1
|
Saha N, Kumar A, Debnath BB, Sarkar A, Chakraborti AK. Recent Advances in the Development of Greener Methodologies for the Synthesis of Benzothiazoles. Curr Top Med Chem 2025; 25:581-644. [PMID: 39844549 DOI: 10.2174/0115680266347975241217112119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/09/2024] [Accepted: 10/23/2024] [Indexed: 01/24/2025]
Abstract
The benzothiazole ring system has been recognised with crucial pharmacophoric features being present among various approved drugs and clinical and pre-clinical candidates. The medicinal importance of this privileged scaffold stimulated the interest of synthetic medicinal/ organic chemists for the synthesis of its derivatives due to their diverse biological applications. In most of the reports in the literature, benzothiazoles were synthesized by cyclocondensation of 2- aminothiophenol with either carboxylic acid and its derivatives or aldehydes. However, many of these procedures involve reaction conditions that are not in conformity with sustainable chemistry development. The negative impact of chemicals and their manufacturing processes on the environment, human health, and biodiversity raises safety concerns. On the other hand, the utilization of non-renewable energy sources, use of rare earth metals as catalysts, involvement of costly chemicals, prolonged reaction time at high temperatures, and considerable waste generation diminish the greener impact of these reaction methodologies and make them non-sustainable. In order to avoid such drawbacks of the non-sustainable practices in the synthesis of benzothiazoles, there have been continuous efforts to develop greener methodologies for the construction of this bioactive scaffold. This review aims to delve into the literature reports on the recent advancements in the development of greener methodologies for the synthesis of bioactive benzothiazoles.
Collapse
Affiliation(s)
- Nirjhar Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), Jadavpur, Kolkata, West Bengal 700 032, India
| | - Asim Kumar
- Amity Institute of Pharmacy, Amity University Haryana, Manesar, India-122413
| | - Bibhuti Bhusan Debnath
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), Jadavpur, Kolkata, West Bengal 700 032, India
| | - Anirban Sarkar
- Department of Chemistry, Vidyasagar College for Women, 39 Sankar Ghosh Lane, Kolkata, West Bengal 700006, India
| | - Asit K Chakraborti
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), Jadavpur, Kolkata, West Bengal 700 032, India
| |
Collapse
|
2
|
Wang WK, Bao FY, Shang ZW, Zheng J, Zhao SY. Three-Component Assembly of Dihydropyrrolo[3,4- e][1,3]thiazines from Elemental Sulfur, Maleimides, and 1,3,5-Triazinanes. Org Lett 2024; 26:4297-4301. [PMID: 38739778 DOI: 10.1021/acs.orglett.4c01164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
A three-component reaction for the synthesis of dihydropyrrolo[3,4-e][1,3]thiazines has been developed. Elemental sulfur, maleimides, and 1,3,5-triazinanes are assembled together through sulfuration/nucleophilic attack in N-methylpyrrolidin-2-one (NMP) under mild conditions. A small amount of NaHCO3 is important for the activation of the reaction. In this method, sulfur plays a dual role in thiazine ring formation, while triazinanes are utilized as three-atom synthons in the annulation reaction.
Collapse
Affiliation(s)
- Wen-Kang Wang
- College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, P. R. China
| | - Fei-Yun Bao
- College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, P. R. China
| | - Zhi-Wei Shang
- College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, P. R. China
| | - Jian Zheng
- College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, P. R. China
| | - Sheng-Yin Zhao
- College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, P. R. China
| |
Collapse
|
3
|
Qi Z, Wen S, Hao Li, Liu S, Jiang D. Palladium-Catalyzed Aminosulfonylation of ortho-Iodoanilines with the Insertion of Sulfur Dioxide for the Synthesis of 3,4-Dihydro-benzothiadiazine 1,1-Dioxides. Org Lett 2023; 25:7322-7326. [PMID: 37791747 DOI: 10.1021/acs.orglett.3c02683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
A simple and efficient Pd-catalyzed oxidative cyclization system is developed for the chemo- and regioselective synthesis of 3,4-dihydro-benzothiadiazine 1,1-dioxides, which are formed through aminosulfonylation of ortho-iodoanilines with SO2. DABSO is utilized as the source of SO2, and the organic compound O2 acts as an oxidant. This direct C-S, S-N, and C-N functionalization is highly efficient, and broad functional group tolerance is observed, resulting in moderate to excellent yields of 3,4-dihydro-benzothiadiazine 1,1-dioxides. Furthermore, this method is amenable to gram-scale synthesis.
