1
|
Hu JW, Zhong Y, Song RJ. Copper/iron controlled regioselective 1,2-carboazidation of 1,3-dienes with acetonitrile and azidotrimethylsilane. Org Biomol Chem 2025; 23:1437-1442. [PMID: 39748734 DOI: 10.1039/d4ob01661k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Carboazidation and diazidation were carried out on 1,3-diene compounds using TMSN3 as the azide source and MeCN as the cyanoalkylation reagent. This method exhibits excellent functional group tolerance, a broad substrate range, and a short reaction time, providing an effective pathway for synthesizing valuable azides. Our report introduces an unprecedented strategy for the carboazidation and diazidation of 1,3-dienes, with mechanism studies indicating that the reaction involves a radical pathway.
Collapse
Affiliation(s)
- Jun-Wei Hu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Yao Zhong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Ren-Jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| |
Collapse
|
2
|
Liu X, Fu H, Hu Q, Cao H. Recent Advances on the Construction of Functionalized Indolizine and Imidazo[1,2-a]pyridine Derivatives. CHEM REC 2024; 24:e202400135. [PMID: 39439190 DOI: 10.1002/tcr.202400135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/27/2024] [Indexed: 10/25/2024]
Abstract
Indolizines and imidazo[1,2-a]pyridines are commonly found in natural products, synthetic drugs, and bioactive molecules. These two types of derivatives possess good antibacterial, antiparasitic, anticancer activities, and so on. The functionalization of indolizines and imidazo[1,2-a]pyridines has always been a hot topic in organic chemistry research and has made significant progress. In recent years, our group has been dedicated to developing diverse synthetic methods for the preparation of such important compounds. 1) We have developed diverse C-H functionalization reactions for efficient modification of the parent indolizines and imidazo[1,2-a]pyridines. 2) A variety of cycloaddition reactions were established for the construction of indolizine and imidazo[1,2-a]pyridine derivatives from simple raw materials. 3) We have developed intriguing deconstruction-functionalization reactions of indolizines, enabling the reorganization of heterocyclic frameworks. This paper outlines our group's latest advancements in constructing structurally diverse indolizine and imidazo[1,2-a]pyridine derivatives. We hope that this work will offer valuable insights and inspiration for the ongoing research in the field of N-heterocyclic compounds.
Collapse
Affiliation(s)
- Xiang Liu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, China
| | - Haifeng Fu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, China
| | - Qi Hu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, China
| |
Collapse
|
3
|
Ren S, Zhu J, Liu Y. Trifunctionalization of CC bonds in vinyl azides to access densely functionalized phenanthridines enabled by the NCS/AgNO 2 system. Org Biomol Chem 2024; 22:5982-5986. [PMID: 38984917 DOI: 10.1039/d4ob00905c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
An unprecedented trifunctionalization of CC bonds in 2-(1-azidovinyl)-1,1'-biphenyls has been successfully achieved using the NCS/AgNO2 system, leading to the preparation of 6-(dichloro(nitro)methyl)phenanthridines in moderate to good yields. In this process, the NCS/AgNO2 system serves as a NO2 radical initiator as well as a chloro group source. The present protocol is a rare example of the selective construction of densely functionalized phenanthridine derivatives in a one-pot manner.
Collapse
Affiliation(s)
- Shaobo Ren
- College of Pharmacy, Jinhua Polytechnic, Jinhua, 321007, P. R. China.
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Jian Zhu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Yunkui Liu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| |
Collapse
|
4
|
Tang Y, Yang Y, Zhou Q, Duan J, Yang B, Du C, He Y. Metal- and additive-free radical-triggered nitration/cyclization to construct indolo[2,1- α]isoquinoline and benzimidazo[2,1- a]isoquinolin-6(5 H)-one derivatives using t-BuONO as nitro reagents. Org Biomol Chem 2023. [PMID: 37309208 DOI: 10.1039/d3ob00630a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An efficient metal- and additive-free nitro radical-triggered addition/cyclization of 2-aryl-N-acryloyl indoles/2-arylbenzimidazoles for the synthesis of nitro-substituted indolo[2,1-α]isoquinoline and benzimidazo[2,1-a]isoquinolin-6(5H)-one derivatives has been developed. The commercially available and low-cost t-BuONO was used as a nitro reagent. Due to mild reaction conditions, a variety of functional groups could be tolerated to give the corresponding products in moderate to good yields. Moreover, this nitration process could be scaled-up and the nitro group could be readily converted into the amino group, which may find applications in synthetic and medicinal chemistry.
