1
|
Chen T, Huang T, Ye M, Shen J. Acid-Catalyzed, Metal- and Oxidant-Free C=C Bond Cleavage of Enaminones: One-Pot Synthesis of 3,4-Dihydroquinazolines. Molecules 2025; 30:350. [PMID: 39860220 PMCID: PMC11767836 DOI: 10.3390/molecules30020350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
In this study, we present the HOAc-catalyzed selective cleavage of the C=C double bond of enaminones, enabling the formation of a new C-N bond and a new C=N bond for the one-pot synthesis of 2-substituted 3,4-dihydroquinazolines directly from ynones and 2-(aminomethyl)anilines. This method operates in ethanol under transition-metal-free and oxidant-free conditions, offering a sustainable and efficient approach for the synthesis of 3,4-dihydroquinazolines with broad functional group tolerance.
Collapse
Affiliation(s)
- Ting Chen
- School of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, China; (T.C.); (T.H.); (M.Y.)
- Xiamen Key Laboratory of Food and Drug Safety, Xiamen Huaxia University, Xiamen 361024, China
| | - Ting Huang
- School of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, China; (T.C.); (T.H.); (M.Y.)
| | - Moudan Ye
- School of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, China; (T.C.); (T.H.); (M.Y.)
| | - Jinhai Shen
- School of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, China; (T.C.); (T.H.); (M.Y.)
- Xiamen Key Laboratory of Food and Drug Safety, Xiamen Huaxia University, Xiamen 361024, China
| |
Collapse
|
2
|
Lin J, Tian J, Lu Y, Xu Y, Chen L, Jiang Y, Guo M, Zhang X, Zhang C. Divergent Synthesis of Enynals and Dihydrobenzo[ f]isoquinolines via Deoxyalkynylation of Enaminones Enabled by the Cooperative Action of Tf 2O/Pd/Cu. J Org Chem 2024; 89:16419-16425. [PMID: 39462843 DOI: 10.1021/acs.joc.4c01603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
A variety of enynals and dihydrobenzo[f]isoquinolines were effectively synthesized with favorable functional group compatibility via deoxyalkynylation of enaminones enabled by the cooperative action of Tf2O/Pd/Cu. The reaction system demonstrated the ability to be expanded to the deoxyarylation/deoxyaryloxylation of enaminones with arylboronic acids or phenols, facilitating the efficient formation of C-C/C-O bonds and showcasing the practicality and versatility of the methodology.
Collapse
Affiliation(s)
- Jianping Lin
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Jiakai Tian
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Yu Lu
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Yiming Xu
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Lulu Chen
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Yucai Jiang
- Department of Pharmacy, Affiliated Hospital of Putian University, Putian 35110, P. R. China
| | - Mengping Guo
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Xiaohan Zhang
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| | - Changyuan Zhang
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P. R. China
| |
Collapse
|
3
|
Liu O, Chen P, Xiao Q, Yue C, Huang Y, Ye G. Density functional theory guide for copolymerization mechanism between allyl radical with radicalophile: photo-driven radical mediated [3 + 2] cyclization. J Mol Model 2024; 30:306. [PMID: 39134770 DOI: 10.1007/s00894-024-06104-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 08/06/2024] [Indexed: 09/11/2024]
Abstract
CONTEXT The challenge of activating inert allyl monomers for polymerization has persisted, prompting our proposal of the photo-driven radical mediated [3 + 2] cyclization reaction (PRMC). This innovative approach significantly expedites the homopolymerization of multi-allyl monomers, enabling the synthesis of embolic microspheres for hepatocellular carcinoma interventions. PRMC involves allyl monomers to form allylic radicals and then radicals participating in a cycloaddition reaction with unsaturated olefins as radicalophiles to form cyclopentane-based radical products. While extensively studied in the theoretical and experimental homopolymerization, PRMC's application in copolymerization remains unexplored. To address this knowledge gap, we explored the elementary reaction, selecting allyl methyl ether radicals (AMER) and α,β-unsaturated ketones as radicalophiles for copolymerization investigations by density functional theory (DFT) analysis. We quantified energy differences between ground and excited states of reactants, elucidated frontier molecular orbitals, and assessed thermodynamic data for copolymerization feasibility. We also evaluated the electronic properties of reactants, predicting the reactivity of radicalophiles and the interactions of intermolecular reactions. Additionally, we applied transition state theory and interaction/deformation models and conducted a local orbital analysis to comprehensively study excess electron distribution and gyration radius of cyclic radical product. Our findings offer vital insights into PRMC's potential in copolymerization. This research provides a robust theoretical foundation for practical application, enhancing the polymerization field. METHODS Based on density functional theory (DFT), the calculations were performed at the M06-2X/6-311 + + G(d,p) level in/by Gaussian 16 package. Subsequently, our analytical results apply time-dependent density-functional theory (TD-DFT) and solvent modeling (SMD). Single-point energy calculations determine the driving force behind the radicals' reaction with radicalophiles. Furthermore, we assessed the electrostatic potential (ESP) of the reactants. The results of the calculations were visualized by the Multiwfn 3.6 and VMD 1.9 programs.
