1
|
Naveen J, Satyanarayana G. Palladium-Catalyzed [3 + 2] Annulation of ortho-Substituted Iodoarenes with Maleimides via a Consecutive Double Heck-type Strategy. J Org Chem 2023; 88:16229-16247. [PMID: 37965816 DOI: 10.1021/acs.joc.3c01703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Herein, we report an efficient [3 + 2] annulation of ortho-substituted iodoarenes with maleimides via a palladium-catalyzed consecutive double Heck-type strategy, leading to fused tricyclic frameworks of pharmaceutical relevance. The protocol ensued through consecutive inter- and intramolecular Heck couplings effectively. This approach was compatible with a large variety of substrates and functional groups, and it was remarkably tolerated with unprotected maleimide.
Collapse
Affiliation(s)
- Jakkula Naveen
- Department of Chemistry, Indian Institute of Technology (IIT) Hyderabad ,Kandi,Sangareddy ,Telangana 502 284, India
| | - Gedu Satyanarayana
- Department of Chemistry, Indian Institute of Technology (IIT) Hyderabad ,Kandi,Sangareddy ,Telangana 502 284, India
| |
Collapse
|
2
|
Spils J, Wirth T, Nachtsheim BJ. Two-step continuous-flow synthesis of 6-membered cyclic iodonium salts via anodic oxidation. Beilstein J Org Chem 2023; 19:27-32. [PMID: 36686040 PMCID: PMC9830492 DOI: 10.3762/bjoc.19.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/07/2022] [Indexed: 01/04/2023] Open
Abstract
We describe a multi-step continuous-flow procedure for the generation of six-membered diaryliodonium salts. The accompanying scalability and atom economy are significant improvements to existing batch methods. Benzyl acetates are submitted to this two-step procedure as highly available and cheap starting materials. An acid-catalyzed Friedel-Crafts alkylation followed by an anodic oxidative cyclization yielded a defined set of cyclic iodonium salts in a highly substrate-dependent yield.
Collapse
Affiliation(s)
- Julian Spils
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, 28359 Bremen, Germany
| | - Thomas Wirth
- School of Chemistry, Cardiff University, Park Place, Main Building, Cardiff CF10 3AT, UK
| | - Boris J Nachtsheim
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, 28359 Bremen, Germany
| |
Collapse
|
3
|
Kuczmera TJ, Dietz A, Boelke A, Nachtsheim BJ. Synthesis and reactivity of azole-based iodazinium salts. Beilstein J Org Chem 2023; 19:317-324. [PMID: 36960303 PMCID: PMC10028571 DOI: 10.3762/bjoc.19.27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
A systematic investigation of imidazo- and pyrazoloiodazinium salts is presented. Besides a robust synthetic protocol that allowed us to synthesize these novel cyclic iodonium salts in their mono- and dicationic forms, we gained in-depth structural information through single-crystal analysis and demonstrated the ring opening of the heterocycle-bridged iodonium species. For an exclusive set of dicationic imidazoiodaziniums, we show highly delicate post-oxidation functionalizations retaining the hypervalent iodine center.
Collapse
Affiliation(s)
- Thomas J Kuczmera
- Institute for Organic and Analytical Chemistry, University of Bremen, 28359 Bremen, Germany
| | - Annalena Dietz
- Institute for Organic and Analytical Chemistry, University of Bremen, 28359 Bremen, Germany
| | - Andreas Boelke
- Institute for Organic and Analytical Chemistry, University of Bremen, 28359 Bremen, Germany
| | - Boris J Nachtsheim
- Institute for Organic and Analytical Chemistry, University of Bremen, 28359 Bremen, Germany
| |
Collapse
|
4
|
Singh FV, Shetgaonkar SE, Krishnan M, Wirth T. Progress in organocatalysis with hypervalent iodine catalysts. Chem Soc Rev 2022; 51:8102-8139. [PMID: 36063409 DOI: 10.1039/d2cs00206j] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hypervalent iodine compounds as environmentally friendly and relatively inexpensive reagents have properties similar to transition metals. They are employed as alternatives to transition metal catalysts in organic synthesis as mild, nontoxic, selective and recyclable catalytic reagents. Formation of C-N, C-O, C-S, C-F and C-C bonds can be seamlessly accomplished by hypervalent iodine catalysed oxidative functionalisations. The aim of this review is to highlight recent developments in the utilisation of iodine(III) and iodine(V) catalysts in the synthesis of a wide range of organic compounds including chiral catalysts for stereoselective synthesis. Polymer-, magnetic nanoparticle- and metal organic framework-supported hypervalent iodine catalysts are also described.
