1
|
Wang X, Zhao Z, Guo J, Wang J, Zhao J. Synthesis of 3-sulfonylisoindolin-1-ones from olefinic amides and sodium sulfinates via electrooxidative tandem cyclization. Org Biomol Chem 2024; 22:5897-5901. [PMID: 38967547 DOI: 10.1039/d4ob00980k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Sulfonyl groups are motifs that are widely found in biologically active compounds and drug molecules, many isolated natural products as well as pharmaceuticals contain sulfonyl groups. Herein, we present the synthesis of sulfonyl-substituted isoindolones by a electrochemical oxidative radical cascade cycloaddition reaction of olefinic amides with sodium sulfite under oxidant- and catalyst-free conditions. Various olefinic amides and sodium sulfinates were compatible and gave the desired products in yields up to 99%.
Collapse
Affiliation(s)
- Xuecheng Wang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, Hebei, 071002, P. R. China.
| | - Ziyue Zhao
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, Hebei, 071002, P. R. China.
| | - Jiajie Guo
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, Hebei, 071002, P. R. China.
| | - Jijin Wang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, Hebei, 071002, P. R. China.
| | - Jincan Zhao
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, Hebei, 071002, P. R. China.
| |
Collapse
|
2
|
Matsuoka J, Fujimoto Y, Miyawaki A, Yamamoto Y. Phosphazene Base-Catalyzed Intramolecular Hydroamidation of Alkenes with Amides. Org Lett 2022; 24:9447-9451. [PMID: 36534049 DOI: 10.1021/acs.orglett.2c03870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A method for the synthesis of cyclic amides via phosphazene base-catalyzed intramolecular hydroamidation of amide alkenes was developed. The reaction using a catalytic amount of P4-base had a good functional group tolerance and a broad substrate scope and could also be used to synthesize lactam, cyclic urea, and oxazolidinone compounds. This catalytic system was expanded to a one-pot intramolecular hydroamidation and intermolecular hydroalkylation. Deuterium labeling and radical trapping experiments provided mechanistic insights into the catalytic cycle of the hydroamidation reaction.
Collapse
Affiliation(s)
- Junpei Matsuoka
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kodo, Kyotanabe 610-0395, Japan
| | - Yumika Fujimoto
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kodo, Kyotanabe 610-0395, Japan
| | - Akari Miyawaki
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kodo, Kyotanabe 610-0395, Japan
| | - Yasutomo Yamamoto
- Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kodo, Kyotanabe 610-0395, Japan
| |
Collapse
|
3
|
Zhang Y, Xia S, Shi WX, Lin B, Su XC, Lu W, Wu X, Wang X, Lu X, Yan M, Zhang XJ. Radical C–H Sulfonation of Arenes: Its Applications on Bioactive and DNA-Encoded Molecules. Org Lett 2022; 24:7961-7966. [DOI: 10.1021/acs.orglett.2c03077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yue Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University; Guangzhou, 510006, China
| | - Shengdi Xia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wen-xia Shi
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University; Guangzhou, 510006, China
| | - Bizhen Lin
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University; Guangzhou, 510006, China
| | - Xiao-can Su
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University; Guangzhou, 510006, China
| | - Weiwei Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyuan Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Yan
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University; Guangzhou, 510006, China
| | - Xue-jing Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University; Guangzhou, 510006, China
| |
Collapse
|
4
|
Liu H, You X, Wen F, Zhang Z, Li Z. Calcium Carbide as a Surrogate of Acetylene: Copper‐Catalyzed Construction of 3‐Methylene‐2‐arylisoindolin‐1‐ones. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Haiyan Liu
- Northwest Normal University College of Chemistry and Chemical Engineering CHINA
| | - Xinjie You
- Cebu Normal University College of Chemistry and Chemical Engineering CHINA
| | - Fei Wen
- Northwest Normal University College of Chemistry and Chemical Engineering CHINA
| | - Zeshuai Zhang
- Northwest Normal University College of Chemistry and Chemical Engineering CHINA
| | - Zheng Li
- Northwest Normal University College of Chemistry and Chemical Engineering East Anning Road 967 730070 Lanzhou CHINA
| |
Collapse
|
5
|
Wang J, Xie C, Cheng X, Liu Y, Zhang J. Synthesis of 3‐Methyleneisoindolin‐1‐ones and Isoquinolinium Salts via
Exo
and
Endo
Selective Cyclization of 2‐(1‐Alkynyl)benzaldimines. Chemistry 2022; 28:e202103306. [DOI: 10.1002/chem.202103306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Indexed: 11/08/2022]
Affiliation(s)
- Jiwei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry & Molecular Engineering East China Normal University 3663 North Zhongshan Road Shanghai 200062 P. R. China
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Congyun Xie
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Xiang Cheng
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Ye Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry & Molecular Engineering East China Normal University 3663 North Zhongshan Road Shanghai 200062 P. R. China
| | - Jun Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center School of Chemistry and Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| |
Collapse
|
6
|
Samanta S, Ali SA, Bera A, Giri S, Samanta K. Transition metal-free advanced synthetic approaches for isoindolinones and their fused analogues. NEW J CHEM 2022. [DOI: 10.1039/d2nj00475e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The transition metal-free synthetic protocols of isoindolinone and its fused analogues are highlighted in this review since 2007 to 2021.
Collapse
Affiliation(s)
| | - Sk Asraf Ali
- Department of Chemistry, Bidhannagar College, Kolkata 700064, India
| | - Anirban Bera
- Department of Chemistry, Bidhannagar College, Kolkata 700064, India
| | - Soumen Giri
- Department of Chemistry, C.V. Raman Global University, Bhubaneswar 752054, India
| | - Khokan Samanta
- Department of Chemistry, Haldia Government College, Haldia, India
| |
Collapse
|
7
|
Lin B, Lu W, Chen ZY, Zhang Y, Duan YZ, Lu X, Yan M, Zhang XJ. Enhancing the Potential of Miniature-Scale DNA-Compatible Radical Reactions via an Electron Donor-Acceptor Complex and a Reversible Adsorption to Solid Support Strategy. Org Lett 2021; 23:7381-7385. [PMID: 34546064 DOI: 10.1021/acs.orglett.1c02562] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
DNA-encoded library (DEL) technology is a powerful tool in the discovery of bioactive probe molecules and drug leads. Mostly, the success in DEL technology stems from the molecular diversity of the chemical libraries. However, the construction of DELs has been restricted by the idiosyncratic needs and the required low concentration (∼1 mM or less) of the library intermediate. Here, we report visible-light-promoted on-DNA radical coupling reactions via an electron donor-acceptor (EDA) complex and a reversible adsorption to solid support (RASS) strategy. This protocol provides a unique solution to the challenges of increasing the reactivity of highly diluted DNA substrates and reducing the residues of heavy metals from photocatalysts. A series of on-DNA indole sulfone and selenide derivatives were obtained with good to quantitative conversions. It is anticipated that these mild-condition on-DNA radical reactions will significantly improve the chemical diversity of DELs and find widespread utility to DEL construction.
Collapse
Affiliation(s)
- Bizhen Lin
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Weiwei Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Pudong, Shanghai 201203, P. R. China
| | - Zhen-Yu Chen
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Yue Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yin-Zhe Duan
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Pudong, Shanghai 201203, P. R. China
| | - Ming Yan
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xue-Jing Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|