Collapse
Affiliation(s)
- Ou Liu
- The Fifth Affiliated Hospital, Guangdong Province NMPA and State Key Laboratory, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Piaoyi Chen
- The Fifth Affiliated Hospital, Guangdong Province NMPA and State Key Laboratory, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Qinglin Xiao
- The Fifth Affiliated Hospital, Guangdong Province NMPA and State Key Laboratory, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Chengfeng Yue
- The Fifth Affiliated Hospital, Guangdong Province NMPA and State Key Laboratory, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Yugang Huang
- The Fifth Affiliated Hospital, Guangdong Province NMPA and State Key Laboratory, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Guodong Ye
- The Fifth Affiliated Hospital, Guangdong Province NMPA and State Key Laboratory, The School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China.
| |
Collapse
|
4
|
Zhao P, Zhou Y, Wang C, Wu AX. Iodine-Promoted Thioylation and Dicarbonylation of Enaminone α-C Sites: Synthesis of Fully Substituted Thiazoles via C═C Bond Cleavage. J Org Chem 2024; 89:2505-2515. [PMID: 38315825 DOI: 10.1021/acs.joc.3c02539] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
A novel iodine-promoted difunctionalization of α-C sites in enaminones was demonstrated as a means of synthesizing a variety of fully substituted thiazoles by constructing C-C(CO), C-S, and C-N bonds. This transformation allows the realization of enaminones as unusual aryl C2 synthons and simultaneously allows the thioylation and dicarbonylation of α-C sites. A preliminary mechanistic study was performed and indicated that the cleavage of C═C bonds in enaminones involves a bicyclization/ring-opening and oxidative coupling sequence.
Collapse
Affiliation(s)
- Peng Zhao
- Institute of Advanced Studies, School of Pharmaceutical Sciences, Taizhou University, Taizhou, Zhejiang 318000, P. R. China
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - You Zhou
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Can Wang
- Institute of Advanced Studies, School of Pharmaceutical Sciences, Taizhou University, Taizhou, Zhejiang 318000, P. R. China
| | - An-Xin Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
5
|
Akkineni R, Markandeya SV, Prasad AN, Yamajala B, B VR, Chaudhari S, Kumar D, Gadge ST, Bhanage BM. Rapid Synthesis of 1‐Aryl‐3, 3‐dimethyltriazenes by Using In Situ Generated Aryldiazonium Tetrafluoroborate Salts with “DMF‐DMA” under Ambient Conditions. ChemistrySelect 2022. [DOI: 10.1002/slct.202203092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Rajesh Akkineni
- Department of Engineering Chemistry Andhra University Visakhapatnam, A.P. India
- Department of Medicinal Chemistry Aragen Life Sciences Pvt. Ltd. (Formerly known as GVK Biosciences Pvt. Ltd.) IDA, Nacharam Hyderabad Telangana India
| | - Sarma V. Markandeya
- Department of Engineering Chemistry Andhra University Visakhapatnam, A.P. India
- Department of Medicinal Chemistry Aragen Life Sciences Pvt. Ltd. (Formerly known as GVK Biosciences Pvt. Ltd.) IDA, Nacharam Hyderabad Telangana India
| | - Avvari N. Prasad
- Inorganic and physical chemistry division CSIR-Indian institute of chemical technology Uppal road Hyderabad Telangana India
| | - Bhaskar Yamajala
- Department of Chemistry School of Science GITAM Hyderabad Telangana India
| | - Venkateswara Rao B
- Department of Engineering Chemistry Andhra University Visakhapatnam, A.P. India
| | - Shankar Chaudhari
- Department of Chemistry School of Chemical Engineering and Physical Sciences Lovely Professional University Punjab India
