1
|
Yu H, Yu X, Li X, Kou W, Fang F, Zhang G. Enantioselective Photoredox- and Cu-Catalyzed Cyanoalkylation of Styrenes via Deoxygenation of Alkoxyl Radicals with Organophosphorus Compounds(III). Org Lett 2025; 27:1750-1756. [PMID: 39935183 DOI: 10.1021/acs.orglett.5c00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
The enantioselective cyanoalkylation of styrenes by a cooperative photoredox and copper catalysis system has been established, providing straightforward access to structurally diverse enantioenriched alkyl nitriles in good yields with excellent enantioselectivities under mild conditions via deoxygenation of alkoxyl radicals with organophosphorus compounds(III). In addition, the reaction features a wide substrate scope and good functional group tolerance, and the resultant alkyl nitriles could be easily converted into a series of chiral carboxylic acids, amides, esters, etc.
Collapse
Affiliation(s)
- Hongzhou Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230000, China
| | - Xiang Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230000, China
| | - Xingyu Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230000, China
| | - Wanqing Kou
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230000, China
| | - Fang Fang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230000, China
| | - Guoyu Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230000, China
| |
Collapse
|
2
|
Li Z, Wang S, Chen SC, Zhu X, Lian Z, Xing D. Cu-Catalyzed Asymmetric Three-Component Radical Acylarylation of Vinylarenes with Aldehydes and Aryl Boronic Acids. J Am Chem Soc 2024; 146:32235-32242. [PMID: 39533487 DOI: 10.1021/jacs.4c08957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The direct use of readily available aldehydes as acyl radical precursors has facilitated diverse three-component acylative difunctionalization reactions of alkenes, offering a powerful route to synthesize β-branched ketones. However, asymmetric three-component acylative difunctionalization of alkenes with aldehydes still remains elusive. Here we report a copper-catalyzed asymmetric three-component radical acylarylation of vinylarenes with aldehydes and aryl boronic acids. This method begins with acyl radical formation from an aldehyde via hydrogen atom transfer. The acyl radical adds to the alkene, forming a new benzylic radical that then undergoes copper-catalyzed enantioselective arylation. A chiral binaphthyl-tethered bisoxazoline ligand is essential for achieving high stereocontrol. This strategy enables the direct synthesis of a range of synthetically valuable chiral β,β-diaryl ketones from aldehydes and vinylarenes.
Collapse
Affiliation(s)
- Zhiheng Li
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Shang Wang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Si-Cong Chen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xiangwen Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Zhengzhen Lian
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Dong Xing
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
3
|
Zhu N, Yao H, Zhang X, Bao H. Metal-catalyzed asymmetric reactions enabled by organic peroxides. Chem Soc Rev 2024; 53:2326-2349. [PMID: 38259195 DOI: 10.1039/d3cs00735a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
As a class of multifunctional reagents, organic peroxides play vital roles in the chemical industry, pharmaceutical synthesis and polymerization reactions. Metal-catalyzed asymmetric catalysis has emerged as one of the most straightforward and efficient strategies to construct enantioenriched molecules, and an increasing number of metal-catalyzed asymmetric reactions enabled by organic peroxides have been disclosed by researchers in recent years. Despite remarkable progress, the types of asymmetric reactions facilitated by organic peroxides remain limited and the catalysis systems need to be further broadened. To the best of our knowledge, there is still no review devoted to summarizing the reactions from this perspective. In this review, we will endeavor to highlight the advances in metal-catalyzed asymmetric reactions enabled by organic peroxides. We hope that this survey will summarize the functions of organic peroxides in catalytic reactions, improve the understanding of these compounds and inspire future developments in this area.
Collapse
Affiliation(s)
- Nengbo Zhu
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China.
| | - Huijie Yao
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China.
- Fujian College, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Xiyu Zhang
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China.
| | - Hongli Bao
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China.
