1
|
Sahoo S, Manna S, Rit A. Unravelling a bench-stable zinc-amide compound as highly active multitasking catalyst for radical-mediated selective alk(en)ylation of unactivated carbocycles under mild conditions. Chem Sci 2024; 15:5238-5247. [PMID: 38577381 PMCID: PMC10988604 DOI: 10.1039/d3sc06334h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/20/2024] [Indexed: 04/06/2024] Open
Abstract
The direct functionalization of unactivated organic moieties via C-C bond formation has long fascinated synthetic chemists. Although base-metal systems are steadily emerging in this area, achieving multitasking activity in a single catalyst to execute several such functionalizations under mild conditions is challenging. To address this, we herein report an effective protocol for the selective C-alk(en)ylation of indene/fluorene with alcohol as a green alkylating agent employing a naturally abundant and eco-friendly zinc-derived compound, for the first time. Notably, this study unveils the unique potential of a bench-stable Zn compound bearing an amidated imidazolium salt towards C-C bond-forming reactions utilizing an array of alcohols, ranging from aliphatic to aromatic and, attractively, even secondary alcohols. Moreover, this readily scalable protocol, which proceeds via an underdeveloped radical-mediated borrowing hydrogen protocol (an aldehyde is generated from an alcohol, and subsequent condensation with indene/fluorene provides the corresponding alkenylated products) established based on a range of control experiments, works effortlessly under mild conditions using a low catalyst loading. Notably, this approach affords remarkable selectivity towards alkylated or alkenylated products with a high level of functional group tolerance and chemoselectivity. Crucially, the catalytic activity of these Zn compounds can be attributed to their hydrogen atom transfer (HAT) capability, while their selectivity towards different products can be understood in terms of employed reaction conditions. Lastly, the synthetic utility of obtained products was showcased by their late-stage functionalization to access unsymmetrical 9,9-disubstituted fluorenes, which are potentially useful for various optoelectronic applications.
Collapse
Affiliation(s)
- Sangita Sahoo
- Department of Chemistry, Indian Institute of Technology Madras Chennai 600036 India
| | - Subarna Manna
- Department of Chemistry, Indian Institute of Technology Madras Chennai 600036 India
| | - Arnab Rit
- Department of Chemistry, Indian Institute of Technology Madras Chennai 600036 India
| |
Collapse
|
2
|
Upadhyay R, Maurya SK. Titanium-Catalyzed Selective N-Alkylation of Amines with Alcohols via Borrowing Hydrogen Methodology. J Org Chem 2023. [PMID: 38048482 DOI: 10.1021/acs.joc.3c01788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
The N-alkylation of amines with alcohols using earth-abundant and nonprecious metal catalysts has gained considerable attention in the pharmaceutical industry. We described titanium-catalyzed synthetic protocol for N-alkylation of amines with alcohols via borrowing hydrogen or hydrogen autotransfer reactions. The methodology enables the selective monoalkylation of various substituted (hetero)aromatic amines in good to excellent yields (up to 97% yield). The importance of the protocol was further demonstrated by the applicability of earth-abundant metal catalysis and the synthesis of 32 N-alkylated amines. The work allows the utilization of titanium-based catalysts for various reactions to expand the nature blueprint in catalysis.
Collapse
Affiliation(s)
- Rahul Upadhyay
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur, Himachal Pradesh 176 061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Sushil K Maurya
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology Palampur, Himachal Pradesh 176 061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
3
|
Ke Z, Wang Y, Zhao Y, Tang M, Zeng W, Wang Y, Chang X, Han B, Liu Z. Ionic-Liquid Hydrogen-Bonding Promoted Alcohols Amination over Cobalt Catalyst via Dihydrogen Autotransfer Mechanism. CHEMSUSCHEM 2023; 16:e202300513. [PMID: 37191041 DOI: 10.1002/cssc.202300513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/17/2023]
Abstract
Higher amines are important high-valuable chemicals with wide applications, and amination of alcohols is a green route to them, which however generally suffers from harsh reaction conditions and use of equivalent base. Herein, we report an ionic-liquid (IL) hydrogen-bonding promoted dihydrogen autotransfer strategy for amination of alcohols to higher amines over cobalt catalyst under base-free conditions. Co(BF4 )2 ⋅ 6 H2 O complexed with triphos and IL (e. g., tetrabutylphosphonium tetrafluoroborate, [P4444 ][BF4 ]) shows high performances for the reaction and is tolerant of a wide scope of amines and alcohols, affording higher amines in good to excellent yields. Mechanism investigation indicates that the [BF4 ]- anion activates the alcohol via hydrogen bonding, promoting transfer of both hydroxyl H and α-H atoms of alcohol to the cobalt catalyst to form an aldehyde intermediate and cobalt dihydride complex, which are involved in the subsequent reductive amination. This strategy provides a green and effective route for alcohol amination, which may have promising applications in alcohol-involved alkylation reactions.