| | - Deepak Kumar
- Department of Chemistry School of Chemical Engineering and Physical Sciences Lovely Professional University Punjab India
| | - Sandip T. Gadge
- Department of Chemistry Institute of Chemical Technology, Matunga Mumbai India
| | | |
Collapse
|
6
|
Ghorbani-Choghamarani A, Taherinia Z. Recent advances utilized in artificial switchable catalysis. RSC Adv 2022; 12:23595-23617. [PMID: 36090388 PMCID: PMC9389550 DOI: 10.1039/d2ra03842k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/30/2022] [Indexed: 11/29/2022] Open
Abstract
Developing "green" catalytic systems with desirable performance such as solubility, recyclability, and switchability is a great challenge. However, inspired by nature, the studies on synthesis and activity of artificial switchable metal catalysts and organocatalysts have become an intense, fervid, and challenging field of research. The peculiarity of these catalysts is that they can be generally triggered in the "on" or "off" states by several external stimuli such as light, heat, solvents, pH change, coordination events or ion influxes, redox processes, mechanical forces, or other changes in reaction conditions. A large number of review articles are available in these areas. However, most efforts are currently focused on the invention of new types of switchable catalysts with different forms of stimuli-response units incorporated within their architectures in order to achieve control over the catalytic activity and regio-, chemo- and stereocontrol of various chemical reactions. Thus, in this review, we begin with a brief introduction to switchable catalysts, followed by discussion of types of stimuli and the influence factors on their activities in the field of biomedical engineering, and catalysis as well as related catalytic mechanisms summarized and discussed. The emphasis is on the recent advances utilized in artificial switchable catalysis.
Collapse
Affiliation(s)
- Arash Ghorbani-Choghamarani
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran +98 8138380709 +98 8138282807
| | - Zahra Taherinia
- Department of Chemistry, Ilam University P. O. Box 69315516 Ilam Iran
| |
Collapse
|
7
|
Metal-free oxidative activation of enaminone C=C bond by ammonium halide and DMSO: an access to synthetic pyridines. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Alvi S, Jayant V, Ali R. Applications of Oxone® in Organic Synthesis: An Emerging Green Reagent of Modern Era. ChemistrySelect 2022. [DOI: 10.1002/slct.202200704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shakeel Alvi
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla New Delhi 110025 India
| | - Vikrant Jayant
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla New Delhi 110025 India
| | - Rashid Ali
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, Okhla New Delhi 110025 India
| |
Collapse
|
9
|
Liu Y, Zhang T, Wan JP. Ultrasound-Promoted Synthesis of α-Thiocyanoketones via Enaminone C═C Bond Cleavage and Tunable One-Pot Access to 4-Aryl-2-aminothiazoles. J Org Chem 2022; 87:8248-8255. [PMID: 35616657 DOI: 10.1021/acs.joc.2c00708] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ultrasound has been successfully employed to promote the thiocyanation of the C═C bond in enaminones for the synthesis of α-thiocyanoketones and 2-aminothiazoles. The reactions of enaminones with ammonium thiocyanate provide α-thiocyanoketones with ultrasound irradiation at room temperature. More interestingly, simply further heating the vessel after ultrasonic irradiation leads to the selective synthesis of 2-aminothiazoles with an unconventional 4-aryl substructure.
