1
|
Cao Y, Perry JSM, Zhang E, Trinh A, Kacker A, Cruz S, Ceballos H, Pan A, Huang W, Kou KGM. Synthesis of Protoberberine Alkaloids by C-H Functionalization and Anionic Aza-6π-Electrocyclization: Dual Activity as AMPK Activators and Inhibitors. JACS AU 2025; 5:1429-1438. [PMID: 40151253 PMCID: PMC11937996 DOI: 10.1021/jacsau.5c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025]
Abstract
5'-Adenosine monophosphate-activated protein kinase (AMPK) plays a critical role in maintaining cellular energy homeostasis, and its activation has garnered attention for treating chronic metabolic diseases. Inhibitors of AMPK are underdeveloped but bear implications in treating cancers, controlling autophagy, and elderly wasting. Protoberberine alkaloids are typically regarded as AMPK activators. Herein, we report a modular synthesis strategy to access a collection of oxyberberine alkaloids, including the first synthesis of stepharotudine. In vitro assays reveal how subtle structural modifications can negate AMPK activation while conferring unprecedented inhibitory properties within the same class of compounds, which was previously unknown. Key steps in the synthesis include an oxidative Rh(III)-catalyzed C-H functionalization using electron-rich alkenes, NaH-mediated reductive N-O bond cleavage, and a rare example of an anionic aza-6π-electrocyclization. Additionally, we provide mechanistic support for nucleophilic hydride transfer reactivity with NaH in DMF.
Collapse
Affiliation(s)
- Yujie Cao
- Department
of Chemistry, University of California, Riverside, California 92507, United States
| | - Justin S. M. Perry
- Department
of Chemistry, University of California, Riverside, California 92507, United States
| | - Eryun Zhang
- Department
of Diabetes Complications and Metabolism Research, City of Hope National Medical Center, Duarte, California 91010, United States
| | - Andy Trinh
- Department
of Chemistry, University of California, Riverside, California 92507, United States
| | - Arnav Kacker
- Department
of Chemistry, University of California, Riverside, California 92507, United States
| | - Shayne Cruz
- Department
of Chemistry, University of California, Riverside, California 92507, United States
| | - Hannah Ceballos
- Department
of Diabetes Complications and Metabolism Research, City of Hope National Medical Center, Duarte, California 91010, United States
| | - Aaron Pan
- Department
of Chemistry, University of California, Riverside, California 92507, United States
| | - Wendong Huang
- Department
of Diabetes Complications and Metabolism Research, City of Hope National Medical Center, Duarte, California 91010, United States
| | - Kevin G. M. Kou
- Department
of Chemistry, University of California, Riverside, California 92507, United States
| |
Collapse
|
2
|
Xu MY, Jiang WT, Xia MZ, An ZL, Xie XY, Xiao B. Orthogonal sp 3-Ge/B Bimetallic Modules: Enantioselective Construction and Enantiospecific Cross-Coupling. Angew Chem Int Ed Engl 2024; 63:e202317284. [PMID: 38342760 DOI: 10.1002/anie.202317284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/19/2023] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
In this study, a series of enantioenriched sp3-Ge/B bimetallic modules were successfully synthesized via an enantioselective copper-catalyzed hydroboration of carbagermatrane (Ge)-containing alkenes. Orthogonal cross-coupling selectivity under different Pd-catalyzed conditions was achieved in an enantiospecific manner. Notably, the chiral secondary Ge exhibited a remarkable transmetallation ability prior to primary or secondary Bpin. The effectiveness of this Ge/B bimetallic strategy was further demonstrated through the development of new functional small molecules with Aggregation-Induced Emission (AIE) and Circularly Polarized Luminescence (CPL) performance. This represents the first successful example of synthesis of enantioenriched alkylgermanium reagents that permit enantiospecific cross-coupling reactions.
Collapse
Affiliation(s)
- Meng-Yu Xu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China
| | - Wei-Tao Jiang
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Ming-Zhi Xia
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China
| | - Zi-Long An
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Xiu-Ying Xie
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Bin Xiao
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
3
|
Rogova T, Ahrweiler E, Schoetz MD, Schoenebeck F. Recent Developments with Organogermanes: their Preparation and Application in Synthesis and Catalysis. Angew Chem Int Ed Engl 2024; 63:e202314709. [PMID: 37899306 DOI: 10.1002/anie.202314709] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 10/31/2023]
Abstract
Within the sphere of traditional Pd0 /PdII cross coupling reactions, organogermanes have been historically outperformed both in terms of scope and reactivity by more conventional transmetalating reagents. Subsequently, this class of compounds has been largely underutilized as a coupling partner in bond-forming strategies. Most recent studies, however, have shown that alternative modes of activation of these notoriously robust building blocks transform organogermanes into the most reactive site of the molecule-capable of outcompeting other functional groups (such as boronic acids, esters and silanes) for both C-C and C-heteroatom bond formation. As a result, over the past few years, the literature has increasingly featured methodologies that explore the potential of organogermanes as chemoselective and orthogonal coupling partners. Herein we highlight some of these recent advances in the field of organogermane chemistry both with respect to their synthesis and applications in synthetic and catalytic transformations.
