1
|
Huang J, Liu Y, Huang Y, Wu X, Lan XB, Yu JQ, Li W, Zheng P, Zhang J, An Z. TBAI-mediated electrochemical oxidative synthesis of quinazolin-4(3 H)-ones from 2-aminobenzamides and isothiocyanates. Org Biomol Chem 2025; 23:4860-4865. [PMID: 40272072 DOI: 10.1039/d5ob00410a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
A practical protocol has been established to access 2-aminoquinazolin-4(3H)-one derivatives through the electrochemical desulfurative cyclization of 2-aminobenzamides and isothiocyanates. The protocol allows for the formation of C-N bonds under mild conditions without metal catalysts or external oxidants. The practicability of this strategy is demonstrated by its broad substrate scope, good functional group compatibility, and scale-up synthesis.
Collapse
Affiliation(s)
- Jingbin Huang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China.
| | - Yafeng Liu
- School of Chemistry and Chemical Engineering, North MinzuUniversity, Yinchuan 750000, Ningxia, China
| | - Yu Huang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China.
| | - Xiuli Wu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China.
| | - Xiao-Bing Lan
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China.
| | - Jian-Qiang Yu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China.
| | - Wenxue Li
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China.
| | - Ping Zheng
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China.
| | - Jian Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China.
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Zhenyu An
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
2
|
Sun F, Miao M, Huang Y, Wu X, Li W, Lan XB, Yu JQ, Zhang J, An Z. Electrochemical Synthesis of 2-Amino-1,3-benzoxazines via TBAI-mediated Desulfurative Cyclization of Isothiocyanates and 2-Aminobenzyl Alcohols. J Org Chem 2025. [PMID: 39910786 DOI: 10.1021/acs.joc.4c02703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
An efficient one-step protocol has been developed to access a variety of 2-amino-1,3-benzoxazine derivatives via tetrabutylammonium iodide-mediated electrochemical desulfurative cyclization of isothiocyanates and 2-aminobenzyl alcohols. The reaction proceeds through a cycle involving in situ iodine generation, desulfurative cyclization, and iodide regeneration, efficiently forming intermolecular C-O and C-N bonds and affording 2-amino-1,3-benzoxazines in moderate to excellent yields. The practical utility of this strategy is evidenced by its broad substrate scope, good functional group compatibility, scalability to gram-scale synthesis, and metal- and oxidant-free conditions.
Collapse
Affiliation(s)
- Fengkai Sun
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Man Miao
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Yu Huang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xiuli Wu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Wenxue Li
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xiao-Bing Lan
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jian-Qiang Yu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jian Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhenyu An
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
3
|
Cen K, Liu Y, Yu J, Zeng Z, Hou Q, He G, Ouyang M, Wang Q, Wang D, Zhao F, Cai J. Electrocatalytic Cascade Selenylation/Cyclization/Deamination of 2-Hydroxyaryl Enaminones: Synthesis of 3-Selenylated Chromones under Mild Conditions. J Org Chem 2024; 89:8632-8640. [PMID: 38843514 DOI: 10.1021/acs.joc.4c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Herein, we disclosed a highly efficient pathway toward 3-selenylated chromone derivatives via electrocatalytic cascade selenylation/cyclization/deamination of 2-hydroxyaryl enaminones with diselenides. This method showed mild conditions, easy operation, wide substrate scope, and good functional group tolerance. Furthermore, this electrosynthesis strategy was amendable to scale-up the reaction. Additionally, the preliminary experiments revealed that this reaction probably proceeded via a cation pathway instead of a radical pathway.