Collapse
Affiliation(s)
- Yunyun Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Tao Zhang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
10
|
Wang Z, Zhao B, Liu Y, Wan J. Recent Advances in Reactions Using Enaminone in Water or Aqueous Medium. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200144] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zhouying Wang
- College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 People's Republic of China
| | - Baoli Zhao
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University Shaoxing Zhejiang 312000 People's Republic of China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 People's Republic of China
| | - Jie‐Ping Wan
- College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 People's Republic of China
| |
Collapse
|
11
|
Zhang C, Luo J, Zhang J, Chen L, Zhu X, Guo M, Shen C, Li Z, Wang W. Tf
2
O‐mediated Regioselective C(sp
2
)−H Sulfenylation of Enaminones Using Methyl Sulfoxides as Sulfur Sources. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Changyuan Zhang
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology College of Chemistry and Bio-engineering Yichun University 576 Xuefu Road Yichun 336000 P. R. China
| | - Jian Luo
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology College of Chemistry and Bio-engineering Yichun University 576 Xuefu Road Yichun 336000 P. R. China
| | - Jiantao Zhang
- College of Chemistry Guangdong University of Petrochemical Technology Guandu Road Maoming 525000 P. R. China
| | - Lulu Chen
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology College of Chemistry and Bio-engineering Yichun University 576 Xuefu Road Yichun 336000 P. R. China
| | - Xuncheng Zhu
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology College of Chemistry and Bio-engineering Yichun University 576 Xuefu Road Yichun 336000 P. R. China
| | - Mengping Guo
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology College of Chemistry and Bio-engineering Yichun University 576 Xuefu Road Yichun 336000 P. R. China
| | - Chan Shen
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology College of Chemistry and Bio-engineering Yichun University 576 Xuefu Road Yichun 336000 P. R. China
| | - Zeng Li
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology College of Chemistry and Bio-engineering Yichun University 576 Xuefu Road Yichun 336000 P. R. China
| | - Wei Wang
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology College of Chemistry and Bio-engineering Yichun University 576 Xuefu Road Yichun 336000 P. R. China
| |
Collapse
|
12
|
|
13
|
Liu B, Wang Z, Sun K, Tang S, Wang X. Silver-Mediated Radical Trifluoromethylthiolation Cyclization: Synthesis of CF 3S-Containing Benzimidazole[2,1- a]isoquinolines. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202203053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Suresh S, Bhimrao Patil P, Yu P, Fang C, Weng Y, Kavala V, Yao C. A Study of the Reactions of 3‐Bromopropenals with Anilines for the Synthesis of α‐Bromo Enaminones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Sundaram Suresh
- Department of Chemistry National Taiwan Normal University 88, Sec. 4, Ting-Zhou Road Taipei Taiwan 116, R.O.C
| | - Prakash Bhimrao Patil
- Department of Chemistry National Taiwan Normal University 88, Sec. 4, Ting-Zhou Road Taipei Taiwan 116, R.O.C
| | - Pao‐Hsing Yu
- Department of Chemistry National Taiwan Normal University 88, Sec. 4, Ting-Zhou Road Taipei Taiwan 116, R.O.C
| | - Chia‐Chi Fang
- Department of Chemistry National Taiwan Normal University 88, Sec. 4, Ting-Zhou Road Taipei Taiwan 116, R.O.C
| | - Yin‐Zhi Weng
- Department of Chemistry National Taiwan Normal University 88, Sec. 4, Ting-Zhou Road Taipei Taiwan 116, R.O.C
| | - Veerababurao Kavala
- Department of Chemistry National Taiwan Normal University 88, Sec. 4, Ting-Zhou Road Taipei Taiwan 116, R.O.C
| | - Ching‐Fa Yao
- Department of Chemistry National Taiwan Normal University 88, Sec. 4, Ting-Zhou Road Taipei Taiwan 116, R.O.C
| |
Collapse
|
15
|
Zhang C, Guo H, Chen L, Zhang J, Guo M, Zhu X, Shen C, Li Z. One-Pot Synthesis of Symmetrical and Asymmetrical 3-Amino Diynes via Cu(I)-Catalyzed Reaction of Enaminones with Terminal Alkynes. Org Lett 2021; 23:8169-8173. [PMID: 34636564 DOI: 10.1021/acs.orglett.1c02848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An economical and efficient protocol for the direct construction of amino skipped diynes through the Cu(I)-catalyzed reaction of enaminones and terminal alkynes has been described. Different kinds of symmetrical and asymmetrical 3-amino diynes could be obtained in up to 83% yield through a one-pot reaction under mild conditions.