- Fujian College, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| |
Collapse
|
4
|
Zhu Y, Qiu YH, Dai XK, Luo W, Peng X, Chen Z, Yu D. Difluoromethylated Difunctionalization of Alkenes under Visible Light. J Org Chem 2024; 89:2525-2537. [PMID: 38300156 DOI: 10.1021/acs.joc.3c02552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Difluoromethylated compounds usually act as bioisosteres for alcohol functional groups and show unique physicochemical and biological properties. The cyano-difluoromethylation of alkenes using 5-((difluoromethyl)sulfonyl)-1-phenyl-1H-tetrazole as a CF2H radical difluoromethyl precursor was developed to afford nitriles including a CF2H group. A low-cost, stable, easily handled 5-((difluoromethyl)sulfonyl)-1-methyl-1H-tetrazole (DFSMT) was synthesized and applied as the radical CF2H reagent. Using DFSMT as the radical CF2H precursor, the oxyl-difluoromethylation of alkenes was developed to obtain difluoromethylated ether products. All of the reactions showed good functional group tolerability. Initial mechanistic experiments indicated that the CF2H radical was involved as the key active intermediate.
Collapse
Affiliation(s)
- Yuping Zhu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Yan-Hua Qiu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Xiao-Kang Dai
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Wenjun Luo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Xiangjun Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, School of Pharmaceutical Sciences of Gannan Medical University, Ganzhou 341000, P. R. China
| | - Zhengwang Chen
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Daohong Yu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P. R. China
| |
Collapse
|
5
|
Paulus F, Stein C, Heusel C, Stoffels TJ, Daniliuc CG, Glorius F. Three-Component Photochemical 1,2,5-Trifunctionalizations of Alkenes toward Densely Functionalized Lynchpins. J Am Chem Soc 2023; 145:23814-23823. [PMID: 37852246 DOI: 10.1021/jacs.3c08898] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Radical remote 1,n-difunctionalization reactions (n > 2) of alkenes are powerful tools to efficiently introduce functional groups with selected distances into target molecules. Among these reactions, 1,5-difunctionalizations are an important subclass, leading to sought-after scaffolds, but typically suffer from tailored starting materials and strict limitations for the formed functional group in 2-position. Seeking to address these issues and to make radical 1,5-difunctionalizations of alkenes more applicable, we report a novel three-component 1,2,5-trifunctionalization reaction between imine-based bifunctional reagents and two distinct alkenes, driven by visible light energy transfer-catalysis. Key to achieving this selective one-step installation of three different functional groups via the choreographed formation of four bonds was the utilization of a 1,2-boron shift and the rigorous capitalization of radical polarities and stabilities. Thorough mechanistic studies were carried out, and the synthetic utility of the obtained products was demonstrated by various downstream modifications. Notably, in addition to the functionalization of individual functional groups, their interplay gave rise to a unique array of cyclic products.
Collapse
Affiliation(s)
- Fritz Paulus
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Colin Stein
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Corinna Heusel
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Tobias J Stoffels
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany
| |
Collapse
|
6
|
Lai XL, Xu HC. Photoelectrochemical Asymmetric Catalysis Enables Enantioselective Heteroarylcyanation of Alkenes via C-H Functionalization. J Am Chem Soc 2023; 145:18753-18759. [PMID: 37581933 DOI: 10.1021/jacs.3c07146] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
The asymmetric difunctionalization of alkenes, a method transforming readily accessible alkenes into enantioenriched chiral structures of high value, has long been a focal point of organic synthesis. Despite tremendous efforts in this domain, it remains a considerable challenge to devise enantioselective oxidative dicarbofunctionalization of alkenes, even though these transformations can utilize stable and unfunctionalized functional group donors. In this context, we report herein a photoelectrocatalytic method for the enantioselective heteroarylcyanation of aryl alkenes, which employs unfunctionalized heteroarenes through C-H functionalization. The photoelectrochemical asymmetric catalysis (PEAC) method combines photoredox catalysis and asymmetric electrocatalysis to facilitate the formation of two C-C bonds operating via hydrogen (H2) evolution and obviating the need for external chemical oxidants.