Collapse
Affiliation(s)
- Fateh V Singh
- Chemistry Department, SAS, Vellore Institute of Technology - Chennai, Vandalur-Kelambakkam Road, Chennai-600127, Tamil Nadu, India.
| | - Samata E Shetgaonkar
- Chemistry Department, SAS, Vellore Institute of Technology - Chennai, Vandalur-Kelambakkam Road, Chennai-600127, Tamil Nadu, India.
| | - Manjula Krishnan
- Chemistry Department, SAS, Vellore Institute of Technology - Chennai, Vandalur-Kelambakkam Road, Chennai-600127, Tamil Nadu, India.
| | - Thomas Wirth
- School of Chemistry, Cardiff University, Cardiff, UK.
| |
Collapse
|
5
|
Damrath M, Caspers LD, Duvinage D, Nachtsheim BJ. One-Pot Synthesis of Heteroatom-Bridged Cyclic Diaryliodonium Salts. Org Lett 2022; 24:2562-2566. [PMID: 35349290 DOI: 10.1021/acs.orglett.2c00691] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Two one-pot procedures for the construction of O- and N-bridged diaryliodonium triflates are described. An effective aryne-mediated arylation of o-iodophenols and -sulfonamides provides diarylether and diarylamine intermediates, which are subsequently oxidized and cyclized to the corresponding diaryliodaoxinium and -iodazinium salts. Different derivatizations were applied to demonstrate their capacity as useful building blocks and gain a deeper understanding toward the general reactivity of these underdeveloped but potentially highly useful compounds.
Collapse
Affiliation(s)
- Mattis Damrath
- Institute for Organic and Analytical Chemistry, University of Bremen, 28359 Bremen, Germany
| | - Lucien D Caspers
- Institute for Organic and Analytical Chemistry, University of Bremen, 28359 Bremen, Germany
| | - Daniel Duvinage
- Institute for Inorganic Chemistry and Crystallography, University of Bremen, 28359 Bremen, Germany
| | - Boris J Nachtsheim
- Institute for Organic and Analytical Chemistry, University of Bremen, 28359 Bremen, Germany
| |
Collapse
|
6
|
Li X, Li G, Cheng Y, Du Y. The aryl iodine-catalyzed organic transformation via hypervalent iodine species generated in situ. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2021-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The application of hypervalent iodine species generated in situ in organic transformations has emerged as a useful and powerful tool in organic synthesis, allowing for the construction of a series of bond formats via oxidative coupling. Among these transformations, the catalytic aryl iodide can be oxidized to hypervalent iodine species, which then undergoes oxidative reaction with the substrates and the aryl iodine regenerated again once the first cyclic cycle of the reaction is completed. This review aims to systematically summarize and discuss the main progress in the application of in situ-generated hypervalent iodine species, providing references and highlights for synthetic chemists who might be interested in this field of hypervalent iodine chemistry.
Collapse
Affiliation(s)
- Xuemin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency , School of Pharmaceutical Science and Technology, Tianjin University , Tianjin 300072 , China
| | - Guangchen Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency , School of Pharmaceutical Science and Technology, Tianjin University , Tianjin 300072 , China
| | - Yifu Cheng
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency , School of Pharmaceutical Science and Technology, Tianjin University , Tianjin 300072 , China
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency , School of Pharmaceutical Science and Technology, Tianjin University , Tianjin 300072 , China
| |
Collapse
|
7
|
Boelke A, Kuczmera TJ, Lork E, Nachtsheim BJ. N-Heterocyclic Iod(az)olium Salts - Potent Halogen-Bond Donors in Organocatalysis. Chemistry 2021; 27:13128-13134. [PMID: 34160859 PMCID: PMC8519039 DOI: 10.1002/chem.202101961] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Indexed: 01/03/2023]
Abstract
This article describes the application of N-heterocyclic iod(az)olium salts (NHISs) as highly reactive organocatalysts. A variety of mono- and dicationic NHISs are described and utilized as potent XB-donors in halogen-bond catalysis. They were benchmarked in seven diverse test reactions in which the activation of carbon- and metal-chloride bonds as well as carbonyl and nitro groups was achieved. N-methylated dicationic NHISs rendered the highest reactivity in all investigated catalytic applications with reactivities even higher than all previously described monodentate XB-donors based on iodine(I) and (III) and the strong Lewis acid BF3 .