Collapse
Affiliation(s)
- Changyuan Zhang
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P.R. China
| | - Huosheng Guo
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P.R. China
| | - Lulu Chen
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P.R. China
| | - Jiantao Zhang
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming 525000, P. R. China
| | - Mengping Guo
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P.R. China
| | - Xuncheng Zhu
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P.R. China
| | - Chan Shen
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P.R. China
| | - Zeng Li
- Key Laboratory of Jiangxi University for Applied Chemistry and Chemical Biology, College of Chemistry and Bio-engineering, Yichun University, Yichun 336000, P.R. China
| |
Collapse
|
16
|
Yu Q, Liu Y, Wan JP. Metal-free C(sp2)-H perfluoroalkylsulfonylation and configuration inversion: Stereoselective synthesis of α-perfluoroalkylsulfonyl E-enaminones. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.04.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Fu Y, Zhao X, Chen D, Luo J, Huang S. Cu-catalyzed coupling of indanone oxime acetates with thiols to 2,3-difunctionalized indenones. Chem Commun (Camb) 2021; 57:10719-10722. [PMID: 34581714 DOI: 10.1039/d1cc04167c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A Cu-catalyzed coupling reaction of indanone oxime acetates with thiols has been developed for the synthesis of 2,3-functionalized 1-indenones. This protocol has several features including easy mild reaction conditions, stabilized enamine products, good tolerance of functional groups, and no external oxidants. This reaction enables direct derivatization on the indanone ring to provide valuable functionalized indenones at room temperature.
Collapse
Affiliation(s)
- Yuanyuan Fu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| | - Xueyan Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| | - Dengfeng Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| | - Jinyue Luo
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| |
Collapse
|
18
|
Ge Y, Ye F, Yang J, Spannenberg A, Jiao H, Jackstell R, Beller M. Palladium-Catalyzed Cascade Carbonylation to α,β-Unsaturated Piperidones via Selective Cleavage of Carbon-Carbon Triple Bonds. Angew Chem Int Ed Engl 2021; 60:22393-22400. [PMID: 34382728 PMCID: PMC8519052 DOI: 10.1002/anie.202108120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/29/2021] [Indexed: 12/23/2022]
Abstract
A direct and selective synthesis of α,β-unsaturated piperidones by a new palladium-catalyzed cascade carbonylation is described. In the presented protocol, easily available propargylic alcohols react with aliphatic amines to provide a broad variety of interesting heterocycles. Key to the success of this transformation is a remarkable catalytic cleavage of the present carbon-carbon triple bond by using a specific catalyst with 2-diphenylphosphinopyridine as ligand and appropriate reaction conditions. Mechanistic studies and control experiments revealed branched unsaturated acid 11 as crucial intermediate.
Collapse
Affiliation(s)
- Yao Ge
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Fei Ye
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29a18059RostockGermany
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of EducationKey Laboratory of Organosilicon Material Technology of Zhejiang ProvinceHangzhou Normal UniversityNo. 2318, Yuhangtang Road311121HangzhouP. R. China
| | - Ji Yang
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Anke Spannenberg
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Haijun Jiao
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Ralf Jackstell
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29a18059RostockGermany
| |
Collapse
|
19
|
Ge Y, Ye F, Yang J, Spannenberg A, Jiao H, Jackstell R, Beller M. Palladium‐Catalyzed Cascade Carbonylation to α,β‐Unsaturated Piperidones via Selective Cleavage of Carbon–Carbon Triple Bonds. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yao Ge
- Leibniz-Institut für Katalyse e. V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Fei Ye
- Leibniz-Institut für Katalyse e. V. Albert-Einstein-Straße 29a 18059 Rostock Germany
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Key Laboratory of Organosilicon Material Technology of Zhejiang Province Hangzhou Normal University No. 2318, Yuhangtang Road 311121 Hangzhou P. R. China
| | - Ji Yang
- Leibniz-Institut für Katalyse e. V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Anke Spannenberg
- Leibniz-Institut für Katalyse e. V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Haijun Jiao
- Leibniz-Institut für Katalyse e. V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Ralf Jackstell
- Leibniz-Institut für Katalyse e. V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e. V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| |
Collapse
|
20
|
Liu T, Wan JP, Liu Y. Metal-free enaminone C-N bond cyanation for the stereoselective synthesis of ( E)- and ( Z)-β-cyano enones. Chem Commun (Camb) 2021; 57:9112-9115. [PMID: 34498638 DOI: 10.1039/d1cc03292e] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A highly practical method for C-CN bond formation by C-N bond cleavage on enaminones leading to the efficient synthesis of β-cyano enones is developed. The reactions take place efficiently to provide (E)-β-cyano enones with only a molecular iodine catalyst. In addition, the additional employment of oxalic acid enables the selective synthesis of (Z)-β-cyano enones.