Collapse
Affiliation(s)
- Zhengang Ke
- Institute of Chemistry, Chinese Academy of Sciences, No. 2, Zhongguancun Beiyijie, Beijing, 100190, China
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China
| | - Yuepeng Wang
- Institute of Chemistry, Chinese Academy of Sciences, No. 2, Zhongguancun Beiyijie, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanfei Zhao
- Institute of Chemistry, Chinese Academy of Sciences, No. 2, Zhongguancun Beiyijie, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minhao Tang
- Institute of Chemistry, Chinese Academy of Sciences, No. 2, Zhongguancun Beiyijie, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Zeng
- Institute of Chemistry, Chinese Academy of Sciences, No. 2, Zhongguancun Beiyijie, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Wang
- Institute of Chemistry, Chinese Academy of Sciences, No. 2, Zhongguancun Beiyijie, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoqian Chang
- Institute of Chemistry, Chinese Academy of Sciences, No. 2, Zhongguancun Beiyijie, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Buxing Han
- Institute of Chemistry, Chinese Academy of Sciences, No. 2, Zhongguancun Beiyijie, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhimin Liu
- Institute of Chemistry, Chinese Academy of Sciences, No. 2, Zhongguancun Beiyijie, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Guin AK, Pal S, Chakraborty S, Chakraborty S, Paul ND. N-Alkylation of Amines by C1-C10 Aliphatic Alcohols Using A Well-Defined Ru(II)-Catalyst. A Metal-Ligand Cooperative Approach. J Org Chem 2023; 88:5944-5961. [PMID: 37052217 DOI: 10.1021/acs.joc.3c00313] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
A Ru(II)-catalyzed efficient and selective N-alkylation of amines by C1-C10 aliphatic alcohols is reported. The catalyst [Ru(L1a)(PPh3)Cl2] (1a) bearing a tridentate redox-active azo-aromatic pincer, 2-((4-chlorophenyl)diazenyl)-1,10-phenanthroline (L1a) is air-stable, easy to prepare, and showed wide functional group tolerance requiring only 1.0 mol % (for N-methylation and N-ethylation) and 0.1 mol % of catalyst loading for N-alkylation with C3-C10 alcohols. A wide array of N-methylated, N-ethylated, and N-alkylated amines were prepared in moderate to good yields via direct coupling of amines and alcohols. 1a efficiently catalyzes the N-alkylation of diamines selectively. It is even suitable for synthesizing N-alkylated diamines using (aliphatic) diols producing the tumor-active drug molecule MSX-122 in moderate yield. 1a showed excellent chemo-selectivity during the N-alkylation using oleyl alcohol and monoterpenoid β-citronellol. Control experiments and mechanistic investigations revealed that the 1a-catalyzed N-alkylation reactions proceed via a borrowing hydrogen transfer pathway where the hydrogen removed from the alcohol during the dehydrogenation step is stored in the ligand backbone of 1a, which in the subsequent steps transferred to the in situ formed imine intermediate to produce the N-alkylated amines.
