1
|
Li Y, Gou Y, Hou S, Xu Y, Yang Y, Wan Z, Fan Z. Construction of benzimidazole- and indole-fused azabicyclo[3.1.0]hexanes bearing a cyano-containing quaternary center from vinylsulfonium salts through sequential [3 + 2]/[2 + 1] cyclization. Org Biomol Chem 2025; 23:1325-1329. [PMID: 39744926 DOI: 10.1039/d4ob01615g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
A sequential [3 + 2]/[2 + 1] annulation reactions of benzimidazole- and indole-derived acrylonitriles with vinylsulfonium salts have been developed for the first time, and shown to provide in yields of 32 to 98% a series of azabicyclo[3.1.0]hexanes containing each a cyano-substituted tetrasubstituted carbon stereocenter with >20 : 1 dr. This method features simplicity, high efficiency and broad substrate scopes. Moreover, the synthetic utility was demonstrated with gram-scale reactions and further transformations of the products.
Collapse
Affiliation(s)
- Yuming Li
- Department of Chemistry, College of Sciences, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China.
| | - Yan Gou
- Department of Chemistry, College of Sciences, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China.
| | - Shanling Hou
- Department of Chemistry, College of Sciences, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China.
| | - Yanwei Xu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Yuxing Yang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Zhihan Wan
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Zhi Fan
- Department of Chemistry, College of Sciences, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China.
| |
Collapse
|
2
|
Liashuk OS, Andriashvili VA, Tolmachev AO, Grygorenko OO. Chemoselective Reactions of Functionalized Sulfonyl Halides. CHEM REC 2024; 24:e202300256. [PMID: 37823680 DOI: 10.1002/tcr.202300256] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/13/2023] [Indexed: 10/13/2023]
Abstract
Chemoselective transformations of functionalized sulfonyl fluorides and chlorides are surveyed comprehensively. It is shown that sulfonyl fluorides provide an excellent selectivity control in their reactions. Thus, numerous conditions are tolerated by the SO2 F group - from amide and ester formation to directed ortho-lithiation and transition-metal-catalyzed cross-couplings. Meanwhile, sulfur (VI) fluoride exchange (SuFEx) is also compatible with numerous functional groups, thus confirming its title of "another click reaction". On the contrary, with a few exceptions, most transformations of functionalized sulfonyl chlorides typically occur at the SO2 Cl moiety.
Collapse
Affiliation(s)
- Oleksandr S Liashuk
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Vladyslav A Andriashvili
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Andriy O Tolmachev
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| |
Collapse
|
3
|
Kopyt M, Tryniszewski M, Barbasiewicz M, Kwiatkowski P. Enantioselective Addition of Dialkyl Malonates to β-Arylethenesulfonyl Fluorides under High-Pressure Conditions. Org Lett 2023; 25:6818-6822. [PMID: 37655810 PMCID: PMC10521026 DOI: 10.1021/acs.orglett.3c02302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Indexed: 09/02/2023]
Abstract
Application of high-pressure conditions enables enantioselective Michael-type addition of dialkyl malonates to β-arylethenesulfonyl fluorides. The reaction is efficiently catalyzed with 5 mol % of tertiary amino-thiourea at 9 kbar. Chiral alkanesulfonyl fluorides are formed in yields of up to 96% and enantioselectivities of up to 92%. Functionalization of the adducts via sulfur fluoride exchange (SuFEx) reaction and desulfonylative cyclization is demonstrated.
Collapse
Affiliation(s)
- Michał Kopyt
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
- Biological
and Chemical Research Centre, University
of Warsaw, Żwirki
i Wigury 101, 02-089 Warsaw, Poland
| | - Michał Tryniszewski
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Michał Barbasiewicz
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Piotr Kwiatkowski
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
- Biological
and Chemical Research Centre, University
of Warsaw, Żwirki
i Wigury 101, 02-089 Warsaw, Poland
| |
Collapse
|
4
|
Park JH, González-Montiel GA, Cheong PHY, Bae HY. Alkyl Sulfonyl Fluorides Incorporating Geminal Dithioesters as SuFEx Click Hubs via Water-Accelerated Organosuperbase Catalysis. Org Lett 2023; 25:1056-1060. [PMID: 36762981 DOI: 10.1021/acs.orglett.2c04224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Sulfur(VI) fluoride exchange (SuFEx) is recognized as another emerging tool for click chemistry. The preparation of the functionalized alkyl sulfonyl fluorides as key SuFEx hubs via C(sp3)-C(sp3) bond formation is exceptionally challenging. We report herein a new efficient method for accessing alkyl sulfonyl fluorides incorporating γ-geminal dithioester via phosphazene catalysis. The aqueous, neutral organosuperbase catalytic system amplifies the reactivity by taking advantage of the hydrophobic amplification. SuFEx-active products are applied to the click connection of bioactive molecules. Density functional theory studies show that the selective outcome of the product is guided by an ion-pair organosuperbase catalyst assembly that is potentially stabilized by a hydrogen-bonding interaction between the catalyst and the DTM in the C(sp3)-C(sp3) bond-forming transition structure.