Collapse
Affiliation(s)
- Ting Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China.
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China.
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China.
| |
Collapse
|
21
|
Xu Z, Fu L, Fang X, Huang B, Zhou L, Wan JP. Tunable Trifunctionalization of Tertiary Enaminones for the Regioselective and Metal-Free Synthesis of Discrete and Proximal Phosphoryl Nitriles. Org Lett 2021; 23:5049-5053. [PMID: 34137270 DOI: 10.1021/acs.orglett.1c01581] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This paper reports an unprecedented trifunctionalization of tertiary enaminones for the synthesis phosphoryl nitriles by the reactions of enaminones with diarylphosphine oxides and trimethylsilyl cyanide (TMSCN) without the use of any metal reagent. Employing tetrabutyl ammonium hydroxide (TBAH) as the catalyst (0.2 equiv) enables discrete cyanophosphonation. On the other hand, selective proximal cyanophosphonation has been realized in the presence of acetic acid only (AcOH).
Collapse
Affiliation(s)
- Zhongrong Xu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Leiqing Fu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Xia Fang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Bin Huang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Liyun Zhou
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| |
Collapse
|
22
|
Luo Z, Li R, Zhu T, Liu C, Feng H, Aboagye Nartey K, Liu Q, Xu X. Iron‐Catalyzed Oxidative Decabonylation/Radical Cyclization of Aliphatic Aldehydes with Biphenyl Isocyanides: A New Pathway For the Synthesis of 6‐Alkylphenanthridines. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Zaigang Luo
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines College of Chemical Engineering AnHui University of Science and Technology Huainan 232001 P. R. China
| | - Rui Li
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines College of Chemical Engineering AnHui University of Science and Technology Huainan 232001 P. R. China
| | - Tao Zhu
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines College of Chemical Engineering AnHui University of Science and Technology Huainan 232001 P. R. China
| | - Chen‐Fu Liu
- School of Pharmaceutical Science Gannan Medical University Ganzhou 341000 P. R. China
| | - Haoran Feng
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines College of Chemical Engineering AnHui University of Science and Technology Huainan 232001 P. R. China
| | - Kojo Aboagye Nartey
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines College of Chemical Engineering AnHui University of Science and Technology Huainan 232001 P. R. China
| | - Qiannan Liu
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines College of Chemical Engineering AnHui University of Science and Technology Huainan 232001 P. R. China
| | - Xuemei Xu
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines College of Chemical Engineering AnHui University of Science and Technology Huainan 232001 P. R. China
| |
Collapse
|
23
|
Chen T, Zheng X, Wang W, Feng Y, Wang Y, Shen J. C-C Bond Cleavage Initiated Cascade Reaction of β-Enaminones: One-Pot Synthesis of 5-Hydroxy-1 H-pyrrol-2(5 H)-ones. J Org Chem 2021; 86:2917-2928. [PMID: 33439021 DOI: 10.1021/acs.joc.0c02832] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
An unprecedented C(CO)-C(Ar) bond cleavage of β-enaminones has been realized under mild and transition-metal-free conditions. The cascade transformation based on this C-C bond cleavage involves 1,3-O/C migration and aerobic hydroxylation and leads to various 5-hydroxy-1H-pyrrol-2(5H)-ones with broad functional group tolerance. The application of this methodology has been showcased by preparing 5-alkoxy-1H-pyrrol-2(5H)-one derivatives and a pyrrolo[2,1-a]isoquinolin-3-one derivative.
