1
|
Xie W, Wang C, Xu J. Reaction of 1,3,5-Triazinanes with Phosphoryl Diazomethanes: Access to 5-Phosphoryl-1,2,3,4-tetrahydropyrimidines. Org Lett 2024. [PMID: 38630983 DOI: 10.1021/acs.orglett.4c00881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Conversion of 1,3,5-triazinanes into 5-phosporyl-1,2,3,4-tetrahydropyrimidines is achieved efficiently through the microwave-assisted reaction with phosphoryl diazomethanes. Both trialkyl and triaryl 1,3,5-triazinanes were converted by diazomethyldiarylphosphine oxides, dialkyl diazomethylphosphonates, and alkyl diazomethyl(aryl)phosphinates and functionalized simultaneously in good to excellent yields. The reaction is a sequence of 1,3,5-triazinane fragmentation, tandem nucleophilic addition of the generated formaldimines and phosphoryl diazomethanes, and final N,N-acetalization.
Collapse
Affiliation(s)
- Wenlai Xie
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Chengzhuo Wang
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jiaxi Xu
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
2
|
Sumran G, Jain N, Kumar P, Aggarwal R. Trifluoromethyl-β-dicarbonyls as Versatile Synthons in Synthesis of Heterocycles. Chemistry 2024; 30:e202303599. [PMID: 38055226 DOI: 10.1002/chem.202303599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/07/2023]
Abstract
Trifluoromethyl group relishes a privileged position in the realm of medicinal chemistry because its incorporation into organic molecules often enhances the bioactivity by altering pharmacological profile of molecule. Trifluoromethyl-β-dicarbonyls have emerged as pivotal building blocks in synthetic organic chemistry due to their facile accessibility, stability and remarkable versatility. Owing to presence of nucleophilic and electrophilic sites, they offer multifunctional sites for the reaction. This review covers a meticulous exploration of their multifaceted role, encompassing an in-depth analysis of mechanism, extensive scope, limitations and wide-ranging applications in diverse organic synthesis, covering the literature from the 21st century. This comprehensive review encapsulates the applications of trifluoromethyl-β-dicarbonyls and their synthetic equivalents as precursors of complex and diverse heterocyclic scaffolds, fused heterocycles and spirocyclic compounds having medicinal and material importance. Their potent synthetic utility in cyclocondensation reactions with binucleophiles, cycloaddition reactions, C-C bond formations, asymmetric multicomponent reactions using classical/solvent-free/catalytic synthesis have been presented. Influence of unsymmetrical trifluoromethyl-β-diketones on regioselectivity of transformation is also reviewed. This review will benefit the synthetic and pharmaceutical communities to explore trifluoromethyl-β-dicarbonyls as trifluoromethyl building blocks for fabrication of heterocyclic scaffolds having implementation into drug discovery programs in the imminent future.
Collapse
Affiliation(s)
- Garima Sumran
- Department of Chemistry, D. A. V. College (Lahore), Ambala City, 134 003, Haryana, India
| | - Naman Jain
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136 119, India
| | - Prince Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136 119, India
| | - Ranjana Aggarwal
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136 119, India
- CSIR-National Institute of Science Communication and Policy Research, New Delhi, 110012, India
| |
Collapse
|
3
|
Li J, Liu C, Zhao Z, Wang X, Chen D, Yue K, Chen S, Jin M, Shan Y. Halogen cation-promoted and solvent-regulated electrophilic cyclization for the regioselective synthesis of 3-haloquinolines and 3-halospirocyclohexadienones. Org Biomol Chem 2023; 21:2440-2446. [PMID: 36876461 DOI: 10.1039/d3ob00168g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
A novel approach for the production of halogen cations through the reaction of halogens with silver ions is described in this paper. On this basis, the regioselective synthesis of 3-haloquinolines and 3-halospirocyclohexadienones is realized through solvent regulation. The gram-scale reaction and the compatibility of complex substrates demonstrate the synthetic potential of this protocol, which will be an appealing strategy in organic synthesis.
Collapse
Affiliation(s)
- Jianming Li
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Chengxiao Liu
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Zihan Zhao
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Xin Wang
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Dianpeng Chen
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Kaiyuan Yue
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Sihan Chen
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Ming Jin
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Yingying Shan
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| |
Collapse
|
4
|
Potential Nitrogen-Based Heterocyclic Compounds for Treating Infectious Diseases: A Literature Review. Antibiotics (Basel) 2022; 11:antibiotics11121750. [PMID: 36551407 PMCID: PMC9774632 DOI: 10.3390/antibiotics11121750] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Heterocyclic compounds are considered as one of the major and most diverse family of organic compounds. Nowadays, the demand for these compounds is increasing day-by-day due to their enormous synthetic and biological applications. These heterocyclic compounds have unique antibacterial activity against various Gram-positive and Gram-negative bacterial strains. This review covers the antibacterial activity of different heterocyclic compounds with nitrogen moiety. Some of the derivatives of these compounds show excellent antibacterial activity, while others show reasonable activity against bacterial strains. This review paper aims to bring and discuss the detailed information on the antibacterial activity of various nitrogen-based heterocyclic compounds. It will be helpful for the future evolution of diseases to synthesize new and effective drug molecules.
