1
|
Giustiniano M. Isonitrile Photochemistry: A Functional Group Class Coming in from the Cold. Chemistry 2024; 30:e202402350. [PMID: 39286928 DOI: 10.1002/chem.202402350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/04/2024] [Accepted: 09/17/2024] [Indexed: 09/19/2024]
Abstract
Starting from a historical background that acknowledges isonitriles as a neglected class of compounds due to their unpleasant smell and hardly controlled reaction conditions with open shell species, the present concept article aims at highlighting the seeds of the modern isonitrile photochemistry. Representative essential transformations achieved via either UV light irradiation or radical initiators at high temperatures are brought into play to draw a parallel with the current literature relying on the exploitation of visible light photochemical methods. Such a comparison points out the potential of this enabling technology to further expand the scope of isonitrile chemistry and the unmet challenges which makes it a very stimulating field.
Collapse
Affiliation(s)
- Mariateresa Giustiniano
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131, Napoli, Italy
| |
Collapse
|
2
|
Hong D, Falvey DE. Rearrangement, Elimination, and Ring-Opening Reactions of Cyclopropyl-Substituted Nitrenium Ions: A Computational and Experimental Investigation. J Org Chem 2024; 89:10785-10795. [PMID: 39004832 DOI: 10.1021/acs.joc.4c01014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
N-(4-Biphenylyl)-N-cyclopropyl nitrenium ion 5 and N-benzyl-N-cyclopropyl nitrenium ion (6) were generated through photolysis of their corresponding N-aminopyridinium ion photoprecursors. In the case of 5, stable products result from a combination of cyclopropyl ring expansion (N-biphenylazetium ion) and ethylene elimination (biphenylisonitrilium ion). When present in high concentrations, methanol can add to the cyclopropyl ring-forming N-3-methoxypropyl-N-biphenyl iminium ion. In contrast, the only detectable product from the N-benzyl-N-cyclopropyl nitrenium ion (6) is benzylisonitrile, resulting from the elimination of ethylene. Density functional theory (DFT) calculations predict the product distributions from the more stable biphenyl system 5 with reasonable accuracy. However, product distributions from the less stable benzyl system 6 are forecast with less accuracy.
Collapse
Affiliation(s)
- Donald Hong
- Department of Chemistry and Biochemistry University of Maryland College Park, Maryland 20742, United States
| | - Daniel E Falvey
- Department of Chemistry and Biochemistry University of Maryland College Park, Maryland 20742, United States
| |
Collapse
|
3
|
Zubkov MO, Dilman AD. Radical reactions enabled by polyfluoroaryl fragments: photocatalysis and beyond. Chem Soc Rev 2024; 53:4741-4785. [PMID: 38536104 DOI: 10.1039/d3cs00889d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Polyfluoroarenes have been known for a long time, but they are most often used as fluorinated building blocks for the synthesis of aromatic compounds. At the same time, due to peculiar fluorine effect, they have unique properties that provide applications in various fields ranging from synthesis to materials science. This review summarizes advances in the radical chemistry of polyfluoroarenes, which have become possible mainly with the advent of photocatalysis. Transformations of the fluorinated ring via the C-F bond activation, as well as use of fluoroaryl fragments as activating groups and hydrogen atom transfer agents are discussed. The ability of fluoroarenes to serve as catalysts is also considred.
Collapse
Affiliation(s)
- Mikhail O Zubkov
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation.
| | - Alexander D Dilman
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation.
| |
Collapse
|
4
|
Garg A, Haswell A, Hopkinson MN. C-F Bond Insertion: An Emerging Strategy for Constructing Fluorinated Molecules. Chemistry 2024; 30:e202304229. [PMID: 38270496 DOI: 10.1002/chem.202304229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 01/26/2024]
Abstract
C-F Insertion reactions, where an organic fragment formally inserts into a carbon-fluorine bond in a substrate, are highly attractive, yet largely unexplored, methods to prepare valuable fluorinated molecules. The inherent strength of C-F bonds and the resulting need for a large thermodynamic driving force to initiate C-F cleavage often leads to sequestering of the released fluoride in an unreactive by-product. Recently, however, several groups have succeeded in overcoming this challenge, opening up the study of C-F insertion as an efficient and highly atom-economical approach to prepare fluorinated compounds. In this article, the recent breakthroughs are discussed focusing on the key conceptual advances that allowed for both C-F bond cleavage and subsequent incorporation of the released fluoride into the product.
Collapse
Affiliation(s)
- Arushi Garg
- School of Natural and Environmental Sciences, Newcastle University, Bedson Building, NE1 7RU, Newcastle Upon Tyne, UK
| | - Alex Haswell
- School of Natural and Environmental Sciences, Newcastle University, Bedson Building, NE1 7RU, Newcastle Upon Tyne, UK
| | - Matthew N Hopkinson
- School of Natural and Environmental Sciences, Newcastle University, Bedson Building, NE1 7RU, Newcastle Upon Tyne, UK
| |
Collapse
|
5
|
Huang J, Gao Q, Zhong T, Chen S, Lin W, Han J, Xie J. Photoinduced copper-catalyzed C-N coupling with trifluoromethylated arenes. Nat Commun 2023; 14:8292. [PMID: 38092783 PMCID: PMC10719352 DOI: 10.1038/s41467-023-44097-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Selective defluorinative functionalization of trifluoromethyl group (-CF3) is an attractive synthetic route to the pharmaceutically privileged fluorine-containing moiety. Herein, we report a strategy based on photoexcited copper catalysis to activate the C-F bond of di- or trifluoromethylated arenes for divergent radical C-N coupling with carbazoles and aromatic amines. The use of different ligands can tune the reaction products diversity. A range of substituted, structurally diverse α,α-difluoromethylamines can be obtained from trifluoromethylated arenes via defluorinative C-N coupling with carbazoles, while an interesting double defluorinative C-N coupling is ready for difluoromethylated arenes. Based on this success, a carbazole-centered PNP ligand is designed to be an optimal ligand, enabling a copper-catalyzed C-N coupling for the construction of imidoyl fluorides from aromatic amines through double C-F bond functionalization. Interestingly, a 1,2-difluoroalkylamination strategy of styrenes is also developed, delivering γ,γ-difluoroalkylamines, a bioisostere to β-aminoketones, in synthetically useful yields. The DFT studies reveal an inner-sphere electron transfer mechanism for Cu-catalyzed selective activation of C(sp3)-F bonds.