Collapse
Affiliation(s)
- Tatiana Rogova
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Eric Ahrweiler
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Markus D Schoetz
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
4
|
Arsenov MA, Stoletova NV, Savel'yeva TF, Smol'yakov AF, Maleev VI, Loginov DA, Larionov VA. An asymmetric metal-templated route to amino acids with an isoquinolone core via a Rh(III)-catalyzed coupling of aryl hydroxamates with chiral propargylglycine Ni(II) complexes. Org Biomol Chem 2022; 20:9385-9391. [PMID: 36394513 DOI: 10.1039/d2ob01970a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A general protocol for the asymmetric synthesis of artificial amino acids (AAs) comprising an isoquinolone skeleton was successfully elaborated via a straightforward Rh(III)-catalyzed C-H activation/annulation of various aryl hydroxamates with a series of robust chiral propargylglycine Ni(II) complexes derived from glycine (Gly), alanine (Ala) and phenylalanine (Phe) in a green solvent (methanol) under mild conditions (at room temperature under air). Notably, in the case of phenylalanine-derived complexes, the formation of unfavorable 4-substituted isoquinolone regioisomers was achieved by a catalyst control for the first time. The subsequent acidic decomposition of the obtained Ni(II) complexes provides the target unnatural α- and α,α-disubstituted AAs with an isoquinolone core in an enantiopure form.
Collapse
Affiliation(s)
- Mikhail A Arsenov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, 119991 Moscow, Russian Federation.
| | - Nadezhda V Stoletova
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, 119991 Moscow, Russian Federation.
| | - Tat'yana F Savel'yeva
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, 119991 Moscow, Russian Federation.
| | - Alexander F Smol'yakov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, 119991 Moscow, Russian Federation. .,Plekhanov Russian University of Economics, Stremyanny Per. 36, 117997 Moscow, Russian Federation
| | - Victor I Maleev
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, 119991 Moscow, Russian Federation.
| | - Dmitry A Loginov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, 119991 Moscow, Russian Federation. .,Plekhanov Russian University of Economics, Stremyanny Per. 36, 117997 Moscow, Russian Federation
| | - Vladimir A Larionov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, 119991 Moscow, Russian Federation. .,Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, 117198 Moscow, Russian Federation
| |
Collapse
|
5
|
Saiegh T, Meyer C, Cossy J. Rhodium(III)‐Catalyzed Heteroannulations of 3‐Sulfolene Derivatives via C(sp2)–H Activation. Access to Pyridine ortho‑Quinodimethane Precursors. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tomas Saiegh
- ESPCI Paris Molecular, Macromolecular Chemistry, and Materials FRANCE
| | - Christophe Meyer
- ESPCI Paris, CNRS, PSL Research University Laboratory of Organic Chemsitry 10 rue Vauquelin 75005 PARIS FRANCE
| | - Janine Cossy
- ESPCI: ESPCI Paris Molecular, Macromolecular Chemistry, and Materials PARIS FRANCE
| |
Collapse
|
6
|
Xu MY, Xiao B. Germatranes and carbagermatranes: (hetero)aryl and alkyl coupling partners in Pd-catalyzed cross-coupling reactions. Chem Commun (Camb) 2021; 57:11764-11775. [PMID: 34661207 DOI: 10.1039/d1cc04373k] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In the past few decades, palladium-catalyzed cross-coupling reactions have taken root in the construction of a complex synthetic community. The development of organometallics has been an important objective in this field. Our group has focused on exploiting new germanium-based reagents and the corresponding catalytic processes. In the past three years, we have established new methods for the synthesis of structure-modified (hetero)aryl germatranes and alkyl carbagermatranes. Particularly for alkyl carbagermatranes, the stability to be compatible with various derivatization reactions and the high activity for transmetallation (e.g. base/additive-free for primary alkyl carbagermatranes) distinguish them from many reported nucleophiles. In this article, we would introduce (1) the development process of organogermanium reagents in palladium-catalyzed cross-couplings; (2) the history of germatrane-type systems and the breakthrough we have made in the field; (3) the outlook for (carba)germatranes and alkyl-GeMe3.