Collapse
Affiliation(s)
- Zhenjie Qi
- Department of Engineering, Jining University, Qufu, Shandong 273155, P. R. China
| | - Simiaomiao Wen
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Provincial First-Class Applied Discipline (Pharmacy), Changsha, 410219, China
| | - Hao Li
- Department of Engineering, Jining University, Qufu, Shandong 273155, P. R. China
| | - Shuai Liu
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Dongfang Jiang
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Provincial First-Class Applied Discipline (Pharmacy), Changsha, 410219, China
| |
Collapse
|
4
|
Srinivas B, Shakeena K, Kota DL, Abhinav V, Eswar P, Geetha Sravani R, Sampath Pavan Kumar A, Indukuri K, Dhanaraju KA, Murali Krishna Kumar M, Alla SK. Iron(III)-Catalyzed Regioselective Synthesis of Electron-Rich Benzothiazoles from Aryl Isothiocyanates via C-H Functionalization. J Org Chem 2023; 88:4458-4471. [PMID: 36912001 DOI: 10.1021/acs.joc.2c03078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
We report herein a direct synthetic route for the preparation of 2-arylbenzothiazoles using aryl isothiocyanates and electron-rich arenes. The synthetic route involves triflic acid promoted addition of the arenes to aryl isothiocyanates followed by FeCl3-catalyzed C-S bond formation via C-H functionalization. The approach provides the advantage of synthesis of benzothiazoles without the conventional use of aryl aldehyde/carboxylic acid precursors employing the less expensive iron(III) catalyst.
Collapse
Affiliation(s)
- Bokka Srinivas
- Department of Chemistry, GITAM School of Science, GITAM (Deemed to be University), Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra Pradesh 530045, India
| | - Kotari Shakeena
- Department of Chemistry, GITAM School of Science, GITAM (Deemed to be University), Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra Pradesh 530045, India
| | - Durgeswari Lakkavarapu Kota
- Department of Chemistry, GITAM School of Science, GITAM (Deemed to be University), Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra Pradesh 530045, India
| | - Valeti Abhinav
- Department of Chemistry, GITAM School of Science, GITAM (Deemed to be University), Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra Pradesh 530045, India
| | - Pyla Eswar
- Department of Chemistry, GITAM School of Science, GITAM (Deemed to be University), Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra Pradesh 530045, India
| | - Rongali Geetha Sravani
- Department of Chemistry, GITAM School of Science, GITAM (Deemed to be University), Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra Pradesh 530045, India
| | - Anandam Sampath Pavan Kumar
- Department of Chemistry, GITAM School of Science, GITAM (Deemed to be University), Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra Pradesh 530045, India
| | - Kiran Indukuri
- Chemistry-Discovery Research Lab, Dextro Synthesis Private Limited, Hyderabad, Telangana 500090, India
| | | | | | - Santhosh Kumar Alla
- Department of Chemistry, GITAM School of Science, GITAM (Deemed to be University), Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra Pradesh 530045, India
| |
Collapse
|
5
|
Abstract
A catalytic, direct synthetic strategy for preparing ynehydrazides with terminal alkynes and dialkyl azodicarboxylates is described. The protocol utilizes a cheap copper catalyst in combination with a catalytic amount of a weak base. The high sustainability, good practicality, broad substrate scope, and wide functional group tolerance comprised the advantages of this reaction. Synthetic applications and preliminary mechanistic studies have been conducted.