Collapse
|
5
|
Radhika S, Baby Aleena M, Anilkumar G. A Green Aerobic Fe(lll) Catalyzed Base-Free Synthesis of 2-Aminobenzothiazoles in Water. J Catal 2022. [DOI: 10.1016/j.jcat.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Molnár Á. Stereoselective Synthesis of Azacycles Induced by Group 8–11 Late Transition Metals. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Árpád Molnár
- Department of Organic Chemistry University of Szeged Dóm tér 8 6720 Szeged Hungary
| |
Collapse
|
7
|
Lv Y, Meng J, Li C, Wang X, Ye Y, Sun K. Update on the Synthesis of N‐Heterocycles via Cyclization of Hydrazones (2017–2021). Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101184] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yunhe Lv
- College of Chemistry and Chemical Engineering Anyang Normal University Anyang 4550008 People's Republic of China
| | - Jianping Meng
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| | - Chen Li
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| | - Xin Wang
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| | - Yong Ye
- College of Chemistry Zhengzhou University Zhengzhou 450001 People's Republic of China
| | - Kai Sun
- College of Chemistry and Chemical Engineering Yantai University Yantai 264005 People's Republic of China
| |
Collapse
|
8
|
Nia RH, Mamaghani M, Tavakoli F. Ag-Catalyzed Multicomponent Synthesis of Heterocyclic Compounds: A Review. Curr Org Synth 2021; 19:COS-EPUB-117839. [PMID: 34515006 DOI: 10.2174/1570179418666210910105744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 11/22/2022]
Abstract
The investigation of the procedures for the multi-component synthesis of heterocycles has attracted the interest of organic and medicinal chemists. The use of heterogeneous catalysts, especially transition metal catalysts in organic synthesis, can provide a new, improved alternative to traditional methods in modern synthetic chemistry. The main focus is on the utilization of silver as a catalyst for the multi-component synthesis of heterocyclic compounds. The present review describes some important reported studies for the period of 2010 to 2020. Conclusion: The present review addresses some of the important reported studies on multi-component synthesis of heterocycles in the period of 2010-2020. These approaches were performed under classical and nonclassical conditions, using Ag salts, Ag NPs, Ag on the support, Ag as co-catalysts with other transition metals, ionic liquids, acidic or basic materials. Most of the reported reactions were performed under solvent-free conditions or in green solvents and the utilized catalysts were mostly recyclable. The main aim of the present review is to provide the organic chemists with the most appropriate procedures in the multi-component synthesis of desired heterocycles using silver catalysts.
Collapse
Affiliation(s)
- Roghayeh Hossein Nia
- Department of Chemistry, Faculty of Sciences, University of Guilan, P.O. Box 41335-1914, Rasht. Iran
| | - Manouchehr Mamaghani
- Department of Chemistry, Faculty of Sciences, University of Guilan, P.O. Box 41335-1914, Rasht. Iran
| | - Fatemeh Tavakoli
- Department of Chemistry, Faculty of Sciences, University of Guilan, P.O. Box 41335-1914, Rasht. Iran
| |
Collapse
|
9
|
Soumya PK, Vaishak TB, Saranya S, Anilkumar G. Recent advances in the rhodium‐catalyzed cyanation reactions. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
| | | | - Salim Saranya
- School of Chemical Sciences Mahatma Gandhi University Kottayam Kerala India
| | - Gopinathan Anilkumar
- School of Chemical Sciences Mahatma Gandhi University Kottayam Kerala India
- Advanced Molecular Materials Research Centre (AMMRC) Mahatma Gandhi University Kottayam Kerala India
- Institute for Integrated Programmes and Research in Basic Sciences (IIRBS) Mahatma Gandhi University Kottayam Kerala India
| |
Collapse
|
10
|
Affiliation(s)
- Pramod N. Rakendu
- Institute for Integrated Programmes and Research in Basic Sciences (IIRBS) Mahatma Gandhi University Priyadarsini Hills P.O Kottayam Kerala 686560 India
| | - Thaipparambil Aneeja
- School of Chemical Sciences Mahatma Gandhi University Priyadarsini Hills P.O Kottayam Kerala 686560 India
| | - Gopinathan Anilkumar
- Institute for Integrated Programmes and Research in Basic Sciences (IIRBS) Mahatma Gandhi University Priyadarsini Hills P.O Kottayam Kerala 686560 India
- School of Chemical Sciences Mahatma Gandhi University Priyadarsini Hills P.O Kottayam Kerala 686560 India
- Advanced Molecular Materials Research centre (AMMRC) Mahatma Gandhi University Priyadarsini Hills P.O Kottayam Kerala 686560 India