Collapse
Affiliation(s)
- Kaili Cen
- College of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Yuan Liu
- Chuanshan College University of South China, Hengyang, Hunan 421001, China
| | - Junhong Yu
- College of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Zhouting Zeng
- College of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Qian Hou
- College of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Guojun He
- College of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Mixia Ouyang
- College of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Qiaolin Wang
- College of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Dahan Wang
- Department of Food and Chemical Engineering, Shaoyang University, Shaoyang, Hunan 422100, China
| | - Feng Zhao
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Jinhui Cai
- College of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
4
|
Wang YT, Zhang M, Liu ZX, Wu YX, Yan Q, Liu CL, Li JS, Li ZW, Liu HW, Li WS. Visible-Light-Promoted Radical Cascade Cyclization of 2-Vinyl Benzimidazoles: Access to Benzo[4,5]imidazo[1,2- b]isoquinolin- 11(6 H)-ones. J Org Chem 2024. [PMID: 38738957 DOI: 10.1021/acs.joc.4c00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
A visible-light-enabled photoredox radical cascade cyclization of 2-vinyl benzimidazole derivatives is developed. This chemistry is applicable to a wide range of N-aroyl 2-vinyl benzimidazoles as acceptors, and halo compounds, including alkyl halides, acyl chlorides and sulfonyl chlorides, as radical precursors. The Langlois reagent also serves as an effective partner in this photocatalytic oxidative cascade process. This protocol provides a robust alternative for rendering highly functionalized benzo[4,5]imidazo[1,2-b]isoquinolin-11(6H)-ones.
Collapse
Affiliation(s)
- Yao-Tian Wang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Mai Zhang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Zhi-Xing Liu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Yu-Xin Wu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Qian Yan
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Cheng-Liang Liu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Jiang-Sheng Li
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Zhi-Wei Li
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Han-Wen Liu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Wen-Sheng Li
- College of Chemistry & Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
5
|
Lin JX, Liu GH, Liu LQ, Wang YC, He Y. Sodium Carbonate-Promoted Formation of 5-Amino-1,2,4-thiadiazoles and 5-Amino-1,2,4-selenadiazoles with Elemental Sulfur and Selenium. J Org Chem 2024; 89:101-110. [PMID: 38071750 DOI: 10.1021/acs.joc.3c01716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Sodium carbonate-promoted facile synthesis of 5-amino-1,2,4-thiadiazoles and 5-amino-1,2,4-selenadiazoles with elemental sulfur and selenium, respectively, was developed. This method was carried out with O2 in the air as the green oxidant, and it has several advantages, including low cost, low toxicity, and stable sulfur and selenium sources, good to excellent yields with water as the sole byproduct, simple operation, and a broad substrate scope. Preliminary mechanistic studies indicate that the formation of the 1,2,4-thiadiazole ring and the 1,2,4-selenadiazole ring undergoes different processes.
Collapse
Affiliation(s)
- Jun-Xu Lin
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, People's Republic of China
| | - Guo-Hui Liu
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, People's Republic of China
| | - Li-Qiu Liu
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, People's Republic of China
| | - Ying-Chun Wang
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, People's Republic of China
| | - Yan He
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, People's Republic of China
| |
Collapse
|
6
|
Electrochemical synthesis of 5-trifluoroethyl dihydrobenzimidazo[2,1-a] isoquinolines from pendent unactivated alkenes via radical relay. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
7
|
Yang SF, Li P, Fang ZL, Liang S, Tian HY, Sun BG, Xu K, Zeng CC. A one-pot electrochemical synthesis of 2-aminothiazoles from active methylene ketones and thioureas mediated by NH 4I. Beilstein J Org Chem 2022; 18:1249-1255. [PMID: 36158175 PMCID: PMC9490072 DOI: 10.3762/bjoc.18.130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/05/2022] [Indexed: 11/26/2022] Open
Abstract
The electrochemical preparation of 2-aminothiazoles has been achieved by the reaction of active methylene ketones with thioureas assisted by ᴅʟ-alanine using NH4I as a redox mediator. The electrochemical protocol proceeds in an undivided cell equipped with graphite plate electrodes under constant current conditions. Various active methylene ketones, including β-keto ester, β-keto amide, β-keto nitrile, β-keto sulfone and 1,3-diketones, can be converted to the corresponding 2-aminothiazoles. Mechanistically, the in situ generated α-iodoketone was proposed to be the key active species.
