1
|
Najiar LO, Pati BV, Das Adhikari GK, Nanda T, Ravikumar PC. Hydroxy Group-Enabled Regio- and Stereoselective Hydroalkylation of Alkynyl Cyclobutanol via Palladium-Catalyzed C-C Bond Activation of Cyclopropanol: A One-Step Access to Vinyl Cyclobutanols. Org Lett 2024; 26:6314-6319. [PMID: 39038198 DOI: 10.1021/acs.orglett.4c01598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The regio-/stereoselective synthesis of vinyl cyclobutanols from alkynyl cyclobutanols is demonstrated. Here, selective C-C bond activation of the cyclopropyl alcohol ring has been achieved in the presence of the cyclobutanol ring. The KIE experiments indicated the noninvolvement of the O-H oxidative addition step in the rate-determining step. Further, the applicability of these vinyl cyclobutanols for the synthesis of 1,4-diketones and 1,6-diketone is demonstrated.
Collapse
Affiliation(s)
- Lamphiza O Najiar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha 752050, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Bedadyuti Vedvyas Pati
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha 752050, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Gopal Krushna Das Adhikari
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha 752050, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Tanmayee Nanda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha 752050, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Ponneri C Ravikumar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha 752050, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
2
|
Yuan SY, Yan QQ, Wang D, Dan TT, He L, He CY, Chu WD, Liu QZ. Asymmetric Synthesis of 3-Methyleneindolines via Rhodium(I)-Catalyzed Alkynylative Cyclization of N-( o-Alkynylaryl)imines. Org Lett 2021; 23:4823-4827. [PMID: 34080868 DOI: 10.1021/acs.orglett.1c01518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first asymmetric synthesis of 3-methyleneindolines from alkynyl imines has been developed via a rhodium-catalyzed tandem process: regioselective alkynylation of the internal alkynes and subsequent intramolecular addition to the imines. The reaction proceeded with unconventional chemoselectivity and provided 3-methyleneindolines with good yields (up to 82% yield) and high enantioselectivities (up to 97% ee). Moreover, this transformation also features mild reaction conditions, perfect atom economy, and a broad substrate scope.
Collapse
Affiliation(s)
- Shi-Yi Yuan
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University,No. 1, Shida Road, Nanchong 637002, China
| | - Qi-Qi Yan
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University,No. 1, Shida Road, Nanchong 637002, China
| | - Dan Wang
- Chengdu Institute of Product Quality Inspection Co., Ltd., Chengdu 610000,China
| | - Ting-Ting Dan
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University,No. 1, Shida Road, Nanchong 637002, China
| | - Long He
- College of Chemistry and Materials Engineering, Guiyang University, Guiyang 550005, China
| | - Cheng-Yu He
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University,No. 1, Shida Road, Nanchong 637002, China
| | - Wen-Dao Chu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University,No. 1, Shida Road, Nanchong 637002, China
| | - Quan-Zhong Liu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University,No. 1, Shida Road, Nanchong 637002, China
| |
Collapse
|
3
|
You G, Chang ZX, Yan J, Xia C, Li FR, Li HS. Rhodium-catalyzed sequential intermolecular hydroacylation and deconjugative isomerization toward diversified diketones. Org Chem Front 2021. [DOI: 10.1039/d0qo01174f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A rhodium(i)-catalyzed reaction via an intermolecular hydroacylation/deconjugative isomerization cascade was developed which enabled the facile synthesis of valuable 1,4-, 1,5-, and 1,6-diketones with good to excellent yields.
Collapse
Affiliation(s)
- Guirong You
- College of Pharmaceutical Science
- Zhejiang University of Technology
- Hangzhou 310014
- China
- Institute of Pharmacology
| | - Zhi-Xin Chang
- Institute of Pharmacology
- School of Pharmaceutical Sciences
- Shandong First Medical University & Shandong Academy of Medical Sciences
- Taian 271016
- China
| | - Jizhong Yan
- College of Pharmaceutical Science
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Chengcai Xia
- Institute of Pharmacology
- School of Pharmaceutical Sciences
- Shandong First Medical University & Shandong Academy of Medical Sciences
- Taian 271016
- China
| | - Fu-Rong Li
- Institute of Pharmacology
- School of Pharmaceutical Sciences
- Shandong First Medical University & Shandong Academy of Medical Sciences
- Taian 271016
- China
| | - Hong-Shuang Li
- Institute of Pharmacology
- School of Pharmaceutical Sciences
- Shandong First Medical University & Shandong Academy of Medical Sciences
- Taian 271016
- China
| |
Collapse
|
4
|
Li HS, Lu SC, Chang ZX, Hao L, Li FR, Xia C. Rhodium-Catalyzed Ring-Opening Hydroacylation of Alkylidenecyclopropanes with Chelating Aldehydes for the Synthesis of γ,δ-Unsaturated Ketones. Org Lett 2020; 22:5145-5150. [PMID: 32610932 DOI: 10.1021/acs.orglett.0c01751] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The first intermolecular ring-opening hydroacylation of alkylidenecyclopropanes with chelating aldehydes through a rhodium-catalyzed acrylamide-promoted protocol is reported. This highly efficient catalytic system enables the direct synthesis of a diverse range of linear γ,δ-unsaturated ketones. Good functional group compatibility is demonstrated for the completely atom-economical and remarkably selective proximal C-C bond cleavage process. Mechanistic studies reveal that the bidentate coordination of N,N-dimethylmethacrylamide (L1) to the acylrhodium intermediates might facilitate the cyclopropane ring fragmentation and isomerization.
Collapse
Affiliation(s)
- Hong-Shuang Li
- Institute of Pharmacology, School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, 619 Changcheng Road, Taian 271016, P.R. China
| | - Shi-Chao Lu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 2A Nanwei Road, Xicheng District, Beijing 100050, P.R. China
| | - Zhi-Xin Chang
- Institute of Pharmacology, School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, 619 Changcheng Road, Taian 271016, P.R. China
| | - Liqiang Hao
- Institute of Pharmacology, School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, 619 Changcheng Road, Taian 271016, P.R. China
| | - Fu-Rong Li
- Institute of Pharmacology, School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, 619 Changcheng Road, Taian 271016, P.R. China
| | - Chengcai Xia
- Institute of Pharmacology, School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, 619 Changcheng Road, Taian 271016, P.R. China
| |
Collapse
|
5
|
Jeon H, Ko SB, Lee S. Palladium-catalyzed decarboxylative gem-selective addition of alkynoic acids to terminal alkynes. Org Chem Front 2020. [DOI: 10.1039/d0qo01133a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alkynoic acids added to terminal alkynes to give gem-1,3-enynes with high selectivity and good yields. In addition, the reaction of alkynoic acids with propiolic acid provided the corresponding gem-1,3-enynes via double decarboxylation.
Collapse
Affiliation(s)
- Hyojin Jeon
- Department of Chemistry
- Chonnam National University
- Gwangju 61186
- Republic of Korea
| | - Soo-Byung Ko
- Materials Research Team
- Display Research Center
- Samsung Display Co
- Ltd
- Gyeonggi-do 17113
| | - Sunwoo Lee
- Department of Chemistry
- Chonnam National University
- Gwangju 61186
- Republic of Korea
| |
Collapse
|