Collapse
Affiliation(s)
- Yucai Tang
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, Changde 415000, China.
| | - Yiting Yang
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, Changde 415000, China.
| | - Qian Zhou
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, Changde 415000, China.
| | - Jinglin Duan
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, Changde 415000, China.
| | - Biyu Yang
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, Changde 415000, China.
| | - Changyuan Du
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, Changde 415000, China.
| | - Yupeng He
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, Changde 415000, China.
| |
Collapse
|
5
|
Pramanik S, Saha P, Ghosh P, Mukhopadhyay C. Steric-Hindrance-Induced Diastereoselective Radical Nitration of 3-Alkylidene-2-oxindoles Followed by Tosylhydrazine-Mediated Sulfonation. J Org Chem 2023; 88:3386-3402. [PMID: 36847251 DOI: 10.1021/acs.joc.2c01523] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Metal-free radical nitration of the β C-H bond of 3-alkylidene-2-oxindoles with tert-butyl nitrite (TBN) has been explored. Interestingly, (E)-3-(2-(aryl)-2-oxoethylidene)oxindole and (E)-3-ylidene oxindole give different diastereomers on nitration. The mechanistic investigation revealed that the diastereoselectivity was controlled by the size of the functional group. Another transformation of 3-(nitroalkylidene) oxindole into 3-(tosylalkylidene) oxindole was performed through metal and oxidant-free tosylhydrazine-mediated sulfonation. Both methods have the advantages of readily available starting materials and operational simplicity.
Collapse
Affiliation(s)
- Sayan Pramanik
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata 700009, India
| | - Pinaki Saha
- Department of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata 700103, India
| | - Prasanta Ghosh
- Department of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata 700103, India
| | - Chhanda Mukhopadhyay
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata 700009, India
| |
Collapse
|
6
|
Zhang J, Wang T, Qian J, Zhang Y, Zhang J. Ultrasound-promoted three-component halogenation-azaheteroarylation of alkenes involving carbon-halogen and carbon-carbon bond formation. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Kitanosono T, Hashidoko A, Yamashita Y, Kobayashi S. 2-Methoxyethyl Nitrite as a Reagent for Chemoselective On-Water Nitration. Chem Asian J 2022; 17:e202200457. [PMID: 35612572 DOI: 10.1002/asia.202200457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/23/2022] [Indexed: 11/11/2022]
Abstract
An on-water approach has been developed that allows a nitration of tyrosines and phenols under mild conditions. We envisioned that the assembly of tyrosine/tyrosyl radical couples with interfacial water molecules would realize a biomimetic stacking hydrogen atom transfer (HAT) transition state to facilitate the electron-transfer process. The optimal organic nitrite, 2-methoxyethyl nitrite, resulted in rapid coupling of the tyrosyl radicals with •NO 2 at the oil-water interface to afford the nitrated phenols. Many characteristics found in our on-water strategy are distinct from other complementary systems that include radical nitration. These enticing roles of water in the reaction process introduce new avenues to explore in the design of synthetic organic chemistry systems.