Collapse
Affiliation(s)
- Shang-Feng Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
| | - Pei Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
| | - Zi-Lin Fang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
| | - Sen Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
| | - Hong-Yu Tian
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
| | - Bao-Guo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China
| | - Kun Xu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Cheng-Chu Zeng
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
8
|
Devi S, Jyoti, Kiran, Wadhwa D, Sindhu J. Electro-organic synthesis: an environmentally benign alternative for heterocycle synthesis. Org Biomol Chem 2022; 20:5163-5229. [PMID: 35730661 DOI: 10.1039/d2ob00572g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heterocyclic compounds are considered to be one of the most established structural classes due to their extensive application in agrochemicals, pharmaceuticals and organic materials. Over the past few years, the development of heterocyclic compounds has gone through a considerable renaissance from conventional traditional methodologies to non-conventional electro-organic synthesis. Replacing metal catalysts, strong oxidants and multi-step methodologies with metal and strong oxidant-free single-step protocols has revolutionized the field of sustainable organic synthesis. Electro-organic synthesis has evolved as a scalable and sustainable approach in different synthetic protocols in an environment-benign manner. The current review outlines the recent developments in C-C, C-N, C-S and C-O/Se bond formation for heterocycle synthesis using electrochemical methods. Different synthetic strategies and their detailed mechanistic description are presented to enlighten the future applications of electrochemistry in heterocycle synthesis.
Collapse
Affiliation(s)
- Suman Devi
- Department of Chemistry, Chaudhary Bansi Lal university, Bhiwani-127021, India.
| | - Jyoti
- Department of Chemistry, Chaudhary Bansi Lal university, Bhiwani-127021, India.
| | - Kiran
- Department of Chemistry, COBS&H, CCSHAU, Hisar-125004, India.
| | - Deepak Wadhwa
- Department of Chemistry, Chaudhary Bansi Lal university, Bhiwani-127021, India.
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCSHAU, Hisar-125004, India.
| |
Collapse
|
9
|
External oxidant-free and transition metal-free synthesis of 5-amino-1,2,4-thiadiazoles as promising antibacterials against ESKAPE pathogen strains. Mol Divers 2022; 27:651-666. [PMID: 35639224 DOI: 10.1007/s11030-022-10445-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/18/2022] [Indexed: 10/18/2022]
Abstract
A new route to 5-amino-1,2,4-thiadiazole derivatives via reaction of N-chloroamidines with isothiocyanates has been proposed. The advantages of this method are high product yields (up to 93%), the column chromatography-free workup procedure, scalability and the absence of additive oxidizing agents or transition metal catalysts. The 28 examples of 5-amino-1,2,4-thiadiazole derivatives obtaining via the proposing protocol were evaluated in vitro against ESKAPE pathogens strains (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter cloacae). It was found that compounds 5ba, 5bd, 6a, 6d and 6c have potent antibacterial activity (MIC values 0.09-1.5 μg mL-1), which is superior to the activity of commercial antibiotics such as pefloxacin (MIC 4-8 μg mL-1) and streptomycin (MIC 2-32 μg mL-1). The additional cytotoxic assay of hit compounds on PANC-1 cell line demonstrated the low or non-cytotoxicity activity at the same level of concentrations. Thus, these 5 compounds are promising starting point for further antimicrobial drug development.