Collapse
Affiliation(s)
- Meng-Yu Xu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Bin Xiao
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
7
|
Yang S, Jiang WT, Xiao B. Tertiary cyclopropyl carbagermatranes: synthesis and cross-coupling. Chem Commun (Camb) 2021; 57:8143-8146. [PMID: 34318815 DOI: 10.1039/d1cc02930d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The construction of the cyclopropyl quaternary carbon center can afford a series of 1,1-olefin bioisosteres. Here, we report tertiary cyclopropyl carbagermatranes, which can be easily obtained by the zinc-mediated decarboxylation of NHP esters. In addition, they exhibit efficient reactivity in the palladium-catalyzed cross-coupling reaction and orthogonal reactivity with boron reagents, therefore acting as robust nucleophiles for the synthesis of tertiary cyclopropane and efficient intermediates for the formation of quaternary centers.
Collapse
Affiliation(s)
- Shuo Yang
- University of Science and Technology of China, Hefei 230026, P. R. China.
| | | | | |
Collapse
|
8
|
Wang C, Liu YC, Xu MY, Xiao B. Synthesis of Dialkyl-Substituted Monofluoroalkenes via Palladium-Catalyzed Cross-Coupling of Alkyl Carbagermatranes. Org Lett 2021; 23:4593-4597. [PMID: 34060856 DOI: 10.1021/acs.orglett.1c01289] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
An unprecedented cross-coupling reaction of alkyl carbagermatranes with bromofluoroolefins to deliver dialkyl-substituted monofluoroalkenes was achieved. This cross-coupling reaction was performed under base/additive-free conditions with excellent functional group tolerance, therefore offering an opportunity for challenging dialkyl-substituted monofluoroalkenes. The preparation of bioactive agent analogues including an antitubercular agent mimic and a COX-2 inhibitor analogue and the late-stage fluoroalkenylation of drug-molecule derivatives proved the utility of this strategy.
Collapse
Affiliation(s)
- Chao Wang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Chao Liu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Meng-Yu Xu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Bin Xiao
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
9
|
Xie W, Jian X, Zhang L, Jin K, Shi J, Zhu F. Synthesis of C3-sulfone substituted naphthols via rhodium(III)-catalyzed annulation of sulfoxonium ylides with alkynylsulfones. Org Biomol Chem 2021; 19:1498-1502. [PMID: 33529298 DOI: 10.1039/d0ob02267e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
C-H activation of sulfoxonium ylides catalyzed by rhodium(iii) with subsequent annulation by alkynylsulfones was accomplished. This methodology offers a step-economical approach for assembling C3-sulfone-substituted naphthols with a high level of regioselectivity that is complementary to previous protocols. The approach has an extensive substrate spectrum and broad functional group tolerance.
Collapse
Affiliation(s)
- Wucheng Xie
- School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China.
| | - Xinyi Jian
- School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China.
| | - Liyang Zhang
- School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China.
| | - Kexin Jin
- School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China.
| | - Junjun Shi
- School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China.
| | - Feng Zhu
- School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China.
| |
Collapse
|
10
|
Jiang W, Xu M, Yang S, Xie X, Xiao B. Alkylation‐Terminated Catellani Reactions Using Alkyl Carbagermatranes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wei‐Tao Jiang
- Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Meng‐Yu Xu
- Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Shuo Yang
- Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Xiu‐Ying Xie
- Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Bin Xiao
- Department of Chemistry University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
11
|
Dumas A, Garsi JB, Poissonnet G, Hanessian S. Ni-Catalyzed Reductive and Merged Photocatalytic Cross-Coupling Reactions toward sp 3/sp 2-Functionalized Isoquinolones: Creating Diversity at C-6 and C-7 to Address Bioactive Analogues. ACS OMEGA 2020; 5:27591-27606. [PMID: 33134723 PMCID: PMC7594327 DOI: 10.1021/acsomega.0c04181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
Naturally occurring isoquinolones have gained considerable attention over the years for their bioactive properties. While the late-stage introduction of various functionalities at certain positions, namely, C-3, C-4, and C-8, has been widely documented, the straightforward introduction of challenging sp3 carbon-linked acyclic aminoalkyl or aza- and oxacyclic appendages at C-6 and C-7 remains largely underexplored. Interest in 6-substituted azacyclic analogues has recently garnered attention in connection with derivatives exhibiting anticancer activity. Reported here is the first application of the versatile and recently emerging field of Ni-catalyzed reductive cross-coupling reactions to the synthesis of 6- and 7- hetero(cyclo)alkyl-substituted isoquinolones. In a second and complementary approach, a new set of C-6- and C-7-substituted positional isomers of hetero(cyclo)alkyl appendages were obtained from the merging of photocatalytic and Ni-catalyzed coupling reactions. In both cases, 6- and 7-bromo isoquinolones served as dual-purpose reacting partners with readily available tosylates and carboxylic acids, respectively.