Collapse
Affiliation(s)
- Taku Kitanosono
- The University of Tokyo: Tokyo Daigaku, Department of Chemistry, JAPAN
| | - Airu Hashidoko
- The University of Tokyo: Tokyo Daigaku, Department of Chemistry, JAPAN
| | | | - Shu Kobayashi
- The University of Tokyo, Department of Chemistry, School of Science, 7-3-1 Hongo, Bunkyo-ku, 113-0033, Tokyo, JAPAN
| |
Collapse
|
8
|
Li H, Zhu Y, Jiang C, Wei J, Liu P, Sun P. HOAc catalyzed three-component reaction for the synthesis of 3,3'-(arylmethylene)bis(1 H-indoles). Org Biomol Chem 2022; 20:3365-3374. [PMID: 35355039 DOI: 10.1039/d2ob00395c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient HOAc catalyzed three-component reaction of 2-(arylethynyl)anilines with arylaldehydes has been achieved, which leads to the generation of 3,3'-(arylmethylene)bis(1H-indoles) with good to excellent yields and high regioselectivity under transition-metal-free conditions. Four new C-C and C-N bonds were effectively formed in a one-pot procedure. Subsequent research on the reaction mechanism indicated that the reaction likely involved the processes of intramolecular cyclization and cascade intermolecular dehydration condensation.
Collapse
Affiliation(s)
- Heng Li
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China.
| | - Yan Zhu
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China.
| | - Cong Jiang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China.
| | - Jia Wei
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China.
| | - Ping Liu
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China.
| | - Peipei Sun
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
9
|
Recent advances in transition-metal-free C–H functionalization of imidazo[1,2-a]pyridines. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
10
|
Dai C, Shen Y, Wei Y, Liu P, Sun P. Electrochemical Oxidative Difunctionalization of Alkenes to Access α-Oxygenated Ketones. J Org Chem 2021; 86:13711-13719. [PMID: 34523934 DOI: 10.1021/acs.joc.1c01831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Dioxygenation of alkenes was developed by the combination of electrochemical synthesis and aerobic oxidation, leading to easy accessibility of α-oxygenated ketones in an eco-friendly fashion. Using air as the oxygen source and the absence of transition metals were the critical features of this protocol. A wide range of alkenes and N-hydroxyimides were found to be compatible and provided α-oxygenated ketones in moderate to high yields.
Collapse
Affiliation(s)
- Changhui Dai
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Yijie Shen
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Yifan Wei
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Ping Liu
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Peipei Sun
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
11
|
Tong J, Zhan Y, Li J, Liu P, Sun P. One‐Pot Synthesis of C3‐Alkylated Imidazopyridines from α‐Bromocarbonyls under Photoredox Conditions. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jinwen Tong
- School of Chemistry and Materials Science Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control Jiangsu Collaborative Innovation Center of Biomedical Functional Materials Nanjing Normal University Nanjing 210023 People's Republic of China
| | - Yanling Zhan
- School of Chemistry and Materials Science Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control Jiangsu Collaborative Innovation Center of Biomedical Functional Materials Nanjing Normal University Nanjing 210023 People's Republic of China
| | - Jingyu Li
- School of Chemistry and Materials Science Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control Jiangsu Collaborative Innovation Center of Biomedical Functional Materials Nanjing Normal University Nanjing 210023 People's Republic of China
| | - Ping Liu
- School of Chemistry and Materials Science Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control Jiangsu Collaborative Innovation Center of Biomedical Functional Materials Nanjing Normal University Nanjing 210023 People's Republic of China
| | - Peipei Sun
- School of Chemistry and Materials Science Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control Jiangsu Collaborative Innovation Center of Biomedical Functional Materials Nanjing Normal University Nanjing 210023 People's Republic of China
| |
Collapse
|
12
|
Franco MS, Saba S, Rafique J, Braga AL. KIO
4
‐mediated Selective Hydroxymethylation/Methylenation of Imidazo‐Heteroarenes: A Greener Approach. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Marcelo Straesser Franco
- Departamento de Química Universidade Federal de Santa Catarina—UFSC Florianópolis 88040-900 SC-Brazil
| | - Sumbal Saba
- Instituto de Química Universidade Federal de Goiás—UFG Goiânia 74690-900 GO-Brazil
| | - Jamal Rafique
- Instituto de Química, Universidade Federal do Mato Grosso do Sul—UFMS Campo Grande 79074-460 MS-Brazil
| | - Antonio Luiz Braga
- Departamento de Química Universidade Federal de Santa Catarina—UFSC Florianópolis 88040-900 SC-Brazil
- Department of Chemical Sciences Faculty of Science University of Johannesburg Doornfontein 2028 South Africa
| |
Collapse
|
13
|
Li Y, Dai C, Xie S, Liu P, Sun P. Visible-Light-Induced C-H Bond Aminoalkylation of Heterocycles by the Decarboxylation Coupling of Amino Acids. Org Lett 2021; 23:5906-5910. [PMID: 34291642 DOI: 10.1021/acs.orglett.1c02014] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient visible-light-induced decarboxylative coupling reaction of N-protecting α-amino acids with heterocycles for the generation of aminoalkylated heterocycles is presented. A series of aminoalkylated heterocycles were obtained in moderate to good yields. Attractive features of this process include the generation of aminomethyl radical by an inexpensive organic photocatalyst under transition-metal-free conditions.