| |
Collapse
|
11
|
A new silver coordination polymer based on 4,6-diamino-2-pyrimidinethiol: synthesis, characterization and catalytic application in asymmetric Hantzsch synthesis of polyhydroquinolines. Sci Rep 2021; 11:15657. [PMID: 34341402 PMCID: PMC8329208 DOI: 10.1038/s41598-021-94846-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/19/2021] [Indexed: 11/08/2022] Open
Abstract
A highly efficient and stable heterogeneous coordination polymer (CP) was successfully prepared by hydrothermal combination of silver and 4,6-diamino-2-pyrimidinethiol. The prepared coordination polymer was characterized by FT-IR, XRD, TGA, SEM, EDX, X-ray mapping and Nitrogen adsorption–desorption analysis. The prepared Ag–CP exhibit excellent catalytic activity in multicomponent Hantzsch synthesis of polyhydroquinolines under mild reaction conditions in relatively short reaction times. The heterogeneity of the catalyst was confirmed by the hot filtration test; also, the catalyst was reused for at least four times under the optimized reaction conditions without any significant loss of its catalytic activity.
Collapse
|
12
|
Crystalline salicylic acid as an efficient catalyst for ultrafast Paal–Knorr pyrrole synthesis under microwave induction. J CHEM SCI 2021. [DOI: 10.1007/s12039-021-01891-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Radhika S, Abdulla CMA, Aneeja T, Anilkumar G. Silver-catalysed C–H bond activation: a recent review. NEW J CHEM 2021. [DOI: 10.1039/d1nj02156g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Transition metal catalysed C–H activations are efficient, simple, mild, cost-effective and stereoselective, and many of them are environmentally sustainable transformations.
Collapse
Affiliation(s)
- Sankaran Radhika
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala, 686560, India
| | - C. M. Afsina Abdulla
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala, 686560, India
| | - Thaipparambil Aneeja
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala, 686560, India
| | - Gopinathan Anilkumar
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala, 686560, India
- Advanced Molecular Materials Research Centre (AMMRC), Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala, 686560, India
- Institute for Integrated Programmes and Research in Basic Sciences (IIRBS), Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala, 686560, India
| |
Collapse
|
14
|
Bao‐Le L, Zhang H, Di J, Zhang Z. Polyoxometalate immobilized on MOF‐5 as an environment‐friendly catalyst for the synthesis of poly‐functionalized 3‐pyrrolin‐2‐ones. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Li Bao‐Le
- Department of Radiochemistry China Institute of Atomic Energy Beijing China
| | - Hong‐Yan Zhang
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Material Science Hebei Normal University Shijiazhuang China
| | - Jia‐Qi Di
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Material Science Hebei Normal University Shijiazhuang China
| | - Zhan‐Hui Zhang
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Material Science Hebei Normal University Shijiazhuang China
| |
Collapse
|
15
|
Teja C, Khan FRN. Radical Transformations towards the Synthesis of Quinoline: A Review. Chem Asian J 2020; 15:4153-4167. [PMID: 33135361 DOI: 10.1002/asia.202001156] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/25/2020] [Indexed: 12/21/2022]
Abstract
Quinoline is considered one of the most ubiquitous heterocycles due to its engaging biological activities and synthetic utility over organic transformations. Over the past few decades, numerous reports have been documented in the synthesis of quinolines. The classical methods including, Skraup, Friedlander, Doebner-von-Miller, Conrad-Limpach, Pfitzinger quinoline synthesis, and so forth, these are the well-known methods to construct principal quinoline scaffold with several advantages and limitations. Recently, radical insertion or catalyzed reactions have emerged as a powerful and efficient tool to construct heterocycles with high atom efficiency and step economy. In this concern, this minireview mainly focused on the developments of Quinoline synthesis via radical reactions. In addition, a brief description of the preparation procedure, reactivity, and mechanisms is also included, where as possible. Respectively, the synthesis of quinolines is classified and summarized based on its reactivity, so it will help the researchers to grab the information in this exploration area, as Quinolines are promising pharmacophores.
