1
|
Liu X, Ban YL, Liu Y, Zhuang M, Zhou Y. Palladium-catalyzed C-H bond activation and decarboxylation for the assembly of indolo[1,2- f]phenanthridine. Org Biomol Chem 2024. [PMID: 39445400 DOI: 10.1039/d4ob01383b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
A direct and convenient strategy for the assembly of indolo[1,2-f]phenanthridine via a Pd-catalyzed tandem cyclization reaction is presented. The current strategy delivers a range of indolo[1,2-f]phenanthridine derivatives by utilizing readily available 1-(2-iodophenyl)-1H-indole and commercially available o-bromobenzoic acids as the starting materials. The reaction features the formation of two C-C bonds through Pd-catalyzed C-H bond activation and decarboxylation.
Collapse
Affiliation(s)
- Xiaobing Liu
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou, Henan 466000, People's Republic of China
| | - Yong-Liang Ban
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou, Henan 466000, People's Republic of China
| | - Yanjie Liu
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou, Henan 466000, People's Republic of China
| | - Mengdie Zhuang
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou, Henan 466000, People's Republic of China
| | - Yao Zhou
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, Hubei 435002, People's Republic of China.
| |
Collapse
|
2
|
Meena N, Nipate DS, Swami PN, Rangan K, Kumar A. Ru(II)-Catalyzed [4 + 2]-Annulation of 2-Alkenyl/Arylimidazoles with N-Substituted Maleimides and 1,4-Naphthoquinones: Access to Imidazo-Fused Polyheterocycles. J Org Chem 2024; 89:2272-2282. [PMID: 38305185 DOI: 10.1021/acs.joc.3c02229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Synthesis of imidazo-fused polyheterocyclic molecular frameworks, viz. imidazo[1,2-a]pyrrolo[3,4-e]pyridines, imidazo[2,1-a]pyrrolo[3,4-c]isoquinolines, and benzo[g]imidazo[1,2-a]quinoline-6,11-diones, has been achieved by the ruthenium(II)-catalyzed [4 + 2] C-H/N-H annulation of 2-alkenyl/2-arylimidazoles with N-substituted maleimides and 1,4-naphthoquinones. The developed protocol is operationally simple, exhibits broad substrate scope with excellent functional group tolerance, and provides the desired products in moderate to good yields. The mechanistic studies suggest that the reaction involves the formation of a C-C bond through Ru-catalyzed C(sp2)-H bond activation followed by intramolecular cyclization.
Collapse
Affiliation(s)
- Neha Meena
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani, Rajasthan 333031, India
| | - Dhananjay S Nipate
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani, Rajasthan 333031, India
| | - Prakash N Swami
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani, Rajasthan 333031, India
| | - Krishnan Rangan
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad, Telangana 500078, India
| | - Anil Kumar
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani, Rajasthan 333031, India
| |
Collapse
|
3
|
Wen M, Zhang M, Gu F, Geng Y, Liu X, Wu Q, Yang X. Synthesis of spiropyrans via Ru(II)-catalyzed coupling of 3-aryl-2 H-benzo[ b][1,4]oxazines with benzoquinones. Org Biomol Chem 2024; 22:998-1009. [PMID: 38186088 DOI: 10.1039/d3ob01971c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
An efficient Ru(II)-catalyzed C-H activation-based spiroannulation of benzoxazines with the easily available benzoquinone and N-sulfonyl quinone monoimine has been realized, providing a straightforward strategy to access NH-containing spiropyrans in moderate to good yields with good functional group compatibility. The procedure features atom- and step-economy, mild conditions, and excellent chemoselectivity. Moreover, a catalytically competent five-membered cycloruthenated complex has been isolated.