Collapse
Affiliation(s)
- Xiao-Li Lai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Hai-Chao Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
7
|
Drennhaus T, Leifert D, Lammert J, Drennhaus JP, Bergander K, Daniliuc CG, Studer A. Enantioselective Copper-Catalyzed Fukuyama Indole Synthesis from 2-Vinylphenyl Isocyanides. J Am Chem Soc 2023; 145:8665-8676. [PMID: 37029692 DOI: 10.1021/jacs.3c01667] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Enantioenriched chiral indoles are of high interest for the pharmaceutical and agrochemical industries. Herein, we present an asymmetric Fukuyama indole synthesis through a mild and efficient radical cascade reaction to access 2-fluoroalkylated 3-(α-cyanobenzylated) indoles by stereochemical control with a chiral copper-bisoxazoline complex using 2-vinylphenyl arylisocyanides as radical acceptors and fluoroalkyl iodides as C-radical precursors. Radical addition to the isonitrile moiety, 5-exo-trig cyclization, and Cu-catalyzed stereoselective cyanation provide the targeted indoles with excellent enantioselectivity and good yields. Due to the similar electronic and steric properties of the two aryl substituents to be differentiated, the enantioselective construction of the cyano diaryl methane stereocenter is highly challenging. Mechanistic studies reveal a negative nonlinear effect which allows proposing a model to explain the stereochemical outcome. Scalability and potential utility of the enantioenriched 3-(α-cyanobenzylated) indoles as hubs for chiral tryptamines, indole-3-acetic acid derivatives, and triarylmethanes are demonstrated, and a formal synthesis of a natural product analogue is disclosed.
Collapse
Affiliation(s)
- Till Drennhaus
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Dirk Leifert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Jessika Lammert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | | | - Klaus Bergander
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| |
Collapse
|
8
|
Chen L, Zhang X, Zhou M, Shen L, Kramer S, Lian Z. Enantioselective Four-Component Arylsulfonylcyanation of Vinylarenes via the Insertion of SO 2 Enabled by SOgen as SO 2 Surrogate. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02297] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Lei Chen
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuemei Zhang
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mi Zhou
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lin Shen
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Søren Kramer
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Zhong Lian
- Department of Dermatology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Zhang Q, Chiou MF, Ye C, Yuan X, Li Y, Bao H. Radical 1,2,3-tricarbofunctionalization of α-vinyl-β-ketoesters enabled by a carbon shift from an all-carbon quaternary center. Chem Sci 2022; 13:6836-6841. [PMID: 35774175 PMCID: PMC9200052 DOI: 10.1039/d2sc00902a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/01/2022] [Indexed: 12/12/2022] Open
Abstract
Herein, we report an intermolecular, radical 1,2,3-tricarbofunctionalization of α-vinyl-β-ketoesters to achieve the goal of building molecular complexity via the one-pot multifunctionalization of alkenes. This reaction allows the expansion of the carbon ring by a carbon shift from an all-carbon quaternary center, and enables further C-C bond formation on the tertiary carbon intermediate with the aim of reconstructing a new all-carbon quaternary center. The good functional group compatibility ensures diverse synthetic transformations of this method. Experimental and theoretical studies reveal that the excellent diastereoselectivity should be attributed to the hydrogen bonding between the substrates and solvent.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Mong-Feng Chiou
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Changqing Ye
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Xiaobin Yuan
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Yajun Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Lingling Road 345 Shanghai 200032 P. R. China
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
10
|
Fang M, Wu P, Wang X, Xie Z, Hou Y, Liu Y, Wu J, Wu F. Enantioselective Copper-Catalyzed Intermolecular Cyanobenzoyldifluoromethylation of Alkenes: Access to Chiral β-Difluoroacyl Nitriles. J Org Chem 2022; 87:4107-4111. [PMID: 35209716 DOI: 10.1021/acs.joc.1c02908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel asymmetric copper-catalyzed intermolecular cyanobenzoyldifluoromethylation of alkenes with iododifluoromethyl ketones and TMSCN has been reported, which provides a particularly valuable route to access chiral β-difluoroacyl nitriles with excellent enantioselectivities. The method permits the efficient cyanation of varied β-difluoroacyl-benzylic radicals in mild conditions with high functional group tolerance. The reaction proceeds through a radical pathway. In order to get insight into the stereochemical outcome, computational mechanistic studies were conducted.