Collapse
|
10
|
Cao X, Zheng Z, Liu J, Hu Y, Yu H, Cai S, Wang G. H
2
O
2
‐Mediated Synthesis of 1,2,4‐Thiadiazole Derivatives in Ethanol at Room Temperature. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Xian‐Ting Cao
- College of Medical Engineering& the Key Laboratory for Medical Functional Nanomaterials Jining Medical University Jining 272067 People's Republic of China
| | - Zuo‐Ling Zheng
- College of Medical Engineering& the Key Laboratory for Medical Functional Nanomaterials Jining Medical University Jining 272067 People's Republic of China
| | - Jie Liu
- College of Medical Engineering& the Key Laboratory for Medical Functional Nanomaterials Jining Medical University Jining 272067 People's Republic of China
| | - Yu‐He Hu
- College of Medical Engineering& the Key Laboratory for Medical Functional Nanomaterials Jining Medical University Jining 272067 People's Republic of China
| | - Hao‐Yun Yu
- College of Medical Engineering& the Key Laboratory for Medical Functional Nanomaterials Jining Medical University Jining 272067 People's Republic of China
| | - Shasha Cai
- College of Medical Engineering& the Key Laboratory for Medical Functional Nanomaterials Jining Medical University Jining 272067 People's Republic of China
| | - Guannan Wang
- College of Medical Engineering& the Key Laboratory for Medical Functional Nanomaterials Jining Medical University Jining 272067 People's Republic of China
| |
Collapse
|
11
|
Ghaffari S, Esmaeili AA, Khojastehnezhad A. One-pot Three-component Synthesis of Novel 1,3,4-Thiadiazole-thiazolo[3,2-a]pyrimidine Derivatives Catalyzed by Molecular Iodine. ORG PREP PROCED INT 2021. [DOI: 10.1080/00304948.2021.1971914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Samaneh Ghaffari
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Abbas Ali Esmaeili
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amir Khojastehnezhad
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
12
|
Wei Z, Wang R, Zhang Y, Wang B, Xia Y, Abdukader A, Xue F, Jin W, Liu C. Electrochemical Direct Thiolation of Lactams with Mercaptans: An Efficient Access to
N
‐Acylsulfenamides. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhaoxin Wei
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Renjie Wang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Yonghong Zhang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Bin Wang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Yu Xia
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Ablimit Abdukader
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Fei Xue
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Weiwei Jin
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| | - Chenjiang Liu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uygur Autonomous Region State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry Xinjiang University Urumqi 830046 P. R. China
| |
Collapse
|
13
|
Du Z, Qi Q, Gao W, Ma L, Liu Z, Wang R, Chen J. Electrochemical Heteroatom-Heteroatom Bond Construction. CHEM REC 2021; 22:e202100178. [PMID: 34463430 DOI: 10.1002/tcr.202100178] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 01/30/2023]
Abstract
Heteroatom-heteroatom linkage, with S-S bond as a presentative motif, served a crucial role in biochemicals, pharmaceuticals, pesticides, and material sciences. Thus, preparation of the privileged scaffold has always been attracting tremendous attention from the synthetic community. However, classic protocols suffered from several drawbacks, such as toxic and unstable agents, poor functional group tolerance, multiple steps, and explosive oxidizing regents as well as the transitional metal catalysts. Electrochemical organic synthesis exhibited a promising alternative to the traditional chemical reaction due to the sustainable electricity can be employed as the traceless redox agents. Hence, toxic and explosive oxidants and/or transitional metals could be discarded under mild reaction with high efficiency. In this context, a series of electrochemical approaches for the construction of heteroatom-heteroatom bond were reviewed. Notably, most of the cases illustrated the dehydrogenative feature with the clean energy molecules hydrogen as the sole by-product.
Collapse
Affiliation(s)
- Zhiying Du
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Qiqi Qi
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Wei Gao
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China.,Archives of Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Li Ma
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Zhenxian Liu
- Intellectual Property Operations Management Office, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Jianbin Chen
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China.,Intellectual Property Operations Management Office, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| |
Collapse
|
14
|
Wang Y, Zhou Y, Ma X, Song Q. Solvent-Dependent Cyclization of 2-Alkynylanilines and ClCF 2COONa for the Divergent Assembly of N-(Quinolin-2-yl)amides and Quinolin-2(1 H)-ones. Org Lett 2021; 23:5599-5604. [PMID: 34259006 DOI: 10.1021/acs.orglett.1c01484] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Herein, we present an expedient Cu-catalyzed [5 + 1] cyclization of 2-alkynylanilines and ClCF2COONa to divergent construction of N-(quinolin-2-yl)amides and quinolin-2(1H)-ones by regulating the reaction solvents. Notably, nitrile acts as a solvent and performs the Ritter reactions. ClCF2COONa is used as a C1 synthon in this transformation, which also represents the first example for utilization of ClCF2COONa as an efficient desiliconization reagent. The current protocol involves in situ generation of isocyanide, copper-activated alkyne, Ritter reaction and protonation.