Collapse
Affiliation(s)
- Mengke Wen
- Institute of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
- College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Mengying Zhang
- Institute of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Fan Gu
- Institute of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Yuehua Geng
- Institute of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Xiangyang Liu
- Institute of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Qingnan Wu
- Institute of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Xifa Yang
- Institute of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
4
|
Zhang M, He Y, Li S, Geng Y, Liu X, Yang X. Synthesis of spiropyrans and arylquinones via Ru(II)-catalyzed condition-controlled coupling of 3-aryl-2 H-benzoxazinones with benzoquinones. Chem Commun (Camb) 2023; 59:11704-11707. [PMID: 37700730 DOI: 10.1039/d3cc03395c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Ru(II)-catalyzed condition-controlled divergent coupling between 3-aryl-2H-benzoxazin-2-ones and benzoquinones has been realized under operationally simple conditions, affording a series of structurally stable spiropyrans and valuable arylquinones. The potential of this method is also demonstrated by scale-up synthesis and derivatization. Additionally, an unprecedented cycloruthenated complex has been identified as a key intermediate.
Collapse
Affiliation(s)
- Mengying Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Yuhao He
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Song Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Yuehua Geng
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Xiangyang Liu
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Xifa Yang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
5
|
Heckershoff R, May G, Däumer J, Eberle L, Krämer P, Rominger F, Rudolph M, Mulks FF, Hashmi ASK. Entropy-Induced Selectivity Switch in Gold Catalysis: Fast Access to Indolo[1,2-a]quinolines. Chemistry 2022; 28:e202201816. [PMID: 35699266 DOI: 10.1002/chem.202201816] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 01/07/2023]
Abstract
New N-heterocyclic compounds for organic functional materials and their efficient syntheses are highly demanded. A surprising entropy-induced selectivity switch in the gold-catalyzed intramolecular hydroarylation of 2-ethynyl N-aryl indoles was found and its exploitation led to straightforward syntheses of indolo[1,2-a]quinolines. Experimental and computational mechanistic investigations gave insight into this uncommon selectivity phenomenon and into the special reactivity of the indolo[1,2-a]quinolines. The high functional group tolerance of this methodology enabled access to a diverse scope with high yields. In addition, bidirectional approaches, post-functionalization reactions, and π-extension of the core structure were feasible. An in-depth study of the photophysical properties explored the structure-effect relationship for different derivatives and revealed a high potential of these compounds for future applications as functional materials.
Collapse
Affiliation(s)
- Robin Heckershoff
- Organisch-Chemisches Institut (OCI), Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Garrett May
- Organisch-Chemisches Institut (OCI), Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Janika Däumer
- Organisch-Chemisches Institut (OCI), Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Lukas Eberle
- Organisch-Chemisches Institut (OCI), Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Petra Krämer
- Organisch-Chemisches Institut (OCI), Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut (OCI), Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Matthias Rudolph
- Organisch-Chemisches Institut (OCI), Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Florian F Mulks
- Organisch-Chemisches Institut (OCI), Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141 (Republic of, Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 (Republic of, Korea
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - A Stephen K Hashmi
- Organisch-Chemisches Institut (OCI), Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
6
|
Naharwal S, Karishma P, Mahesha CK, Bajaj K, Mandal SK, Sakhuja R. Ruthenium-catalyzed (spiro)annulation of N-aryl-2,3-dihydrophthalazine-1,4-diones with quinones to access pentacyclic spiro-indazolones and fused-cinnolines. Org Biomol Chem 2022; 20:4753-4764. [PMID: 35616276 DOI: 10.1039/d2ob00493c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ru(II)-catalyzed strategies were developed for the [4 + 1] and [4 + 2] oxidative coupling between N-aryl-2,3-dihydrophthalazine-1,4-diones and 1,4-benzoquinones, achieving spiro-indazolones and fused-cinnolines, respectively. Mild, aerobic and external oxidant-free conditions, as well as the use of a ruthenium catalyst for such (spiro)annulative strategies with quinones over reported Rh/Ir-catalyts, underline the rewards of the disclosed protocols.