Collapse
Affiliation(s)
- Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Subhasree Pal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Subhajit Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Santana Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| |
Collapse
|
5
|
Hong Z, Qian C, Zhou S. HBF4-promoted, 3d transition metal-catalyzed reductive amination using EDTA-type ligand: Theoretical and experimental study. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
6
|
Zhang X, Zhang Q, Reng J, Lin Y, Tang Y, Liu G, Wang P, Lu GP. N, S Co-Coordinated Zinc Single-Atom Catalysts for N-Alkylation of Aromatic Amines with Alcohols: The Role of S-Doping in the Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:445. [PMID: 36770405 PMCID: PMC9919690 DOI: 10.3390/nano13030445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
S-doping emerged as a promising approach to further improve the catalytic performance of carbon-based materials for organic synthesis. Herein, a facile and gram-scale strategy was developed using zeolitic imidazole frameworks (ZIFs) as a precursor for the fabrication of the ZIF-derived N, S co-doped carbon-supported zinc single-atom catalyst (CNS@Zn1-AA) via the pyrolysis of S-doped ZIF-8, which was modified by aniline, ammonia and thiourea and prepared by one-pot ball milling at room temperature. This catalyst, in which Zn is dispersed as the single atom, displays superior activity in N-alkylation via the hydrogen-borrowing strategy (120 °C, turnover frequency (TOF) up to 8.4 h-1). S-doping significantly enhanced the catalytic activity of CNS@Zn1-AA, as it increased the specific surface area and defects of this material and simultaneously increased the electron density of Zn sites in this catalyst. Furthermore, this catalyst had excellent stability and recyclability, and no obvious loss in activity after eight runs.
Collapse
Affiliation(s)
- Xueping Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Xiaolingwei 200, Nanjing 210094, China
| | - Qiang Zhang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jiacheng Reng
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Xiaolingwei 200, Nanjing 210094, China
| | - Yamei Lin
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Wenyuanstreet 200, Nanjing 210032, China
| | - Yongxing Tang
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Xiaolingwei 200, Nanjing 210094, China
| | - Guigao Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Xiaolingwei 200, Nanjing 210094, China
| | - Pengcheng Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Xiaolingwei 200, Nanjing 210094, China
| | - Guo-Ping Lu
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Xiaolingwei 200, Nanjing 210094, China
| |
Collapse
|
7
|
Chakraborty S, Mondal R, Pal S, Guin AK, Roy L, Paul ND. Zn(II)-Catalyzed Selective N-Alkylation of Amines with Alcohols Using Redox Noninnocent Azo-Aromatic Ligand as Electron and Hydrogen Reservoir. J Org Chem 2023; 88:771-787. [PMID: 36577023 DOI: 10.1021/acs.joc.2c01773] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We report a sustainable and eco-friendly approach for selective N-alkylation of various amines by alcohols, catalyzed by a well-defined Zn(II)-catalyst, Zn(La)Cl2 (1a), bearing a tridentate arylazo scaffold. A total of 57 N-alkylated amines were prepared in good to excellent yields, out of which 17 examples are new. The Zn(II)-catalyst shows wide functional group tolerance, is compatible with the synthesis of dialkylated amines via double N-alkylation of diamines, and produces the precursors in high yields for the marketed drugs tripelennamine and thonzonium bromide in gram-scale reactions. Control reactions and DFT studies indicate that electron transfer events occur at the azo-chromophore throughout the catalytic process, which shuttles between neutral azo, one-electron reduced azo-anion radical, and two-electron reduced hydrazo forms acting both as electron and hydrogen reservoir, enabling the Zn(II)-catalyst for N-alkylation reaction.
Collapse
Affiliation(s)
- Subhajit Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Rakesh Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Subhasree Pal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai - IOC Odisha Campus Bhubaneswar, Bhubaneswar 751013, India
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| |
Collapse
|
8
|
Jafarzadeh M, Sobhani SH, Gajewski K, Kianmehr E. Recent advances in C/ N-alkylation with alcohols through hydride transfer strategies. Org Biomol Chem 2022; 20:7713-7745. [PMID: 36169049 DOI: 10.1039/d2ob00706a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review highlights the most recent reports in three powerful and ever-growing fields of borrowing hydrogen, acceptorless dehydrogenative coupling, and base-mediated hydride transfer strategies; which pave the way for generating reactive intermediates via shuttling hydrogen (or hydride) between starting materials without any need for an external hydrogen source to easily construct more complex structures. There is a thorough focus on diversifying the utility of alcohols for C/N-alkylation leading to the synthesis of branched ketones, alcohols, amines, indols, and 6-membered nitrogen-containing heterocycles such as pyridines and pyrimidines, various transformations with the focus on C-C and C-N bond-forming reactions via metal-based catalysis or metal-free approaches in this context to give a global overview in this area.