Collapse
Affiliation(s)
- Jin Hyun Park
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gisela A González-Montiel
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Paul Ha-Yeon Cheong
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Han Yong Bae
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
5
|
Zhu DY, Chen Y, Zhang XJ, Yan M. Regioselective conjugate addition of isoxazol-5-ones to ethenesulfonyl fluoride. Org Biomol Chem 2022; 20:4714-4718. [PMID: 35622375 DOI: 10.1039/d2ob00737a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The highly regioselective conjugate addition of isoxazol-5-ones to ethenesulfonyl fluoride (ESF) has been developed. In the presence of different bases, N2-alkylated and C4-alkylated isoxazol-5-ones with a sulfonyl fluoride group were obtained separately with good to excellent yields. Further transformations with amines and phenol gave sulfonamides and sulfonates. The intriguing combination of isoxazol-5-ones and the sulfonyl fluoride group produces valuable products for drug discovery.
Collapse
Affiliation(s)
- Dong-Yu Zhu
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Yuan Chen
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Xue-Jing Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Ming Yan
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
6
|
Yang WF, Shu T, Chen HR, Qin HL, Tang H. A cascade reaction for regioselective construction of pyrazole-containing aliphatic sulfonyl fluorides. Org Biomol Chem 2022; 20:3506-3510. [PMID: 35420611 DOI: 10.1039/d2ob00515h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A copper-catalyzed cascade reaction of α-diazocarbonyl compounds with ethenesulfonyl fluoride (ESF) is developed, affording a variety of highly functionalized pyrazolyl aliphatic sulfonyl fluorides in good to excellent yields (66-98%). This transformation features broad substrates, exclusive regioselectivity, high atom economy and operational simplicity, thus providing a straightforward method for the direct construction of pyrazole-containing aliphatic sulfonyl fluorides, which will provide great applicable value in medicinal chemistry and other related disciplines.
Collapse
Affiliation(s)
- Wen-Fei Yang
- School of Chemistry, Chemical Engineering and Life Sciences; and State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Tao Shu
- School of Chemistry, Chemical Engineering and Life Sciences; and State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Hong-Ru Chen
- School of Chemistry, Chemical Engineering and Life Sciences; and State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Sciences; and State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Haolin Tang
- School of Chemistry, Chemical Engineering and Life Sciences; and State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
7
|
Grygorenko OO, Volochnyuk DM, Vashchenko BV. Emerging Building Blocks for Medicinal Chemistry: Recent Synthetic Advances. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100857] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Oleksandr O. Grygorenko
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Dmitriy M. Volochnyuk
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
- Institute of Organic Chemistry National Academy of Sciences of Ukraine Murmanska Street 5 Kyiv 02094 Ukraine
| | - Bohdan V. Vashchenko
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| |
Collapse
|
8
|
Zhang ZW, Rakesh KP, Liu J, Qin HL, Tang H. A general approach to nitrile- and sulfonyl fluoride-substituted cyclopropanes. Org Biomol Chem 2021; 19:6021-6024. [PMID: 34160538 DOI: 10.1039/d1ob01043c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Both cis and trans relative configurations of functionalized cyano cyclopropane bearing sulfonyl fluoride moiety were accessed by Corey-Chaykovsky cyclopropanation reactions. This protocol used mild conditions, and obtained good yields with excellent functional group compatibility. Further application of this class of compounds in SuFEx reactions and cyano reductions were also successfully achieved in good yields.