Collapse
Affiliation(s)
- Sushma Naharwal
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India.
| | - Pidiyara Karishma
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India.
| | - Chikkagundagal K Mahesha
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India.
| | - Kiran Bajaj
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Noida, Uttar Pradesh, India
| | - Sanjay K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manuali P.O., Mohali, Punjab 140306, India
| | - Rajeev Sakhuja
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India.
| |
Collapse
|
7
|
Li B, Shen N, Wang K, Fan X, Zhang X. Rh(III)‐catalyzed Reaction of 2‐Aryl‐3‐acyl‐1H‐indoles with a‐Diazo Carbonyl Compounds: Synthesis of 5‐Carbonyl Substituted Benzo[a]carbazoles via [5 + 1] Annulation. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bin Li
- Henan Normal University School of Environment jianshe road 46# 453007 Xinxiang CHINA
| | - Nana Shen
- Henan Normal University school of chemistry and chemical engineering CHINA
| | - Kelin Wang
- Henan Normal University school of chemistry and chemical engineering CHINA
| | - Xuesen Fan
- Henan Normal University school of chemistry and chemical engineering CHINA
| | - Xinying Zhang
- Henan Normal University school of chemistry and chemical engineering CHINA
| |
Collapse
|
8
|
Guo S, Zhang Z, Zhu Y, Wei Z, Zhang X, Fan X. Rh( iii)-catalyzed substrate-dependent oxidative (spiro)annulation of isoquinolones with diazonaphthoquinones: selective access to new spirocyclic and oxepine-fused polycyclic compounds. Org Chem Front 2022. [DOI: 10.1039/d2qo01322c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
An efficient protocol for the selective synthesis of novel isoquinolone-containing spirocyclic and oxepine-fused polycyclic compounds via rhodium(iii)-catalyzed (spiro)annulation of NH-isoquinolones with diazonaphthalen-2(1H)-ones is reported.
Collapse
Affiliation(s)
- Shenghai Guo
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Ziyi Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Yuanqing Zhu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Zhaotong Wei
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Xinying Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Xuesen Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| |
Collapse
|
9
|
Wang L, Zhao P, Li S, Ma Y, Zhang P, Xu W. Efficient synthesis of spiro diheterocycles via multi-component dicyclization reaction. Org Biomol Chem 2022; 20:8461-8464. [DOI: 10.1039/d2ob01368a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Spiro diheterocycles with one valuable quaternary carbon were constructed in one pot via an in situ cyclization–respiroannulation strategy.
Collapse
Affiliation(s)
- Lingfeng Wang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, People's Republic of China
| | - Peng Zhao
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, People's Republic of China
| | - Song Li
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, People's Republic of China
| | - Yongmin Ma
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang, 318000, People's Republic of China
| | - Pengfei Zhang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | - Weiming Xu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| |
Collapse
|
10
|
Oeser P, Koudelka J, Petrenko A, Tobrman T. Recent Progress Concerning the N-Arylation of Indoles. Molecules 2021; 26:molecules26165079. [PMID: 34443667 PMCID: PMC8402097 DOI: 10.3390/molecules26165079] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022] Open
Abstract
This review summarizes the current state-of-the-art procedures in terms of the preparation of N-arylindoles. After a short introduction, the transition-metal-free procedures available for the N-arylation of indoles are briefly discussed. Then, the nickel-catalyzed and palladium-catalyzed N-arylation of indoles are both discussed. In the next section, copper-catalyzed procedures for the N-arylation of indoles are described. The final section focuses on recent findings in the field of biologically active N-arylindoles.
Collapse
|
11
|
Wang YJ, Wang TT, Liang CC, Li ZH, Zhao LM. Synthesis of Indolo[2,1- a]benzazepinones through Rhodium-Catalyzed Cascade Reactions of 2-Arylindoles with Allyl Alcohols. Org Lett 2021; 23:6272-6277. [PMID: 34328334 DOI: 10.1021/acs.orglett.1c02064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient synthesis of indolo[2,1-a]benzazepinones through rhodium-catalyzed cascade reactions of 2-arylindoles with allyl alcohols has been developed. This work expands the scope of products that are available through C-H activation/intramolecular annulation reactions of 2-arylindoles in organic synthesis.