Collapse
Affiliation(s)
- Mahdi Jafarzadeh
- School of Chemistry, College of Science, University of Tehran, Tehran 1417614411, Iran.
| | - Seyed Hasan Sobhani
- School of Chemistry, College of Science, University of Tehran, Tehran 1417614411, Iran.
| | | | - Ebrahim Kianmehr
- School of Chemistry, College of Science, University of Tehran, Tehran 1417614411, Iran.
| |
Collapse
|
9
|
Hao Z, Zhou X, Ma Z, Zhang C, Han Z, Lin J, Lu GL. Dehydrogenative Synthesis of Quinolines and Quinazolines via Ligand-Free Cobalt-Catalyzed Cyclization of 2-Aminoaryl Alcohols with Ketones or Nitriles. J Org Chem 2022; 87:12596-12607. [PMID: 36162131 DOI: 10.1021/acs.joc.2c00734] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a convenient and efficient protocol to synthesize quinolines and quinazolines in one pot under mild conditions. A variety of substituted quinolines were synthesized in good to excellent yields (up to 97% yield) from the dehydrogenative cyclizations of 2-aminoaryl alcohols and ketones catalyzed by readily available Co(OAc)2·4H2O. This cobalt catalytic system also showed high activity in the reactions of 2-aminobenzyl alcohols with nitriles, affording various quinazoline derivatives (up to 95% yield). The present protocol offers an environmentally benign approach for the synthesis of N-heterocycles by employing an earth-abundant cobalt salt under ligand-free conditions.
Collapse
Affiliation(s)
- Zhiqiang Hao
- National Experimental Chemistry Teaching Center (Hebei Normal University), Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, People's Republic of China
| | - Xiaoyu Zhou
- National Experimental Chemistry Teaching Center (Hebei Normal University), Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, People's Republic of China
| | - Zongwen Ma
- National Experimental Chemistry Teaching Center (Hebei Normal University), Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, People's Republic of China
| | - Caicai Zhang
- National Experimental Chemistry Teaching Center (Hebei Normal University), Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, People's Republic of China
| | - Zhangang Han
- National Experimental Chemistry Teaching Center (Hebei Normal University), Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, People's Republic of China
| | - Jin Lin
- National Experimental Chemistry Teaching Center (Hebei Normal University), Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, People's Republic of China
| | - Guo-Liang Lu
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.,Maurice Wilkins Centre, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
10
|
Podyacheva E, Afanasyev OI, Vasilyev DV, Chusov D. Borrowing Hydrogen Amination Reactions: A Complex Analysis of Trends and Correlations of the Various Reaction Parameters. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Evgeniya Podyacheva
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova St. 28, Moscow 119991, Russian Federation
- National Research University Higher School of Economics, Miasnitskaya Str. 20, Moscow 101000, Russian Federation
| | - Oleg I. Afanasyev
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova St. 28, Moscow 119991, Russian Federation
| | - Dmitry V. Vasilyev
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Egerlandstr. 3, 91058 Erlangen, Germany
| | - Denis Chusov
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova St. 28, Moscow 119991, Russian Federation
- National Research University Higher School of Economics, Miasnitskaya Str. 20, Moscow 101000, Russian Federation
| |
Collapse
|
11
|
Kumar KN, Reddy MM, Panchami H, Velayutham R, Dhaked DK, Swain SP. Thiourea as oxyanion stabilizer for Iridium catalyzed, base free green synthesis of amines: Synthesis of cardiovascular drug ticlopidine. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Moutaoukil Z, Serrano-Díez E, Collado IG, Jiménez-Tenorio M, Botubol-Ares JM. N-Alkylation of organonitrogen compounds catalyzed by methylene-linked bis-NHC half-sandwich ruthenium complexes. Org Biomol Chem 2022; 20:831-839. [PMID: 35018948 DOI: 10.1039/d1ob02214h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
An efficient ruthenium-catalyzed N-alkylation of amines, amides and sulfonamides has been developed employing novel pentamethylcyclopentadienylruthenium(II) complexes bearing the methylene linked bis(NHC) ligand bis(3-methylimidazol-2-ylidene)methane. The acetonitrile complex 2 has proven particularly effective with a broad range of substrates with low catalyst loading (0.1-2.5 mol%) and high functional group tolerance under mild conditions. A total of 52 N-alkylated organonitrogen compounds including biologically relevant scaffolds were synthesized from (hetero)aromatic and aliphatic amines, amides and sulfonamides using alcohols or diols as alkylating agents in up to 99% isolated yield, even on gram-scale reactions. In the case of sulfonamides, it is the first example of N-alkylation employing a transition-metal complex bearing NHC ligands.