Collapse
Affiliation(s)
- Zai-Wei Zhang
- School of Chemistry, Chemical Engineering and Life Science; and State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - K P Rakesh
- School of Chemistry, Chemical Engineering and Life Science; and State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Jing Liu
- School of Chemistry, Chemical Engineering and Life Science; and State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Science; and State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Haolin Tang
- School of Chemistry, Chemical Engineering and Life Science; and State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
9
|
Zhu DY, Zhang XJ, Yan M. Enantioselective Addition of Azlactones to Ethylene Sulfonyl Fluoride via Dual Catalysis. Org Lett 2021; 23:4228-4232. [PMID: 34029100 DOI: 10.1021/acs.orglett.1c01193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Enantioselective conjugate addition of azlactones to ethylene sulfonyl fluoride has been achieved via the cooperative catalysis with (DHQD)2PHAL and a hydrogen-bond donor (HBD). This approach furnishes a facile access to a range of structurally diverse azlactone sulfonyl fluoride derivatives with good to excellent yields and enantioselectivities. The combination of azlactone and sulfonyl fluoride group produces valuable unnatural α-quaternary amino acid derivatives for the drug discovery.
Collapse
Affiliation(s)
- Dong-Yu Zhu
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xue-Jing Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ming Yan
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
10
|
Chen J, Zhu DY, Zhang XJ, Yan M. Highly Enantioselective Addition of N-2,2,2-Trifluoroethylisatin Ketimines to Ethylene Sulfonyl Fluoride. J Org Chem 2021; 86:3041-3048. [PMID: 33503367 DOI: 10.1021/acs.joc.0c02511] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An enantioselective Michael addition between N-2,2,2-trifluoroethylisatin ketimines and ethylene sulfonyl fluoride has been disclosed. This method provides a facile strategy to access a range of structurally diverse isatin-derived α-(trifluoromethyl)imine derivatives with excellent yields and enantioselectivities. The intriguing combination of α-(trifluoromethyl)amine and sulfonyl fluoride groups leads to the valuable candidates for the drug discovery.
Collapse
Affiliation(s)
- Jie Chen
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Dong-Yu Zhu
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xue-Jing Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ming Yan
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
11
|
Chen HR, Hu ZY, Qin HL, Tang H. A novel three-component reaction for constructing indolizine-containing aliphatic sulfonyl fluorides. Org Chem Front 2021. [DOI: 10.1039/d0qo01430c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A copper-catalyzed three-component reaction for transforming quinolines, isoquinolines and pyridines to a class of indolizine-containing alkyl sulfonyl fluorides was developed.
Collapse
Affiliation(s)
- Hong-Ru Chen
- School of Chemistry
- Chemical Engineering and Life Science; and State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Zhen-Yu Hu
- School of Chemistry
- Chemical Engineering and Life Science; and State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Hua-Li Qin
- School of Chemistry
- Chemical Engineering and Life Science; and State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Haolin Tang
- School of Chemistry
- Chemical Engineering and Life Science; and State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
| |
Collapse
|
12
|
Chen J, Huang BQ, Wang ZQ, Zhang XJ, Yan M. Asymmetric Conjugate Addition of Ethylene Sulfonyl Fluorides to 3-Amido-2-oxindoles: Synthesis of Chiral Spirocyclic Oxindole Sultams. Org Lett 2019; 21:9742-9746. [DOI: 10.1021/acs.orglett.9b03911] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jie Chen
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Bao-qin Huang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zeng-qing Wang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xue-jing Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ming Yan
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
13
|
Ai C, Zhu F, Wang Y, Yan Z, Lin S. SO 2F 2-Mediated Epoxidation of Olefins with Hydrogen Peroxide. J Org Chem 2019; 84:11928-11934. [PMID: 31436983 DOI: 10.1021/acs.joc.9b01784] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An inexpensive, mild, and highly efficient epoxidation protocol has been developed involving bubbling SO2F2 gas into a solution of olefin, 30% aqueous hydrogen peroxide, and 4 N aqueous potassium carbonate in 1,4-dioxane at room temperature for 1 h with the formation of the corresponding epoxides in good to excellent yields. The novel SO2F2/H2O2/K2CO3 epoxidizing system is suitable to a variety of olefinic substrates including electron-rich and electron-deficient ones.
Collapse
Affiliation(s)
- Chengmei Ai
- College of Chemistry , Nanchang University, Nanchang 330031 , P. R. China
| | - Fuyuan Zhu
- College of Chemistry , Nanchang University, Nanchang 330031 , P. R. China
| | - Yanmei Wang
- College of Chemistry , Nanchang University, Nanchang 330031 , P. R. China
| | - Zhaohua Yan
- College of Chemistry , Nanchang University, Nanchang 330031 , P. R. China
| | - Sen Lin
- College of Chemistry , Nanchang University, Nanchang 330031 , P. R. China
| |
Collapse
|