Collapse
Affiliation(s)
- Ting Chen
- School of Environment and Public Health, Xiamen Key Laboratory of Food and Drug Safety, Xiamen Huaxia University, Xiamen, Fujian 361024, China
| | - Xiujuan Zheng
- School of Environment and Public Health, Xiamen Key Laboratory of Food and Drug Safety, Xiamen Huaxia University, Xiamen, Fujian 361024, China
| | - Wenhua Wang
- School of Environment and Public Health, Xiamen Key Laboratory of Food and Drug Safety, Xiamen Huaxia University, Xiamen, Fujian 361024, China
| | - Yadong Feng
- School of Environment and Public Health, Xiamen Key Laboratory of Food and Drug Safety, Xiamen Huaxia University, Xiamen, Fujian 361024, China
| | - Yanyun Wang
- School of Environment and Public Health, Xiamen Key Laboratory of Food and Drug Safety, Xiamen Huaxia University, Xiamen, Fujian 361024, China
| | - Jinhai Shen
- School of Environment and Public Health, Xiamen Key Laboratory of Food and Drug Safety, Xiamen Huaxia University, Xiamen, Fujian 361024, China.,Fujian Key Laboratory of Molecular Medicine, Huaqiao University, Xiamen, Fujian 361021, China
| |
Collapse
|
24
|
Day DP, Vargas JAM, Burtoloso ACB. Synthetic Routes Towards the Synthesis of Geminal α-Difunctionalized Ketones. CHEM REC 2021; 21:2837-2854. [PMID: 33533538 DOI: 10.1002/tcr.202000176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/11/2021] [Indexed: 12/25/2022]
Abstract
The importance of gem-difunctionalized ketones is represented by their broad applications across chemical boundaries over recent years. The interesting reactivities that this class of compounds possess have made them ideal building blocks to access high-value organic molecules. Furthermore, the gem-difunctionalized ketone moiety has featured in numerous bioactive molecules. For these reasons, a plethora of routes to access such significant molecules have been developed by research groups worldwide - this account looks at delineating the synthesis of gem-difunctionalized ketones from carbonyl substrates, diazo compounds, sulfur ylides and alkynyl reactants.
Collapse
Affiliation(s)
- David P Day
- Instituto de Química de São Carlos, Universidade de São Paulo, CEP 13560-970, São Carlos, SP, Brasil
| | - Jorge A M Vargas
- Instituto de Química de São Carlos, Universidade de São Paulo, CEP 13560-970, São Carlos, SP, Brasil.,Facultad de Ciencias Básicas, Universidad Santiago de Cali, Calle 5 # 62-00 Campus Pampalinda, Santiago de Cali, Colombia
| | - Antonio C B Burtoloso
- Instituto de Química de São Carlos, Universidade de São Paulo, CEP 13560-970, São Carlos, SP, Brasil
| |
Collapse
|
25
|
Singh D, Tali JA, Kumar G, Shankar R. Metal-free oxidative decarbonylative halogenation of fused imidazoles. NEW J CHEM 2021. [DOI: 10.1039/d1nj04440k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An efficient strategy has been developed for the deformylative halogenation of carbaldehyde imidazo-fused heterocycles in the presence of TBHP controlled by temperature.
Collapse
Affiliation(s)
- Davinder Singh
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Javeed Ahmad Tali
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Gulshan Kumar
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ravi Shankar
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
26
|
Gan L, Yu Q, Liu Y, Wan JP. Scissoring Enaminone C═C Double Bond by Free Radical Process for the Synthesis of α-Trifluoromethyl Ketones with CF 3SO 2Na. J Org Chem 2020; 86:1231-1237. [PMID: 33289380 DOI: 10.1021/acs.joc.0c02431] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The C═C double bond cleavage on tertiary enaminones, enabling the formation of a new C-CF3 bond, has been realized as a practical method for the synthesis of α-trifluoromethyl ketones with only the promotion of TBHP and ambient heating. Control experiments support that the reactions proceed via a featured free radical process. The deuterium labeling experiment employing D2O indicates that water participated in the product formation by donating the hydrogen atom for the newly generated α-C-H bond in the product.