Collapse
Affiliation(s)
- Mougui Fang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Pingjie Wu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xia Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Ziyue Xie
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yali Hou
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yao Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jingjing Wu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.,Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, Shanghai Institute of Technology, Shanghai 201418, China.,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Fanhong Wu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.,Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, Shanghai Institute of Technology, Shanghai 201418, China
| |
Collapse
|
11
|
Zhou YL, Chen JJ, Cheng J, Yang L. Cu-Catalyzed alkylation-cyanation type difunctionalization of styrenes with aliphatic aldehydes and TMSCN via decarbonylation. Org Biomol Chem 2022; 20:1231-1235. [PMID: 35043807 DOI: 10.1039/d1ob02376d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A copper-catalyzed decarbonylative alkylation-cyanation of styrene derivatives with aliphatic aldehydes and trimethylsilyl cyanide to provide chain elongated nitriles is reported. Using TBHP as an oxidant and free radical initiator, the reaction can smoothly convert abundant α-di-substituted, α-mono-substituted and linear aliphatic aldehydes into the corresponding 3°, 2° and 1° alkyl radicals to initiate the subsequent radical-type difunctionalization of various styrenes.
Collapse
Affiliation(s)
- Yu-Ling Zhou
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Hunan, 411105, PR China.
| | - Jun-Jia Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Hunan, 411105, PR China.
| | - Jing Cheng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Hunan, 411105, PR China.
| | - Luo Yang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Hunan, 411105, PR China.
| |
Collapse
|
12
|
Mondal S, Dumur F, Gigmes D, Sibi MP, Bertrand MP, Nechab M. Enantioselective Radical Reactions Using Chiral Catalysts. Chem Rev 2022; 122:5842-5976. [DOI: 10.1021/acs.chemrev.1c00582] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Shovan Mondal
- Department of Chemistry, Syamsundar College, Shyamsundar 713424, West Bengal, India
| | - Frédéric Dumur
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390e Marseille, France
| | - Didier Gigmes
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390e Marseille, France
| | - Mukund P. Sibi
- Department of Chemistry and Biochemistry North Dakota State University, Fargo, North Dakota 58108, United States
| | - Michèle P. Bertrand
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390e Marseille, France
| | - Malek Nechab
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390e Marseille, France
| |
Collapse
|
13
|
Shen Y, Lei N, Lu C, Xi D, Geng X, Tao P, Su Z, Zheng K. Construction of sterically congested oxindole derivatives via visible-light-induced radical-coupling. Chem Sci 2021; 12:15399-15406. [PMID: 34976361 PMCID: PMC8635216 DOI: 10.1039/d1sc05273j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/03/2021] [Indexed: 01/04/2023] Open
Abstract
The oxindole scaffold represents an important structural feature in many natural products and pharmaceutically relevant molecules. Herein, we report a visible-light-induced modular methodology for the synthesis of complex 3,3'-disubstituted oxindole derivatives. A library of valuable fluoroalkyl-containing highly sterically congested oxindole derivatives can be synthesized by a catalytic three-component radical coupling reaction under mild conditions (metal & photocatalyst free, >80 examples). This strategy shows high functional group tolerance and broad substrate compatibility (including a wide variety of terminal or non-terminal alkenes, conjugated dienes and enynes, and a broad array of polyfluoroalkyl iodide and oxindoles), which enables modular modification of complex drug-like compounds in one chemical step. The success of solar-driven transformation, large-scale synthesis, and the late-stage functionalization of bioactive molecules, as well as promising tumor-suppressing biological activities, highlights the potential for practical applications of this strategy. Mechanistic investigations, including a series of control experiments, UV-vis spectroscopy and DFT calculations, suggest that the reaction underwent a sequential two-step radical-coupling process and the photosensitive perfluoroalkyl benzyl iodides are key intermediates in the transformation.