Collapse
Affiliation(s)
- Adrien Dumas
- Department
of Chemistry, Université de Montréal, PO Box 6128, Station Centre-Ville, Montréal, QC, Canada H3C 3J7
| | - Jean-Baptiste Garsi
- Department
of Chemistry, Université de Montréal, PO Box 6128, Station Centre-Ville, Montréal, QC, Canada H3C 3J7
| | - Guillaume Poissonnet
- CentEX
Chemistry, Institut de Recherches Servier, 11 rue des Moulineaux, 92150 Suresnes, France
| | - Stephen Hanessian
- Department
of Chemistry, Université de Montréal, PO Box 6128, Station Centre-Ville, Montréal, QC, Canada H3C 3J7
| |
Collapse
|
12
|
Song L, Zhang X, Tang X, Van Meervelt L, Van der Eycken J, Harvey JN, Van der Eycken EV. Ruthenium-catalyzed cascade C-H activation/annulation of N-alkoxybenzamides: reaction development and mechanistic insight. Chem Sci 2020; 11:11562-11569. [PMID: 34094402 PMCID: PMC8162874 DOI: 10.1039/d0sc04434b] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A highly selective ruthenium-catalyzed C–H activation/annulation of alkyne-tethered N-alkoxybenzamides has been developed. In this reaction, diverse products from inverse annulation can be obtained in moderate to good yields with high functional group compatibility. Insightful experimental and theoretical studies indicate that the reaction to the inverse annulation follows the Ru(ii)–Ru(iv)–Ru(ii) pathway involving N–O bond cleavage prior to alkyne insertion. This is highly different compared to the conventional mechanism of transition metal-catalyzed C–H activation/annulation with alkynes, involving alkyne insertion prior to N–O bond cleavage. Via this pathway, the in situ generated acetic acid from the N–H/C–H activation step facilitates the N–O bond cleavage to give the Ru-nitrene species. Besides the conventional mechanism forming the products via standard annulation, an alternative and novel Ru(ii)–Ru(iv)–Ru(ii) mechanism featuring N–O cleavage preceding alkyne insertion has been proposed, affording a new understanding of transition metal-catalyzed C–H activation/annulation. A highly selective ruthenium-catalyzed C–H activation/annulation through a pathway involving N–O bond cleavage prior to alkyne insertion is developed.![]()
Collapse
Affiliation(s)
- Liangliang Song
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven Celestijnenlaan 200F Leuven 3001 Belgium
| | - Xiaoyong Zhang
- Theoretical and Computational Chemistry, Department of Chemistry, KU Leuven Celestijnenlaan 200F Leuven 3001 Belgium
| | - Xiao Tang
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology Gardens Point Campus Brisbane QLD 4001 Australia
| | - Luc Van Meervelt
- Biomolecular Architecture, Department of Chemistry, KU Leuven Celestijnenlaan 200F Leuven 3001 Belgium
| | - Johan Van der Eycken
- Laboratory for Organic and Bio-Organic Synthesis, Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281 (S.4) B-9000 Ghent Belgium
| | - Jeremy N Harvey
- Theoretical and Computational Chemistry, Department of Chemistry, KU Leuven Celestijnenlaan 200F Leuven 3001 Belgium
| | - Erik V Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven Celestijnenlaan 200F Leuven 3001 Belgium .,Peoples' Friendship University of Russia (RUDN University) Miklukho-Maklaya Street 6 Moscow 117198 Russia
| |
Collapse
|
13
|
Jiang W, Xu M, Yang S, Xie X, Xiao B. Alkylation‐Terminated Catellani Reactions Using Alkyl Carbagermatranes. Angew Chem Int Ed Engl 2020; 59:20450-20454. [DOI: 10.1002/anie.202008482] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/20/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Wei‐Tao Jiang
- Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Meng‐Yu Xu
- Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Shuo Yang
- Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Xiu‐Ying Xie
- Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Bin Xiao
- Department of Chemistry University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
14
|
Nishii Y, Miura M. Cp*M-Catalyzed Direct Annulation with Terminal Alkynes and Their Surrogates for the Construction of Multi-Ring Systems. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02972] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Yuji Nishii
- Frontier Research Base for Global Young Researchers, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Miura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|