Collapse
Affiliation(s)
- Lu Gan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China.,School of Science, Nanchang Institute of Technology, Nanchang 330029, P.R. China
| | - Qing Yu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China
| |
Collapse
|
27
|
Fu L, Xu Z, Wan JP, Liu Y. The Domino Chromone Annulation and a Transient Halogenation-Mediated C–H Alkenylation toward 3-Vinyl Chromones. Org Lett 2020; 22:9518-9523. [DOI: 10.1021/acs.orglett.0c03548] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Leiqing Fu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
- College of Chemistry and Bio-Engineering, Yichun University, Yichun, Jiangxi 336000, P. R. China
| | - Zhongrong Xu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| |
Collapse
|
28
|
Abstract
AbstractEnaminones are gaining increasing interest because of their unique properties and their importance in organic synthesis as versatile building blocks. N,N-Dimethyl enaminones offer a better leaving group (a dimethylamine group) than other enaminones, and allow further elaboration via a range of facile chemical transformations. Over the past five years, there have been an increasing number of reports describing the synthetic applications of N,N-dimethyl enaminones. This review provides a comprehensive overview on the synthetic applications of N,N-dimethyl enaminones that have been reported since 2016.1 Introduction2 Direct C(sp2)–H α-Functionalization2.1 Synthesis of α-Sulfenylated N,N-Dimethyl Enaminones2.2 Synthesis of α-Thiocyanated N,N-Dimethyl Enaminones2.3 Synthesis of α-Acyloxylated N,N-Dimethyl Enaminones3 Functionalization Reactions via C=C Double Bond Cleavage3.1 Synthesis of Functionalized Methyl Ketones3.2 Synthesis of α-Ketoamides, α-Ketoesters and 1,2-Diketones3.3 Synthesis of N-Sulfonyl Amidines4 Construction of All-Carbon Aromatic Scaffolds4.1 Synthesis of Benzaldehydes4.2 Synthesis of the Naphthalenes5 Construction of Heterocyclic Scaffolds5.1 Synthesis of Five-Membered Heterocycles5.2 Synthesis of Six-Membered Heterocycles5.3 Synthesis of Quinolines 5.4 Synthesis of Functionalized Chromones5.5 Synthesis of Other Fused Polycyclic Heterocycles6 Conclusions and Perspectives
Collapse
Affiliation(s)
- Fuchao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology
| | | |
Collapse
|
29
|
Deng L, Liu Y, Zhu Y, Wan J. Transition‐Metal‐Free Annulation of Enamines and Tosyl Azide toward N‐Heterocycle Fused and 5‐Amino‐1,2,3‐Triazoles. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000938] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Leiling Deng
- College of Chemistry and Chemical Engineering Jiangxi Normal University 330022 Nanchang P. R. China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering Jiangxi Normal University 330022 Nanchang P. R. China
| | - Yanping Zhu
- School of Pharmacy Key Laboratory of Molecular Pharmacology and Drug Evaluation Ministry of Education Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong Yantai University 264005 Yantai P. R. China
| | - Jie‐Ping Wan
- College of Chemistry and Chemical Engineering Jiangxi Normal University 330022 Nanchang P. R. China
| |
Collapse
|
30
|
Gan L, Wei L, Wan J. Catalyst‐Free Synthesis of α‐Diazoketones in Water by Microwave Promoted Enaminone C=C Double Bond Cleavage. ChemistrySelect 2020. [DOI: 10.1002/slct.202002247] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Lu Gan
- College of Chemistry and Chemical EngineeringJiangxi Normal University Nanchang 330022 P. R. China
- School of ScienceNanchang Institute of Technology Nanchang 330029 P. R. China
| | - Li Wei
- College of Chemistry and Chemical EngineeringJiangxi Normal University Nanchang 330022 P. R. China
| | - Jie‐Ping Wan
- College of Chemistry and Chemical EngineeringJiangxi Normal University Nanchang 330022 P. R. China
| |
Collapse
|
31
|
Tian L, Wan J, Sheng S. Transition Metal‐free C−H Sulfonylation and Pyrazole Annulation Cascade for the Synthesis of 4‐Sulfonyl Pyrazoles. ChemCatChem 2020. [DOI: 10.1002/cctc.202000244] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lihong Tian
- College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 P. R. China
| | - Jie‐Ping Wan
- College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 P. R. China
| | - Shouri Sheng
- College of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 P. R. China
| |
Collapse
|
32
|
Yu Q, Liu Y, Wan JP. Transition metal-free synthesis of 3-trifluoromethyl chromones via tandem C–H trifluoromethylation and chromone annulation of enaminones. Org Chem Front 2020. [DOI: 10.1039/d0qo00855a] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The synthesis of 3-trifluoromethyl chromones has been realized via transition metal-free reactions of o-hydroxyphenyl enaminones and the Langlois reagent via cascade C–H trifluoromethylation and chromone annulation.
Collapse
Affiliation(s)
- Qing Yu
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
- P. R. China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
- P. R. China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
- P. R. China
| |
Collapse
|