Collapse
Affiliation(s)
- Jun Huang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Qi Gao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Tao Zhong
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Shuai Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wei Lin
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Jie Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
6
|
Kim HE, Choi JH, Chung WJ. Fluorine-Assisted Rearrangement of Geminal Azidofluorides to Imidoyl Fluorides. J Org Chem 2023. [PMID: 37130141 DOI: 10.1021/acs.joc.3c00183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Organoazide rearrangement constitutes versatile synthetic strategies but typically requires an extremely strong acid and/or a high reaction temperature. Our group recently discovered the remarkable accelerating effect of the geminal fluorine substituent that enables the facile rearrangement of azides into imidoyl fluorides without the aid of acid under much milder reaction conditions. The role of geminal fluorine was elucidated by both experimental and computational investigations. This new reactivity led to the development of a practical one-step tandem preparative method for potentially useful and bench-stable imidoyl fluorides from a wide range of structurally diverse geminal chlorofluorides. Our additional efforts to expand the reaction scope regarding the migrating group, halogen, and carbonyl function are described, and the synthetic utility of the imidoyl fluoride products was demonstrated in hopes of promoting the use of this under-appreciated functional group in the synthetic organic community.
Collapse
Affiliation(s)
- Ha Eun Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Jun-Ho Choi
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Won-Jin Chung
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| |
Collapse
|
7
|
Russo C, Brunelli F, Cesare Tron G, Giustiniano M. Isocyanide-Based Multicomponent Reactions Promoted by Visible Light Photoredox Catalysis. Chemistry 2023; 29:e202203150. [PMID: 36458647 DOI: 10.1002/chem.202203150] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/03/2022]
Abstract
Isocyanide-based multicomponent reactions claim a one century-old history of flourishing developments. On the other hand, the enormous impact of recent progresses in visible light photocatalysis has boosted the identification of new straightforward and green approaches to both new and known chemical entities. In this context, the application of visible light photocatalytic conditions to multicomponent processes has been promoting key stimulating advancements. Spanning from radical-polar crossover pathways, to photoinduced and self-catalyzed transformations, to reactions involving the generation of imidoyl radical species, the present literature analysis would provide a general and critical overview about the potentialities and challenges of exploiting isocyanides in visible light photocatalytic multicomponent reactions.
Collapse
Affiliation(s)
- Camilla Russo
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131, Napoli, Italy
| | - Francesca Brunelli
- Department of Drug Science, University of Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
| | - Gian Cesare Tron
- Department of Drug Science, University of Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
| | - Mariateresa Giustiniano
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131, Napoli, Italy
| |
Collapse
|
8
|
Kim HE, Choi JH, Chung WJ. Synthesis of α-Ketoimidoyl Fluorides via Geminal Fluorine-Promoted Azide Rearrangement. Org Lett 2021; 23:8810-8815. [PMID: 34723558 DOI: 10.1021/acs.orglett.1c03309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite the promising synthetic potential, the utilization of imidoyl fluorides has been hampered by the lack of broadly applicable preparative methods. Herein, bench-stable α-ketoimidoyl fluorides were synthesized from geminal chlorofluorides through tandem azidation/rearrangement under mild conditions. The efficiency was consistently high, regardless of the steric and electronic environments. The synthetic utility of the α-ketoimidoyl fluoride was also demonstrated. Furthermore, the remarkable accelerating effect of the geminal fluorine substituent was identified and rationalized by density functional theory calculation.
Collapse
Affiliation(s)
- Ha Eun Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Jun-Ho Choi
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Won-Jin Chung
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| |
Collapse
|
9
|
Markos A, Janecký L, Chvojka T, Martinek T, Martinez‐Seara H, Klepetářová B, Beier P. Haloalkenyl Imidoyl Halides as Multifacial Substrates in the Stereoselective Synthesis of
N
‐Alkenyl Compounds. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Athanasios Markos
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nám. 2 16610 Prague 6 Czech Republic
- Department of Organic Chemistry Faculty of Science Charles University Hlavova 2030/8 CZ-128 43 Prague 2 Czech Republic
| | - Lukáš Janecký
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nám. 2 16610 Prague 6 Czech Republic
| | - Tomáš Chvojka
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nám. 2 16610 Prague 6 Czech Republic
| | - Tomáš Martinek
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nám. 2 16610 Prague 6 Czech Republic
| | - Hector Martinez‐Seara
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nám. 2 16610 Prague 6 Czech Republic
| | - Blanka Klepetářová
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nám. 2 16610 Prague 6 Czech Republic
| | - Petr Beier
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nám. 2 16610 Prague 6 Czech Republic
| |
Collapse
|