Collapse
Affiliation(s)
- Ya Wang
- Institute of Next Generation Matter Transformation, College of Materials Science & Engineering, Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, People's Republic of China
| | - Yao Zhou
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, Hubei 435002, People's Republic of China
| | - Xingxing Ma
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Materials Science & Engineering, Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, People's Republic of China.,Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China.,State Key Laboratory of Organometallic Chemistry and Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| |
Collapse
|
15
|
Dagar N, Sen PP, Roy SR. Electrifying Sustainability on Transition Metal-Free Modes: An Eco-Friendly Approach for the Formation of C-N Bonds. CHEMSUSCHEM 2021; 14:1229-1257. [PMID: 33373494 DOI: 10.1002/cssc.202002567] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Embracing sustainable green methodologies and techniques in chemical transformations has always been in the limelight to the synthetic community. Electrosynthesis has emerged as a powerful, sustainable synthetic tool for molecular synthesis exploiting inexpensive electricity in place of sacrificial chemical oxidizing/reducing reagents. Herein, recent advances in the incorporation of transition metal-free redox mediators in electrosynthesis for the construction of C-N bonds are outlined. Furthermore, conjugation of this strategy with flow catalysis allows easy scale up of the synthesis of molecular assembly. This comprehensive Review provides an overview of metal-free mediated electro-construction of C-N bonds, focusing on the reaction mechanisms involved and its synthetic applications.
Collapse
Affiliation(s)
- Neha Dagar
- Department of Chemistry, Indian Institute of Technology Delhi, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Partha Pratim Sen
- Department of Chemistry, Indian Institute of Technology Delhi, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Sudipta Raha Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
16
|
Hu J, Hong H, Qin Y, Hu Y, Pu S, Liang G, Huang Y. Electrochemical Desulfurative Cyclization Accessing Oxazol-2-amine Derivatives via Intermolecular C-N/C-O Bond Formation. Org Lett 2021; 23:1016-1020. [PMID: 33475369 DOI: 10.1021/acs.orglett.0c04218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A practical protocol has been established to access diverse oxazol-2-amine derivatives in one step via the electrochemical desulfurative cyclization of isothiocyanates and α-amino ketones. On the basis of the cycle of in situ generation of iodine/desulfurative cyclization/iodide anion regeneration, the reaction is performed under metal-free and external-oxidant-free electrolytic conditions to achieve the formation of intermolecular C-O and C-N bonds, providing oxazol-2-amines in moderate to excellent yields.
Collapse
Affiliation(s)
- Jinhui Hu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Huanliang Hong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Yongwei Qin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Yunfei Hu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Suyun Pu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Gen Liang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Yubing Huang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| |
Collapse
|
17
|
Jiang S, Tian XJ, Feng SY, Li JS, Li ZW, Lu CH, Li CJ, Liu WD. Visible-Light Photoredox Catalyzed Double C–H Functionalization: Radical Cascade Cyclization of Ethers with Benzimidazole-Based Cyanamides. Org Lett 2021; 23:692-696. [DOI: 10.1021/acs.orglett.0c03853] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Si Jiang
- Hunan Provincial Key Laboratory of Material Protection for Electric Power and Transportation, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Xiao-Jing Tian
- Hunan Provincial Key Laboratory of Material Protection for Electric Power and Transportation, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Shu-Yao Feng
- Hunan Provincial Key Laboratory of Material Protection for Electric Power and Transportation, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Jiang-Sheng Li
- Hunan Provincial Key Laboratory of Material Protection for Electric Power and Transportation, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Zhi-Wei Li
- Hunan Provincial Key Laboratory of Material Protection for Electric Power and Transportation, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Cui-Hong Lu
- Hunan Provincial Key Laboratory of Material Protection for Electric Power and Transportation, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Chao-Jun Li
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Wei-Dong Liu
- National Engineering Research Center for Agrochemicals, Hunan Research Institute of Chemical Industry, Changsha 410007, China
| |
Collapse
|
18
|
Li JS, Xie XY, Jiang S, Yang PP, Li ZW, Lu CH, Liu WD. Reagent-free aerobic oxidative synthesis of amides from aldehydes and isothiocyanates. Org Chem Front 2021. [DOI: 10.1039/d0qo01264e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A reagent-free autoxidative reaction of aldehydes with isothiocyanates is developed to readily access amides, involving capture of carboxylic acids in situ generated from aldehydes by isothiocyanates as both coupling mediators and amine surrogates.