Collapse
Affiliation(s)
- Zakaria Moutaoukil
- University of Cadiz, Departamento de Química Orgánica-INBIO, Facultad de Ciencias, Torre Sur, 4° planta, 11510, Puerto Real, Cádiz.
| | - Emmanuel Serrano-Díez
- University of Cadiz, Departamento de Química Orgánica-INBIO, Facultad de Ciencias, Torre Sur, 4° planta, 11510, Puerto Real, Cádiz.
| | - Isidro G Collado
- University of Cadiz, Departamento de Química Orgánica-INBIO, Facultad de Ciencias, Torre Sur, 4° planta, 11510, Puerto Real, Cádiz.
| | - Manuel Jiménez-Tenorio
- University of Cadiz, Departamento de Ciencias de los Materiales e Ingeniería Metalúrgica y Química Inorgánica-INBIO, Facultad de Ciencias, Torre Norte, 1° planta, 11510, Puerto Real, Cádiz, Spain
| | - José Manuel Botubol-Ares
- University of Cadiz, Departamento de Química Orgánica-INBIO, Facultad de Ciencias, Torre Sur, 4° planta, 11510, Puerto Real, Cádiz.
| |
Collapse
|
13
|
Li S, Guo Q, Li J, Hu Y. Effect of surface acidity and basicity of supported Ni catalysts on the N-alkylation of isopropylamine with isopropanol. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00437a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of surface acidity and basicity on the adsorption for isopropanol, isopropylamine and diisopropylamine and their interactions on Ni catalyst was revealed, which was related to the N-alkylation of isopropylamine with isopropanol.
Collapse
Affiliation(s)
- Shaozhong Li
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huaian 223003, China
| | - Qing Guo
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huaian 223003, China
| | - Jin Li
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huaian 223003, China
| | - Yongke Hu
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huaian 223003, China
| |
Collapse
|
14
|
Selective C-C bonds formation, N-alkylation and benzo[d]imidazoles synthesis by a recyclable zinc composite. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.060] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Li J, Yang Y, Hu W, Xia X, Wang D. Catalytic Synthesis of Pyrazine and Ketone Derivatives by Unsymmetrical Triazolyl-Naphthyridinyl-Pyridine Copper. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202107018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Song YL, Li B, Xie ZB, Wang D, Sun HM. Iron-Catalyzed Oxidative Amination of Benzylic C(sp 3)-H Bonds with Anilines. J Org Chem 2021; 86:17975-17985. [PMID: 34860531 DOI: 10.1021/acs.joc.1c02311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Iron-catalyzed oxidative amination of benzylic C(sp3)-H bonds with anilines bearing electron-withdrawing groups (EWGs) or electron-donating groups (EDGs) is realized based on simple variations of N-substituents on imidazolium cations in novel ionic Fe(III) complexes. The structural modification of the imidazolium cation resulted in regulation of the redox potential and the catalytic performance of the iron metal center. Using DTBP as oxidant, [HItBu][FeBr4] showed the highest catalytic activity for anilines bearing EWGs, while [HIPym][FeBr4] was more efficient for EDG-substituted anilines. This work provides alternative access to benzylamines with the advantages of both a wide substrate scope and iron catalysis.