Collapse
Affiliation(s)
- Jian Lei
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, P. R. China
| | - Wanxiu Sha
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, P. R. China
| | - Xiaolan Xie
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, P. R. China
| | - Wen-Ting Weng
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, P. R. China
| |
Collapse
|
6
|
Synthesis of benzisothiazoles by a three-component reaction using elemental sulfur and ammonium as heteroatom components under transition metal-free conditions. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
7
|
He H, Duan D, Li H, Wei Y, Nie L, Tang B, Wang H, Han X, Huang P, Peng X. Graphene oxide-catalyzed synthesis of benzothiazoles with amines and elemental sulfur via oxidative coupling strategy of amines to imines. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Qadir T, Amin A, Salhotra A, Sharma PK, Jeelani I, Abe H. Recent advances in the synthesis of benzothiazole and its derivatives. CURR ORG CHEM 2021. [DOI: 10.2174/1385272826666211229144446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Benzothiazoles have recognized pharmacophores in the field of research, predominantly in synthetic and medicinal chemistry, on account of their significant pharmaceutical properties. This important class of derivatives endows an extensive range of biological activities like anti-inflammatory, antidiabetic, anticancer, anticonvulsant, antibacterial, antiviral, antioxidant, antituberculosis, enzyme inhibitors, etc. Hence, various methodologies have been accomplished to synthesize benzothiazole compounds considering the purity, yield, and selectivity of the products. This review provides different reaction methods that are involved in the synthesis of a variety of benzothiazole derivatives.
Collapse
Affiliation(s)
- Tanzeela Qadir
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Andleeb Amin
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Alka Salhotra
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Praveen Kumar Sharma
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Ishtiaq Jeelani
- Graduate School of Innovative Life Science, University of Toyama, 3190 Gofuku 930-8555, Japan
| | - Hitoshi Abe
- Faculty of Engineering, University of Toyama, 3190 Gofuku 930-8555, Japan
| |
Collapse
|
9
|
Fairoosa J, Neetha M, Anilkumar G. Recent developments and perspectives in the copper-catalyzed multicomponent synthesis of heterocycles. RSC Adv 2021; 11:3452-3469. [PMID: 35424324 PMCID: PMC8694354 DOI: 10.1039/d0ra10472h] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/08/2021] [Indexed: 12/11/2022] Open
Abstract
Heterocyclic compounds have become an inevitable part of organic chemistry due to their ubiquitous presence in bioactive compounds. Copper-catalyzed multicomponent synthesis of heterocycles has developed as the most convenient and facile synthetic route towards complex heterocyclic motifs. In this review, we discuss the advancements in the field of copper-catalyzed multicomponent reactions for the preparation of heterocycles since 2018. Heterocycles are abundant in several pharmaceutical and naturally occurring compounds. Copper-catalyzed multicomponent reactions are a convenient method for easy access to heterocycles. In this review, we focus on the advancement in this field for the past two years.![]()
Collapse
Affiliation(s)
- Jaleel Fairoosa
- School of Chemical Sciences
- Mahatma Gandhi University
- Kottayam
- India
| | - Mohan Neetha
- School of Chemical Sciences
- Mahatma Gandhi University
- Kottayam
- India
| | - Gopinathan Anilkumar
- School of Chemical Sciences
- Mahatma Gandhi University
- Kottayam
- India
- Advanced Molecular Materials Research Centre (AMMRC)
| |
Collapse
|
10
|
Yao W, Wang J, Zhong A, Wang S, Shao Y. Transition-metal-free catalytic hydroboration reduction of amides to amines. Org Chem Front 2020. [DOI: 10.1039/d0qo01092h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The selective catalytic reduction of amides to value-added amine products is a desirable but challenging transformation.
Collapse
Affiliation(s)
- Wubing Yao
- School of Pharmaceutical and Materials Engineering
- Taizhou University
- Jiaojiang 318000
- P.R. China
- Department of Chemistry
| | - Jiali Wang
- School of Pharmaceutical and Materials Engineering
- Taizhou University
- Jiaojiang 318000
- P.R. China
- Department of Chemistry
| | - Aiguo Zhong
- School of Pharmaceutical and Materials Engineering
- Taizhou University
- Jiaojiang 318000
- P.R. China
| | - Shiliang Wang
- School of Pharmaceutical and Materials Engineering
- Taizhou University
- Jiaojiang 318000
- P.R. China
| | - Yinlin Shao
- College of Chemistry & Materials Engineering and Institute of New Materials & Industrial Technology
- Wenzhou University
- Wenzhou 325035
- P.R. China
| |
Collapse
|