Collapse
Affiliation(s)
- Andreas Boelke
- Institut für Organische und Analytische ChemieUniversität BremenLeobener Straße NW2C28359BremenGermany
| | - Thomas J. Kuczmera
- Institut für Organische und Analytische ChemieUniversität BremenLeobener Straße NW2C28359BremenGermany
| | - Enno Lork
- Institut für Anorganische Chemie und KristallographieUniversität BremenLeobener Straße NW2C28359BremenGermany
| | - Boris J. Nachtsheim
- Institut für Organische und Analytische ChemieUniversität BremenLeobener Straße NW2C28359BremenGermany
| |
Collapse
|
8
|
Boelke A, Sadat S, Lork E, Nachtsheim BJ. Pseudocyclic bis-N-heterocycle-stabilized iodanes - synthesis, characterization and applications. Chem Commun (Camb) 2021; 57:7434-7437. [PMID: 34231585 DOI: 10.1039/d1cc03097c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bis-N-heterocycle-stabilized λ3-iodanes (BNHIs) based on azoles are introduced as novel structural motifs in hypervalent iodine chemistry. A performance test in a variety of benchmark reactions including sulfoxidations and phenol dearomatizations revealed a bis-N-bound pyrazole substituted BNHI as the most reactive derivative. Its solid-state structure was characterized via X-ray analysis implying strong intramolecular interactions between the pyrazole nitrogen atoms and the hypervalent iodine centre.
Collapse
Affiliation(s)
- Andreas Boelke
- Institute for Organic and Analytical Chemistry, University of Bremen, Bremen 28359, Germany.
| | - Soleicha Sadat
- Institute for Organic and Analytical Chemistry, University of Bremen, Bremen 28359, Germany.
| | - Enno Lork
- Institute for Inorganic Chemistry and Crystallography, University of Bremen, Bremen 28359, Germany
| | - Boris J Nachtsheim
- Institute for Organic and Analytical Chemistry, University of Bremen, Bremen 28359, Germany.
| |
Collapse
|
9
|
Le Du E, Duhail T, Wodrich MD, Scopelliti R, Fadaei‐Tirani F, Anselmi E, Magnier E, Waser J. Structure and Reactivity of N-Heterocyclic Alkynyl Hypervalent Iodine Reagents. Chemistry 2021; 27:10979-10986. [PMID: 33978974 PMCID: PMC8361724 DOI: 10.1002/chem.202101475] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Indexed: 12/23/2022]
Abstract
Ethynylbenziodoxol(on)e (EBX) cyclic hypervalent iodine reagents have become popular reagents for the alkynylation of radicals and nucleophiles, but only offer limited possibilities for further structure and reactivity fine-tuning. Herein, the synthesis of new N-heterocyclic hypervalent iodine reagents with increased structural flexibility based on amide, amidine and sulfoximine scaffolds is reported. Solid-state structures of the reagents are reported and the analysis of the I-Calkyne bond lengths allowed assessing the trans-effect of the different substituents. Molecular electrostatic potential (MEP) maps of the reagents, derived from DFT computations, revealed less pronounced σ-hole regions for sulfonamide-based compounds. Most reagents reacted well in the alkynylation of β-ketoesters. The alkynylation of thiols afforded more variable yields, with compounds with a stronger σ-hole reacting better. In metal-mediated transformations, the N-heterocyclic hypervalent iodine reagents gave inferior results when compared to the O-based EBX reagents.
Collapse
Affiliation(s)
- Eliott Le Du
- Laboratory of Catalysis and Organic SynthesisEcole Polytechnique Fédérale de LausanneEPFL SB ISIC LCSO, BCH 43061015LausanneSwitzerland
| | - Thibaut Duhail
- Institut Lavoisier de VersaillesUniversité Paris-Saclay, UVSQ, CNRS, UMR 81807800VersaillesFrance
| | - Matthew D. Wodrich
- Laboratory of Catalysis and Organic SynthesisEcole Polytechnique Fédérale de LausanneEPFL SB ISIC LCSO, BCH 43061015LausanneSwitzerland
| | - Rosario Scopelliti
- Institute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de LausanneEPFL SB ISIC GE, BCH 2111, 1015 LausanneEPFL SB ISIC LCSO, BCH 43061015LausanneSwitzerland
| | - Farzaneh Fadaei‐Tirani
- Institute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de LausanneEPFL SB ISIC GE, BCH 2111, 1015 LausanneEPFL SB ISIC LCSO, BCH 43061015LausanneSwitzerland
| | - Elsa Anselmi
- Institut Lavoisier de VersaillesUniversité Paris-Saclay, UVSQ, CNRS, UMR 81807800VersaillesFrance
- Université de ToursFaculté des Sciences et Techniques37200ToursFrance
| | - Emmanuel Magnier
- Institut Lavoisier de VersaillesUniversité Paris-Saclay, UVSQ, CNRS, UMR 81807800VersaillesFrance
| | - Jerome Waser
- Laboratory of Catalysis and Organic SynthesisEcole Polytechnique Fédérale de LausanneEPFL SB ISIC LCSO, BCH 43061015LausanneSwitzerland
| |
Collapse
|
10
|
Onodera K, Takashima R, Suzuki Y. Selective Synthesis of Acylated Cross-Benzoins from Acylals and Aldehydes via N-Heterocyclic Carbene Catalysis. Org Lett 2021; 23:4197-4202. [PMID: 33999632 DOI: 10.1021/acs.orglett.1c01134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The utility of acylals as building blocks for selective cross-benzoin synthesis was explored in this study. The synthesis of α-acetoxyketones (O-acyl cross-benzoins) was achieved via selective N-heterocyclic carbene-catalyzed cross-benzoin reactions using acylals as aldehyde equivalents. Thus, the combination of ortho-substituted phenyl acylals and aromatic/aliphatic aldehydes as coupling substrates using bicyclic triazolium salts as precatalysts and potassium carbonate as a base in THF at reflux temperature selectively yielded O-acyl cross-benzoins.