Collapse
Affiliation(s)
- Yanling Shen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| | - Ning Lei
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| | - Cong Lu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| | - Dailin Xi
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| | - Xinxin Geng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| | - Pan Tao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| | - Ke Zheng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| |
Collapse
|
14
|
Sahoo AK, Dahiya A, Das B, Behera A, Patel BK. Visible-Light-Mediated Difunctionalization of Alkynes: Synthesis of β-Substituted Vinylsulfones Using O- and S-Centered Nucleophiles. J Org Chem 2021; 86:11968-11986. [PMID: 34346693 DOI: 10.1021/acs.joc.1c01350] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An inimitable illustration of a green-light-induced, regioselective difunctionalization of terminal alkynes has been disclosed using sodium arylsulfinates and carboxylic acids in the presence of eosin Y as the photocatalyst. The present methodology is further demonstrated by employing NH4SCN as an S-centered nucleophile instead of carboxylic acid. The mechanistic investigation reveals a radical-induced iodosulfonylation followed by a base-mediated nucleophilic substitution. The mechanism is supported by various studies, viz., radical-trapping experiment, fluorescence quenching, and CV studies. In this protocol, (Z)-β-substituted vinylsulfones are obtained, exclusively covering a broad range of alkynes and nucleophiles, which are often unaddressed. The present strategy can tolerate structurally discrete substrates with steric bulk and different electronic properties, which provides a straightforward and practical pathway for the synthesis of highly functionalized (Z)-β-substituted vinylsulfones. Herein, C-O and C-S bonds are assembled simultaneously with the concomitant introduction of important functional groups, viz., ester, thiocyanate, and sulfone.
Collapse
Affiliation(s)
- Ashish Kumar Sahoo
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Anjali Dahiya
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Bubul Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Ahalya Behera
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
15
|
Chen CT, Su YC, Lu CH, Lien CI, Hung SF, Hsu CW, Agarwal R, Modala R, Tseng HM, Tseng PX, Fujii R, Kawashima K, Mori S. Enantioselective Radical Type, 1,2-Oxytrifluoromethylation of Olefins Catalyzed by Chiral Vanadyl Complexes: Importance of Noncovalent Interactions. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Chien-Tien Chen
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Yu-Cheng Su
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Chia-Hao Lu
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Chien-I Lien
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Shiang-Fu Hung
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Chan-Wei Hsu
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Rachit Agarwal
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Ramuasagar Modala
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Hung-Min Tseng
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Pin-Xuan Tseng
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Ryoma Fujii
- Institute of Quantum Beam Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki, Japan
| | - Kyohei Kawashima
- Institute of Quantum Beam Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki, Japan
| | - Seiji Mori
- Institute of Quantum Beam Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki, Japan
- Frontier Research Center for Applied Atomic Sciences, 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| |
Collapse
|
16
|
Zhang M, Lin JH, Jin CM, Xiao JC. Difluorocarbene-based cyanodifluoromethylation of alkenes induced by a dual-functional Cu-catalyst. Chem Commun (Camb) 2021; 57:2649-2652. [PMID: 33587731 DOI: 10.1039/d1cc00160d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Although cyanofluoroalkylation has received increasing attention, a toxic cyanation reagent is usually required. Herein, a Cu-catalyzed difluorocarbene-based cyanodifluoromethylation of alkenes with BrCF2CO2Et/NH4HCO3 under photocatalytic conditions is described. BrCF2CO2Et and NH4HCO3 serve as a carbon source and a nitrogen source of the nitrile group, respectively, avoiding the use of a stoichiometric toxic cyanation reagent. The Cu-complex plays a dual role. It is not only a photocatalyst, but also a coupling catalyst for the formation of a C-CN bond.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Jin-Hong Lin