Collapse
Affiliation(s)
- Yan-Ling Song
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Soochow University, 199 Renai Street, Suzhou, Jiangsu 215123, China
| | - Bei Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Soochow University, 199 Renai Street, Suzhou, Jiangsu 215123, China
| | - Zhen-Biao Xie
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Soochow University, 199 Renai Street, Suzhou, Jiangsu 215123, China
| | - Dan Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Soochow University, 199 Renai Street, Suzhou, Jiangsu 215123, China
| | - Hong-Mei Sun
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Soochow University, 199 Renai Street, Suzhou, Jiangsu 215123, China
| |
Collapse
|
17
|
Song Y, Zhang H, Guo J, Shao Y, Ding Y, Zhu L, Yao X. Visible‐Light‐Induced Oxidative α‐Alkylation of Glycine Derivatives with Ethers under Metal‐Free Conditions. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yang Song
- Department of Applied Chemistry College of Material Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 PR China
| | - Hao Zhang
- Department of Applied Chemistry College of Material Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 PR China
| | - Jiabao Guo
- Department of Applied Chemistry College of Material Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 PR China
| | - Yifei Shao
- Department of Applied Chemistry College of Material Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 PR China
| | - Yuzhou Ding
- Department of Chemistry School of Pharmacy Nanjing Medical University Nanjing 211166 PR China
| | - Li Zhu
- Department of Chemistry School of Pharmacy Nanjing Medical University Nanjing 211166 PR China
| | - Xiaoquan Yao
- Department of Applied Chemistry College of Material Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 PR China
| |
Collapse
|
18
|
Li J, Liu H, Zhu H, Yao W, Wang D. Highly Efficient and Recyclable Porous Organic Polymer Supported Iridium Catalysts for Dehydrogenation and Borrowing Hydrogen Reactions in Water. ChemCatChem 2021. [DOI: 10.1002/cctc.202101168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jiahao Li
- The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 Jiangsu Province P. R. China
| | - Hongqiang Liu
- The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 Jiangsu Province P. R. China
- China Synchem Technology Co., Ltd. Bengbu Anhui 233000 P. R. China
| | - Haiyan Zhu
- The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 Jiangsu Province P. R. China
| | - Wei Yao
- The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 Jiangsu Province P. R. China
| | - Dawei Wang
- The Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 Jiangsu Province P. R. China
| |
Collapse
|
19
|
Maji M, Borthakur I, Guria S, Singha S, Kundu S. Direct access to 2-(N-alkylamino)pyrimidines via ruthenium catalyzed tandem multicomponent annulation/N-alkylation. J Catal 2021. [DOI: 10.1016/j.jcat.2021.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
20
|
Panigrahi UK, Bhat VT, Ramakrishnan VKM. Magnetically Recyclable Heterogeneous Cobalt Ferrite Catalyst for the Direct N‐Alkylation of (Hetero)aryl Amines with Alcohols. ChemistrySelect 2021. [DOI: 10.1002/slct.202100510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Uttam Kumar Panigrahi
- Department of chemistry College of Engineering and Technology Faculty of Engineering and Technology SRM Institute of Science and Technology SRM Nagar, Kattankulathur 603203, Kanchipuram Chennai Tamil Nadu India
| | - Venugopal T. Bhat
- Department of chemistry College of Engineering and Technology Faculty of Engineering and Technology SRM Institute of Science and Technology SRM Nagar, Kattankulathur 603203, Kanchipuram Chennai Tamil Nadu India
| | - Vengadesh Kumara Mangalam Ramakrishnan
- Department of chemistry College of Engineering and Technology Faculty of Engineering and Technology SRM Institute of Science and Technology SRM Nagar, Kattankulathur 603203, Kanchipuram Chennai Tamil Nadu India
| |
Collapse
|
21
|
Panigrahi A, Sharanappa Sherikar M, Ramaiah Prabhu K. ZnBr
2
Mediated C−N Bond Formation using Cinnamyl Alcohol and 2‐Amino Pyridines. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ahwan Panigrahi
- Department of Organic Chemistry Indian Institute of Science 560 012 Bangalore Karnataka India
| | | | | |
Collapse
|
22
|
Donthireddy SNR, Pandey VK, Rit A. [(PPh 3) 2NiCl 2]-Catalyzed C-N Bond Formation Reaction via Borrowing Hydrogen Strategy: Access to Diverse Secondary Amines and Quinolines. J Org Chem 2021; 86:6994-7001. [PMID: 33904747 DOI: 10.1021/acs.joc.1c00510] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Commercially available [(PPh3)2NiCl2] was found to be an efficient catalyst for the mono-N-alkylation of (hetero)aromatic amines, employing alcohols to deliver diverse secondary amines, including the drug intermediates chloropyramine (5b) and mepyramine (5c), in excellent yields (up to 97%) via the borrowing hydrogen strategy. This method shows a superior activity (TON up to 10000) with a broad substrate scope at a low catalyst loading of 1 mol % and a short reaction time. Further, this strategy is also successful in accessing various quinoline derivatives following the acceptorless dehydrogenation pathway.
