Burhop A, Bag S, Grigalunas M, Woitalla S, Bodenbinder P, Brieger L, Strohmann C, Pahl A, Sievers S, Waldmann H. Synthesis of Indofulvin Pseudo-Natural Products Yields a New Autophagy Inhibitor Chemotype.
ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021;
8:e2102042. [PMID:
34346568 PMCID:
PMC8498912 DOI:
10.1002/advs.202102042]
[Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/14/2021] [Indexed: 06/01/2023]
Abstract
Chemical and biological limitations in bioactive compound design based on natural product (NP) structure can be overcome by the combination of NP-derived fragments in unprecedented arrangements to afford "pseudo-natural products" (pseudo-NPs). A new pseudo-NP design principle is described, i.e., the combination of NP-fragments by transformations that are not part of current biosynthesis pathways. A collection of indofulvin pseudo-NPs is obtained from 2-hydroxyethyl-indoles and ketones derived from the fragment-sized NP griseofulvin by means of an iso-oxa-Pictet-Spengler reaction. Cheminformatic analysis indicates that the indofulvins reside in an area of chemical space sparsely covered by NPs, drugs, and drug-like compounds and they may combine favorable properties of these compound classes. Biological evaluation of the compound collection in different cell-based assays and the unbiased high content cell painting assay reveal that the indofulvins define a new autophagy inhibitor chemotype that targets mitochondrial respiration.
Collapse