Collapse
Affiliation(s)
- Yifan Li
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Changhui Dai
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Shentong Xie
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Ping Liu
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Peipei Sun
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, P. R. China
| |
Collapse
|
14
|
Franco MS, Saba S, Rafique J, Braga AL. KIO 4 -mediated Selective Hydroxymethylation/Methylenation of Imidazo-Heteroarenes: A Greener Approach. Angew Chem Int Ed Engl 2021; 60:18454-18460. [PMID: 34097781 DOI: 10.1002/anie.202104503] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/14/2021] [Indexed: 02/06/2023]
Abstract
Herein, we report a KIO4 -mediated, sustainable and chemoselective approach for the one-pot C(sp2 )-H bond hydroxymethylation or methylenation of imidazo-heteroarenes with formaldehyde, generated in situ via the oxidative cleavage of ethylene glycol or glycerol (renewable reagents) through the Malaprade reaction. In the presence of ethylene glycol, a series of 3-hydroxymethyl-imidazo-heteroarenes was obtained in good to excellent yields. These compounds are important intermediates to access pharmaceutical drugs, e.g., Zolpidem. Furthermore, by using glycerol, bis(imidazo[1,2-a]pyridin-3-yl)methane derivatives were selectively obtained in good to excellent yields.
Collapse
Affiliation(s)
- Marcelo Straesser Franco
- Departamento de Química, Universidade Federal de Santa Catarina-UFSC, Florianópolis, 88040-900, SC-Brazil
| | - Sumbal Saba
- Instituto de Química, Universidade Federal de Goiás-UFG, Goiânia, 74690-900, GO-Brazil
| | - Jamal Rafique
- Instituto de Química, Universidade, Federal do Mato Grosso do Sul-UFMS, Campo Grande, 79074-460, MS-Brazil
| | - Antonio Luiz Braga
- Departamento de Química, Universidade Federal de Santa Catarina-UFSC, Florianópolis, 88040-900, SC-Brazil.,Department of Chemical Sciences, Faculty of Science, University of Johannesburg, Doornfontein, 2028, South Africa
| |
Collapse
|
15
|
Zheng Y, Zhao Y, Tao S, Li X, Cheng X, Jiang G, Wan X. Green Esterification of Carboxylic Acids Promoted by
tert
‐Butyl Nitrite. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yonggao Zheng
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University 215123 Suzhou P. R. China
| | - Yanwei Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University 215123 Suzhou P. R. China
| | - Suyan Tao
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University 215123 Suzhou P. R. China
| | - Xingxing Li
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University 215123 Suzhou P. R. China
| | - Xionglve Cheng
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University 215123 Suzhou P. R. China
| | - Gangzhong Jiang
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University 215123 Suzhou P. R. China
| | - Xiaobing Wan
- Key Laboratory of Organic Synthesis of Jiangsu Province College of Chemistry Chemical Engineering and Materials Science Soochow University 215123 Suzhou P. R. China
| |
Collapse
|
16
|
Yao H, Zhong X, Wang B, Lin S, Liu L, Yan Z. Manganese-catalyzed dehydrogenative Csp 3-Csp 2 coupling of imidazo[1,2- a]pyridines with methyl ketones. Org Biomol Chem 2021; 19:3479-3483. [PMID: 33899882 DOI: 10.1039/d1ob00169h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A Mn(ii)-catalyzed efficient C-H alkylation of imidazoheterocycles with methyl ketones has been developed via dehydrogenative C(sp3)-C(sp2) coupling which can serve as a novel approach toward hydrocarboxylated imidazolopyridines. The merit of this strategy is illustrated by excellent functional group tolerance and the use of cheap and readily available starting materials.