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Chuan-Ming Jin
- Department of Chemistry and Chemical Engineering, Hubei Normal University, 11 Cihu Road, Huangshi, 435002, Hubei, China
| | - Ji-Chang Xiao
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| |
Collapse
|
17
|
Yang J, Wang B, Zhang Y, Zhang S, He S, Shi ZC, Wang JY. Copper-catalyzed one-pot amine-alkylation of quinones with amines and alkanes. Org Biomol Chem 2021; 19:988-992. [PMID: 33459332 DOI: 10.1039/d0ob02514c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A copper-catalyzed one-pot amine-alkylation of quinones with amines and alkanes in the presence of di-tert-butyl peroxide (DTBP) was developed via a radical reaction process. Various alkanes and aromatic or aliphatic amines with diverse structures and electronic properties are suitable substrates, and the chirality of amines can be maintained for the transformation. This method has high step and atom economy for straightforward access to aminated and alkylated quinones from readily available starting materials.
Collapse
Affiliation(s)
- Jian Yang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
A copper-catalyzed radical oxycyanation of unactivated alkenes and styrenes to produce beta-cyanohydrin derivatives with the cyano group attached on the more substituted carbon center was reported.
Collapse
Affiliation(s)
- Yuehua Zeng
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- State Key Laboratory of Structural Chemistry
- Center for Excellence in Molecular Synthesis
- Fujian Institute of Research on the Structure of Matter
- University of Chinese Academy of Sciences
| | - Yajun Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- State Key Laboratory of Structural Chemistry
- Center for Excellence in Molecular Synthesis
- Fujian Institute of Research on the Structure of Matter
- University of Chinese Academy of Sciences
| | - Daqi Lv
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- State Key Laboratory of Structural Chemistry
- Center for Excellence in Molecular Synthesis
- Fujian Institute of Research on the Structure of Matter
- University of Chinese Academy of Sciences
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- State Key Laboratory of Structural Chemistry
- Center for Excellence in Molecular Synthesis
- Fujian Institute of Research on the Structure of Matter
- University of Chinese Academy of Sciences
| |
Collapse
|
19
|
Abstract
A metal-free two-component alkynylsulfonylation of vinylarenes with aryl alkynylsulfones to afford various β-sulfonyl alkynes in moderate to excellent yields under mild conditions is developed.
Collapse
Affiliation(s)
- Fei Wang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- State Key Laboratory of Structural Chemistry
- Center for Excellence in Molecular Synthesis
- Fujian Institute of Research on the Structure of Matter
- University of Chinese Academy of Sciences
| | - Huan Zhou
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- State Key Laboratory of Structural Chemistry
- Center for Excellence in Molecular Synthesis
- Fujian Institute of Research on the Structure of Matter
- University of Chinese Academy of Sciences
| | - Yajun Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- State Key Laboratory of Structural Chemistry
- Center for Excellence in Molecular Synthesis
- Fujian Institute of Research on the Structure of Matter
- University of Chinese Academy of Sciences
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- State Key Laboratory of Structural Chemistry
- Center for Excellence in Molecular Synthesis
- Fujian Institute of Research on the Structure of Matter
- University of Chinese Academy of Sciences
| |
Collapse
|
20
|
Su YL, Tram L, Wherritt D, Arman H, Griffith WP, Doyle MP. α-Amino Radical-Mediated Diverse Difunctionalization of Alkenes: Construction of C–C, C–N, and C–S Bonds. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04243] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yong-Liang Su
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Linh Tram
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Daniel Wherritt
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Hadi Arman
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Wendell P. Griffith
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Michael P. Doyle
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|