Collapse
Affiliation(s)
- S N R Donthireddy
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Vipin K Pandey
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Arnab Rit
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
23
|
Iuliano M, Sarno M, Cirillo C, Ponticorvo E, De Pasquale S. Easy and One‐Step Synthesis of Ir Single Atom Doped PPy Nanoparticles for Highly Active N‐Alkylation Reaction. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202000971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Mariagrazia Iuliano
- Department of Industrial Engineering University of Salerno Via Giovanni Paolo II, 132 84084 Fisciano SA Italy
| | - Maria Sarno
- Department of Physics “E.R. Caianiello” University of Salerno Via Giovanni Paolo II, 132 84084 Fisciano SA Italy
- NANO_MATES Research Centre University of Salerno Via Giovanni Paolo II, 132 84084 Fisciano SA Italy
| | - Claudia Cirillo
- Department of Industrial Engineering University of Salerno Via Giovanni Paolo II, 132 84084 Fisciano SA Italy
| | - Eleonora Ponticorvo
- Department of Industrial Engineering University of Salerno Via Giovanni Paolo II, 132 84084 Fisciano SA Italy
- NANO_MATES Research Centre University of Salerno Via Giovanni Paolo II, 132 84084 Fisciano SA Italy
| | - Salvatore De Pasquale
- Department of Physics “E.R. Caianiello” University of Salerno Via Giovanni Paolo II, 132 84084 Fisciano SA Italy
- NANO_MATES Research Centre University of Salerno Via Giovanni Paolo II, 132 84084 Fisciano SA Italy
| |
Collapse
|
24
|
Goyal V, Sarki N, Poddar MK, Narani A, Tripathi D, Ray A, Natte K. Biorenewable carbon-supported Ru catalyst for N-alkylation of amines with alcohols and selective hydrogenation of nitroarenes. NEW J CHEM 2021. [DOI: 10.1039/d1nj01654g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A renewable carbon-supported Ru catalyst (Ru/PNC-700) facilely prepared via simple impregnation followed by the pyrolysis process for N-alkylation of anilines with benzyl alcohol and chemoselective hydrogenation of nitroarenes.
Collapse
Affiliation(s)
- Vishakha Goyal
- Chemical and Material Sciences Division
- Light Stock Processing Division
- Biofuels Division
- Analytical Sciences Division
- CSIR–Indian Institute of Petroleum
| | - Naina Sarki
- Chemical and Material Sciences Division
- Light Stock Processing Division
- Biofuels Division
- Analytical Sciences Division
- CSIR–Indian Institute of Petroleum
| | - Mukesh Kumar Poddar
- Chemical and Material Sciences Division
- Light Stock Processing Division
- Biofuels Division
- Analytical Sciences Division
- CSIR–Indian Institute of Petroleum
| | - Anand Narani
- Chemical and Material Sciences Division
- Light Stock Processing Division
- Biofuels Division
- Analytical Sciences Division
- CSIR–Indian Institute of Petroleum
| | - Deependra Tripathi
- Chemical and Material Sciences Division
- Light Stock Processing Division
- Biofuels Division
- Analytical Sciences Division
- CSIR–Indian Institute of Petroleum
| | - Anjan Ray
- Chemical and Material Sciences Division
- Light Stock Processing Division
- Biofuels Division
- Analytical Sciences Division
- CSIR–Indian Institute of Petroleum
| | - Kishore Natte
- Chemical and Material Sciences Division
- Light Stock Processing Division
- Biofuels Division
- Analytical Sciences Division
- CSIR–Indian Institute of Petroleum
| |
Collapse
|