Collapse
Affiliation(s)
- Hua Yao
- College of Chemistry, Nanchang University, No. 999, Xuefu Rd., Nanchang, 330031, P. R. China.
| | - Xiaoyang Zhong
- College of Chemistry, Nanchang University, No. 999, Xuefu Rd., Nanchang, 330031, P. R. China.
| | - Bingqing Wang
- College of Chemistry, Nanchang University, No. 999, Xuefu Rd., Nanchang, 330031, P. R. China.
| | - Sen Lin
- College of Chemistry, Nanchang University, No. 999, Xuefu Rd., Nanchang, 330031, P. R. China.
| | - Lichi Liu
- College of Chemistry, Nanchang University, No. 999, Xuefu Rd., Nanchang, 330031, P. R. China.
| | - Zhaohua Yan
- College of Chemistry, Nanchang University, No. 999, Xuefu Rd., Nanchang, 330031, P. R. China.
| |
Collapse
|
17
|
Cui T, Zhan Y, Dai C, Lin J, Liu P, Sun P. Electrochemical Oxidative Regioselective C–H Cyanation of Imidazo[1,2-a]pyridines. J Org Chem 2021; 86:15897-15905. [DOI: 10.1021/acs.joc.0c03026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ting Cui
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Yanling Zhan
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Changhui Dai
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Jun Lin
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
- Changzhou Innovation and Development Institute, Nanjing Normal University, Changzhou 213022, China
| | - Ping Liu
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
- Changzhou Innovation and Development Institute, Nanjing Normal University, Changzhou 213022, China
| | - Peipei Sun
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
18
|
Chen X, Xiao F, He WM. Recent developments in the difunctionalization of alkenes with C–N bond formation. Org Chem Front 2021. [DOI: 10.1039/d1qo00375e] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Various alkene difunctionalization reactions involving nitridization, diamination, azidation, oxyamination, carboamination, aminohalogenation, and nitration are introduced in this review.
Collapse
Affiliation(s)
- Xiang Chen
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Fang Xiao
- Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Wei-Min He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| |
Collapse
|
19
|
Patel OPS, Nandwana NK, Legoabe LJ, Das BC, Kumar A. Recent Advances in Radical C−H Bond Functionalization of Imidazoheterocycles. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000633] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Om P. S. Patel
- Department of Chemistry Birla Institute of Technology and Science Pilani Pilani Campus 333031 Rajasthan India
- Centre of Excellence for Pharmaceutical Sciences North-West University Private Bag X6001 Potchefstroom 2520 South Africa
| | - Nitesh K. Nandwana
- Department of Chemistry Birla Institute of Technology and Science Pilani Pilani Campus 333031 Rajasthan India
- Departments of Medicine and Pharmacological Sciences Icahn School of Medicine at Mount Sinai New York, NY 10029 USA
| | - Lesetja J. Legoabe
- Centre of Excellence for Pharmaceutical Sciences North-West University Private Bag X6001 Potchefstroom 2520 South Africa
| | - Bhaskar C. Das
- Departments of Medicine and Pharmacological Sciences Icahn School of Medicine at Mount Sinai New York, NY 10029 USA
| | - Anil Kumar
- Department of Chemistry Birla Institute of Technology and Science Pilani Pilani Campus 333031 Rajasthan India
| |
Collapse
|
20
|
Li Y, Shu K, Liu P, Sun P. Selective C-5 Oxidative Radical Silylation of Imidazopyridines Promoted by Lewis Acid. Org Lett 2020; 22:6304-6307. [DOI: 10.1021/acs.orglett.0c02131] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Yifan Li
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, People’s Republic of China
| | - Kaichen Shu
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, People’s Republic of China
| | - Ping Liu
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, People’s Republic of China
| | - Peipei Sun
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, People’s Republic of China
| |
Collapse
|