Collapse
Affiliation(s)
- Jiang-Sheng Li
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation
- School of Chemistry and Food Engineering
- Changsha University of Science & Technology
- Changsha
- China
| | - Xin-Yun Xie
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation
- School of Chemistry and Food Engineering
- Changsha University of Science & Technology
- Changsha
- China
| | - Si Jiang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation
- School of Chemistry and Food Engineering
- Changsha University of Science & Technology
- Changsha
- China
| | - Pan-Pan Yang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation
- School of Chemistry and Food Engineering
- Changsha University of Science & Technology
- Changsha
- China
| | - Zhi-Wei Li
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation
- School of Chemistry and Food Engineering
- Changsha University of Science & Technology
- Changsha
- China
| | - Cui-Hong Lu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation
- School of Chemistry and Food Engineering
- Changsha University of Science & Technology
- Changsha
- China
| | - Wei-Dong Liu
- National Engineering Research Center for Agrochemicals
- Hunan Research Institute of Chemical Industry
- Changsha 410007
- China
| |
Collapse
|
19
|
Zhong Q, Sheng S, Chen J. External oxidant-free electrooxidative intramolecular S-N bond formation for one-pot synthesis for 3,5-disubstituted 1,2,4-thiadiazoles. PHOSPHORUS SULFUR 2020. [DOI: 10.1080/10426507.2020.1768093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Qihao Zhong
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Shouri Sheng
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Junmin Chen
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi, China
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi, China
| |
Collapse
|
20
|
Verma A, Srivastava A, Tiwari SK, Yadav N, Ansari MD, Yadav VB, Sagir H, Siddiqui IR. Visible light promoted formation of
N─S
bond by photocatalyst Eosin Y. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ankit Verma
- Laboratory of Green Synthesis, Department of ChemistryUniversity of Allahabad Prayagraj India
| | - Arjita Srivastava
- Department of ChemistryCMP Degree College (A Constituent PG College of University of Allahabad) Prayagraj India
| | - Saurabh K Tiwari
- Laboratory of Green Synthesis, Department of ChemistryUniversity of Allahabad Prayagraj India
| | - Neetu Yadav
- Laboratory of Green Synthesis, Department of ChemistryUniversity of Allahabad Prayagraj India
| | - Mohd Danish Ansari
- Laboratory of Green Synthesis, Department of ChemistryUniversity of Allahabad Prayagraj India
| | - Vijay B Yadav
- Laboratory of Green Synthesis, Department of ChemistryUniversity of Allahabad Prayagraj India
| | - Hozeyfa Sagir
- Department of ChemistryPaliwal PG College Shikohabad India
| | - Ibadur R Siddiqui
- Laboratory of Green Synthesis, Department of ChemistryUniversity of Allahabad Prayagraj India
| |
Collapse
|
21
|
Lv S, Han X, Wang JY, Zhou M, Wu Y, Ma L, Niu L, Gao W, Zhou J, Hu W, Cui Y, Chen J. Tunable Electrochemical C-N versus N-N Bond Formation of Nitrogen-Centered Radicals Enabled by Dehydrogenative Dearomatization: Biological Applications. Angew Chem Int Ed Engl 2020; 59:11583-11590. [PMID: 32203637 DOI: 10.1002/anie.202001510] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/08/2020] [Indexed: 12/27/2022]
Abstract
Herein, an environmentally friendly electrochemical approach is reported that takes advantage of the captodative effect and delocalization effect to generate nitrogen-centered radicals (NCRs). By changing the reaction parameters of the electrode material and feedstock solubility, dearomatization enabled a selective dehydrogenative C-N versus N-N bond formation reaction. Hence, pyrido[1,2-a]benzimidazole and tetraarylhydrazine frameworks were prepared through a sustainable transition-metal- and exogenous oxidant-free strategy with broad generality. Bioactivity assays demonstrated that pyrido[1,2-a]benzimidazoles displayed antimicrobial activity and cytotoxicity against human cancer cells. Compound 21 exhibited good photochemical properties with a large Stokes shift (approximately 130 nm) and was successfully applied to subcellular imaging. A preliminary mechanism investigation and density functional theory (DFT) calculations revealed the possible reaction pathway.