Collapse
Affiliation(s)
- Yu-Jiao Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Tong-Tong Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Cai-Cai Liang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Zi-Hao Li
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Li-Ming Zhao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| |
Collapse
|
12
|
Peng W, Liu Q, Yin F, Shi C, Ji L, Qu L, Wang C, Luo H, Kong L, Wang X. Rhodium(iii) catalyzed olefination and deuteration of tetrahydrocarbazole. RSC Adv 2021; 11:8356-8361. [PMID: 35423333 PMCID: PMC8698316 DOI: 10.1039/d1ra00236h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 01/25/2021] [Indexed: 01/24/2023] Open
Abstract
The rhodium-catalyzed olefination and deuteration of tetrahydrocarbazoles in water with the aid of an N,N-dimethylcarbamoyl-protected group is presented. This olefination method features a broad substrate scope, good functional-group tolerance, and high efficiency in water. Practical applications of the protocol are illustrated by the synthesis of various evodiamine derivatives. As such, this environmentally friendly approach to directly modify natural products will attract much attention in academic and industrial research.
Collapse
Affiliation(s)
- Wan Peng
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University 24 Tong Jia Xiang Nanjing 210009 People's Republic of China +86-25-83271405 +86-25-83271405
| | - Qiaohong Liu
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University 24 Tong Jia Xiang Nanjing 210009 People's Republic of China +86-25-83271405 +86-25-83271405
| | - Fucheng Yin
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University 24 Tong Jia Xiang Nanjing 210009 People's Republic of China +86-25-83271405 +86-25-83271405
| | - Cunjian Shi
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University 24 Tong Jia Xiang Nanjing 210009 People's Republic of China +86-25-83271405 +86-25-83271405
| | - Limei Ji
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University 24 Tong Jia Xiang Nanjing 210009 People's Republic of China +86-25-83271405 +86-25-83271405
| | - Lailiang Qu
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University 24 Tong Jia Xiang Nanjing 210009 People's Republic of China +86-25-83271405 +86-25-83271405
| | - Cheng Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University 24 Tong Jia Xiang Nanjing 210009 People's Republic of China +86-25-83271405 +86-25-83271405
| | - Heng Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University 24 Tong Jia Xiang Nanjing 210009 People's Republic of China +86-25-83271405 +86-25-83271405
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University 24 Tong Jia Xiang Nanjing 210009 People's Republic of China +86-25-83271405 +86-25-83271405
| | - Xiaobing Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University 24 Tong Jia Xiang Nanjing 210009 People's Republic of China +86-25-83271405 +86-25-83271405
| |
Collapse
|
13
|
Wood JM, de Carvalho RL, da Silva Júnior EN. The Different Facets of Metal-Catalyzed C-H Functionalization Involving Quinone Compounds. CHEM REC 2021; 21:2604-2637. [PMID: 33415843 DOI: 10.1002/tcr.202000163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/17/2020] [Indexed: 12/15/2022]
Abstract
Metal-catalysed C-H functionalization has emerged as a powerful platform for the derivatization of quinones, a class of compounds with wide-ranging applications. This review organises and discusses the evolution of this chemistry from early Fujiwara-Moritani reactions, through to modern directing-group assisted C-H functionalization processes, including C-H functionalization reactions directed by the quinone ring itself. Mechanistic details of these reactions are provided to afford insight into how the unique reactivity of quinoidal compounds has been leveraged in each example.
Collapse
Affiliation(s)
- James M Wood
- The Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, 5010, New Zealand
| | - Renato L de Carvalho
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| |
Collapse
|
14
|
Li B, Guo C, Shen N, Zhang X, Fan X. Synthesis of maleimide fused benzocarbazoles and imidazo[1,2-a]pyridines via rhodium(iii)-catalyzed [4 + 2] oxidative cycloaddition. Org Chem Front 2020. [DOI: 10.1039/d0qo01109f] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this paper, an efficient and sustainable synthesis of maleimide-fused benzocarbazoles/imidazo[1,2-a]pyridines from the reaction of 2-arylindoles/2-arylimidazo[1,2-a]pyridines with maleimides through oxidative [4 + 2] annulation is presented.
Collapse
Affiliation(s)
- Bin Li
- School of Environment
- School of Chemistry and Chemical Engineering
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
| | - Chenhao Guo
- School of Environment
- School of Chemistry and Chemical Engineering
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
| | - Nana Shen
- School of Environment
- School of Chemistry and Chemical Engineering
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
| | - Xinying Zhang
- School of Environment
- School of Chemistry and Chemical Engineering
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
| | - Xuesen Fan
- School of Environment
- School of Chemistry and Chemical Engineering
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
| |
Collapse
|