 6 and an alkene in the presence of O-tert-butyl-N-tosylcarbamate (R3 = CO2tBu) leads to
the anti-oxyaminated product in up to 99% yield.
Use of O-methyl-N-tosyl carbamate
(R3 = CO2Me) as the nitrogen nucleophile followed
by treatment of the product with trifluoroacetic acid leads to the syn-oxyaminated product in up to 77% yield. Mechanisms consistent
with the observed selectivities are proposed.
Collapse
Affiliation(s)
- Jonathan M Curle
- Department of Pure and Applied Chemistry, WestCHEM, Thomas Graham Building , University of Strathclyde , 295 Cathedral Street , Glasgow G1 1XL , U.K
| | - Marina C Perieteanu
- Department of Pure and Applied Chemistry, WestCHEM, Thomas Graham Building , University of Strathclyde , 295 Cathedral Street , Glasgow G1 1XL , U.K
| | - Philip G Humphreys
- GlaxoSmithKline Medicines Research Centre , Gunnels Wood Road , Stevenage SG1 2NY , U.K
| | - Alan R Kennedy
- Department of Pure and Applied Chemistry, WestCHEM, Thomas Graham Building , University of Strathclyde , 295 Cathedral Street , Glasgow G1 1XL , U.K
| | - Nicholas C O Tomkinson
- Department of Pure and Applied Chemistry, WestCHEM, Thomas Graham Building , University of Strathclyde , 295 Cathedral Street , Glasgow G1 1XL , U.K
| |
Collapse
|