Collapse
Affiliation(s)
- Chitrala Teja
- Organic and Medicinal Chemistry Research Laboratory, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632 014, Tamil Nadu, India
| | - Fazlur Rahman Nawaz Khan
- Organic and Medicinal Chemistry Research Laboratory, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632 014, Tamil Nadu, India
| |
Collapse
|
16
|
Aneeja T, Radhika S, Neetha M, Anilkumar G. An Overview of the One-pot Synthesis of Imidazolines. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999201001153735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
One-pot syntheses are a simple, efficient and easy methodology, which are widely
used for the synthesis of organic compounds. Imidazoline is a valuable heterocyclic moiety
used as a synthetic intermediate, chiral auxiliary, chiral catalyst and a ligand for asymmetric
catalysis. Imidazole is a fundamental unit of biomolecules that can be easily prepared from
imidazolines. The one-pot method is an impressive approach to synthesize organic compounds
as it minimizes the reaction time, separation procedures, and ecological impact. Many significant
one-pot methods such as N-bromosuccinimide mediated reaction, ring-opening of tetrahydrofuran,
triflic anhydrate mediated reaction, etc. were reported for imidazoline synthesis.
This review describes an overview of the one-pot synthesis of imidazolines and covers literature
up to 2020.
Collapse
Affiliation(s)
- Thaipparambil Aneeja
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala, 686560, India
| | - Sankaran Radhika
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala, 686560, India
| | - Mohan Neetha
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala, 686560, India
| | - Gopinathan Anilkumar
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala, 686560, India
| |
Collapse
|
17
|
Chen X, Fontaine-Vive F, Poulain-Martini S, Michelet V. Silver-catalyzed intramolecular [4 + 2] cycloaddition reaction of amide-1,6-enynes. CATAL COMMUN 2020. [DOI: 10.1016/j.catcom.2020.106117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
18
|
Neetha M, Aneeja T, Afsina CMA, Anilkumar G. An Overview of Ag‐catalyzed Synthesis of Six‐membered Heterocycles. ChemCatChem 2020. [DOI: 10.1002/cctc.202000719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Mohan Neetha
- School of Chemical Sciences Mahatma Gandhi University Priyadarsini Hills P O Kottayam 686560 Kerala India
| | - Thaipparambil Aneeja
- School of Chemical Sciences Mahatma Gandhi University Priyadarsini Hills P O Kottayam 686560 Kerala India
| | - C. M. A. Afsina
- School of Chemical Sciences Mahatma Gandhi University Priyadarsini Hills P O Kottayam 686560 Kerala India
| | - Gopinathan Anilkumar
- School of Chemical Sciences Mahatma Gandhi University Priyadarsini Hills P O Kottayam 686560 Kerala India
- Institute for Integrated Programmes and Research in Basic Sciences (IIRBS) Mahatma Gandhi University Priyadarsini Hills P O Kottayam, 686 560 Kerala India
| |
Collapse
|
19
|
Luna A, Herrera F, Higuera S, Murillo A, Fernández I, Almendros P. AgNO3·SiO2: Convenient AgNPs source for the sustainable hydrofunctionalization of allenyl-indoles using heterogeneous catalysis. J Catal 2020. [DOI: 10.1016/j.jcat.2020.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Liu J, Jiang J, Zheng L, Liu Z. Recent Advances in the Synthesis of Nitrogen Heterocycles Using Arenediazonium Salts as Nitrogen Sources. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000700] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jidan Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials Guangzhou University Guangzhou 510006 People's Republic of China
| | - Jinyuan Jiang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials Guangzhou University Guangzhou 510006 People's Republic of China
| | - Liyao Zheng
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials Guangzhou University Guangzhou 510006 People's Republic of China
| | - Zhao‐Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials Guangzhou University Guangzhou 510006 People's Republic of China
| |
Collapse
|
21
|
Neto JSS, Zeni G. Alkynes and Nitrogen Compounds: Useful Substrates for the Synthesis of Pyrazoles. Chemistry 2020; 26:8175-8189. [PMID: 31990413 DOI: 10.1002/chem.201905276] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/24/2020] [Indexed: 02/06/2023]
Abstract
The easy preparation and functionalization of pyrazoles associated with their innumerable biological properties have made this class of N-heterocycles very attractive for the development of new synthetic routes and applications. The cyclization reactions of alkynes and nitrogen compounds represent a powerful tool for the preparation of pyrazoles. This Review covers the recent advances in the preparation of pyrazoles by reacting alkynes and nitrogen compounds under transition-metal-catalyzed or metal-free conditions.
Collapse
Affiliation(s)
- Jose S S Neto
- Department of Biochemistry and Molecular Biology Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios, CCNE, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, 97105-900, Brazil
| | - Gilson Zeni
- Department of Biochemistry and Molecular Biology Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios, CCNE, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, 97105-900, Brazil
| |
Collapse
|