Collapse
Affiliation(s)
- Shide Lv
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Xiaoxin Han
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Jian-Yong Wang
- School of Light Industry and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Mingyang Zhou
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Yanwei Wu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Li Ma
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Liwei Niu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Wei Gao
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Jianhua Zhou
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Wei Hu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Yuezhi Cui
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Jianbin Chen
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| |
Collapse
|
22
|
Lv S, Han X, Wang J, Zhou M, Wu Y, Ma L, Niu L, Gao W, Zhou J, Hu W, Cui Y, Chen J. Tunable Electrochemical C−N versus N−N Bond Formation of Nitrogen‐Centered Radicals Enabled by Dehydrogenative Dearomatization: Biological Applications. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001510] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Shide Lv
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Xiaoxin Han
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Jian‐Yong Wang
- School of Light Industry and Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Mingyang Zhou
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Yanwei Wu
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Li Ma
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Liwei Niu
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Wei Gao
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Jianhua Zhou
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Wei Hu
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Yuezhi Cui
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| | - Jianbin Chen
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Pharmaceutical Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 P. R. China
| |
Collapse
|
23
|
Li J, Yang P, Xie X, Jiang S, Tao L, Li Z, Lu C, Liu W. Catalyst‐Free Electrosynthesis of Benzimidazolones through Intramolecular Oxidative C−N Coupling. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000198] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jiang‐Sheng Li
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Food EngineeringChangsha University of Science & Technology Changsha 410114 People's Republic of China
| | - Pan‐Pan Yang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Food EngineeringChangsha University of Science & Technology Changsha 410114 People's Republic of China
| | - Xin‐Yun Xie
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Food EngineeringChangsha University of Science & Technology Changsha 410114 People's Republic of China
| | - Si Jiang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Food EngineeringChangsha University of Science & Technology Changsha 410114 People's Republic of China
| | - Li Tao
- State Grid Hunan Electric Power Company Limited Research Institute Changsha 410004 People's Republic of China
| | - Zhi‐Wei Li
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Food EngineeringChangsha University of Science & Technology Changsha 410114 People's Republic of China
| | - Cui‐Hong Lu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Food EngineeringChangsha University of Science & Technology Changsha 410114 People's Republic of China
| | - Wei‐Dong Liu
- National Engineering Research Center for AgrochemicalsHunan Research Institute of Chemical Industry Changsha 410007 People's Republic of China
| |
Collapse
|
24
|
Mulina OM, Zhironkina NV, Paveliev SA, Demchuk DV, Terent’ev AO. Electrochemically Induced Synthesis of Sulfonylated N-Unsubstituted Enamines from Vinyl Azides and Sulfonyl Hydrazides. Org Lett 2020; 22:1818-1824. [DOI: 10.1021/acs.orglett.0c00139] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Olga M. Mulina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Nataliya V. Zhironkina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
- D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russian Federation
| | - Stanislav A. Paveliev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Dmitry V. Demchuk
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Alexander O. Terent’ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
- D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russian Federation
| |
Collapse
|