Collapse
Affiliation(s)
- Kou Onodera
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Ryo Takashima
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Yumiko Suzuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan
| |
Collapse
|
11
|
Boelke A, Kuczmera TJ, Caspers LD, Lork E, Nachtsheim BJ. Iodolopyrazolium Salts: Synthesis, Derivatizations, and Applications. Org Lett 2020; 22:7261-7266. [PMID: 32880463 DOI: 10.1021/acs.orglett.0c02593] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of iodolopyrazolium triflates via an oxidative cyclization of 3-(2-iodophenyl)-1H-pyrazoles is described. The reaction is characterized by a broad substrate scope, and various applications of these novel cyclic iodolium salts acting as useful synthetic intermediates are demonstrated, in particular in site-selective ring openings. This was finally applied to generate derivatives of the anti-inflammatory drug celecoxib. Their application as highly active halogen-bond donors is shown as well.
Collapse
Affiliation(s)
- Andreas Boelke
- Institute for Organic and Analytical Chemistry, University of Bremen, 28359 Bremen, Germany
| | - Thomas J Kuczmera
- Institute for Organic and Analytical Chemistry, University of Bremen, 28359 Bremen, Germany
| | - Lucien D Caspers
- Institute for Organic and Analytical Chemistry, University of Bremen, 28359 Bremen, Germany
| | - Enno Lork
- Institute for Inorganic Chemistry and Crystallography, University of Bremen, 28359 Bremen, Germany
| | - Boris J Nachtsheim
- Institute for Organic and Analytical Chemistry, University of Bremen, 28359 Bremen, Germany
| |
Collapse
|
12
|
Vlasenko YА, Yusubov MS, Shafir A, Postnikov PS. Hypervalent iodine in the structure of N-heterocycles: synthesis, structure, and application in organic synthesis. Chem Heterocycl Compd (N Y) 2020. [DOI: 10.1007/s10593-020-02742-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Abazid AH, Clamor N, Nachtsheim BJ. An Enantioconvergent Benzylic Hydroxylation Using a Chiral Aryl Iodide in a Dual Activation Mode. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02321] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ayham H. Abazid
- Institute of Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, 28359 Bremen, Germany
| | - Nils Clamor
- Institute of Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, 28359 Bremen, Germany
| | - Boris J. Nachtsheim
- Institute of Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, 28359 Bremen, Germany
| |
Collapse
|
14
|
Caspers LD, Spils J, Damrath M, Lork E, Nachtsheim BJ. One-Pot Synthesis and Conformational Analysis of Six-Membered Cyclic Iodonium Salts. J Org Chem 2020; 85:9161-9178. [PMID: 32539390 DOI: 10.1021/acs.joc.0c01125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Two one-pot procedures for the construction of carbon-bridged diaryliodonium triflates and tetrafluoroborates are described. Strong Brønsted acids enable the effective Friedel-Crafts alkylation with diversely substituted o-iodobenzyl alcohol derivatives, providing diphenylmethane scaffolds, which are subsequently oxidized and cyclized to the corresponding dibenzo[b,e]iodininium salts. Based on NMR investigations and density functional theory (DFT) calculations, we could verify the so-far-undescribed existence of two stable isomers in cyclic iodonium salts substituted with aliphatic side chains in the carbon bridge.
Collapse
Affiliation(s)
- Lucien D Caspers
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, 28359 Bremen, Germany
| | - Julian Spils
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, 28359 Bremen, Germany
| | - Mattis Damrath
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, 28359 Bremen, Germany
| | - Enno Lork
- Institute for Inorganic Chemistry and Crystallography, University of Bremen, 28359 Bremen, Germany
| | - Boris J Nachtsheim
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, 28359 Bremen, Germany
| |
Collapse
|