1
|
Ullah K, Allevi D, Fabrizi G, Goggiamani A, Marrone F, Iazzetti A. Pd-catalyzed intramolecular C-H activation for the synthesis of fused-1,2,3-triazole quinolines and dihydroquinolines. Org Biomol Chem 2025; 23:3143-3153. [PMID: 40029216 DOI: 10.1039/d4ob02066a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
A Pd-catalyzed, simple, and efficient approach toward structurally diverse fused polycyclic [1,2,3]triazolo[4,5-c]quinoline and 4,5-dihydro-[1,2,3]triazolo[4,5-c]quinoline has been developed. The method is based on intramolecular Pd-catalyzed C-H activation and features operational simplicity, high atom economy, broad substrate scope, excellent yields, and good functional group tolerance. Gram-scale experiments and post-synthetic modifications were performed to extend the synthetic applicability of the proposed methodology and enhance the structural complexity of the obtained derivatives.
Collapse
Affiliation(s)
- Karim Ullah
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma, P.le A. Moro 5, 00185 Rome, Italy.
| | - Dario Allevi
- Dipartimento di Scienze Biotecnologiche di base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, L.go Francesco Vito 1, 00168 Rome, Italy
| | - Giancarlo Fabrizi
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma, P.le A. Moro 5, 00185 Rome, Italy.
| | - Antonella Goggiamani
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma, P.le A. Moro 5, 00185 Rome, Italy.
| | - Federico Marrone
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma, P.le A. Moro 5, 00185 Rome, Italy.
| | - Antonia Iazzetti
- Dipartimento di Scienze Biotecnologiche di base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, L.go Francesco Vito 1, 00168 Rome, Italy
- Policlinico Universitario 'A. Gemelli' Foundation-IRCCS, Rome, 00168, Italy
| |
Collapse
|
2
|
Da Costa GP, Sacramento M, Barcellos AM, Alves D. Comprehensive Review on the Synthesis of [1,2,3]Triazolo[1,5-a]Quinolines. CHEM REC 2024; 24:e202400107. [PMID: 39413121 DOI: 10.1002/tcr.202400107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/01/2024] [Indexed: 10/18/2024]
Abstract
This report outlines the evolution and recent progress about the different protocols to synthesize the N-heterocycles fused hybrids, specifically [1,2,3]triazolo[1,5-a]quinoline. This review encompasses a broad range of approaches, describing several reactions for obtaining this since, such as dehydrogenative cyclization, oxidative N-N coupling, Dieckmann condensation, intramolecular Heck, (3+2)-cycloaddition, Ullman-type coupling and direct intramolecular arylation reactions. We divided this review in three section based in the starting materials to synthesize the target [1,2,3]triazolo[1,5-a]quinolines. Starting materials containing quinoline or triazole units previously formed, as well as starting materials which both quinoline and triazole units are formed in situ. Different methods of obtaining are described, such as metal-free or catalyzed conditions, azide-free, using conventional heating or alternative energy sources, such as electrochemical and photochemical methods. Mechanistic insights underlying the reported reactions were also described in this comprehensive review.
Collapse
Affiliation(s)
- Gabriel P Da Costa
- Laboratório de Síntese Orgânica Limpa-LASOL, CCQFA, Universidade Federal de Pelotas-UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Manoela Sacramento
- Laboratório de Síntese Orgânica Limpa-LASOL, CCQFA, Universidade Federal de Pelotas-UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Angelita M Barcellos
- Pesquisa em Síntese Orgânica Sustentável-PSOS, Universidade Federal do Rio Grande-FURG, Escola de Química e Alimentos-EQA, Av. Itália km 8, s/n-Campus Carreiros, 96.203-900, Rio Grande, RS
| | - Diego Alves
- Laboratório de Síntese Orgânica Limpa-LASOL, CCQFA, Universidade Federal de Pelotas-UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| |
Collapse
|
3
|
Zafar A, Iqbal MA, Iram G, Shoukat US, Jamil F, Saleem M, Yousif M, Abidin ZU, Asad M. Advances in organocatalyzed synthesis of organic compounds. RSC Adv 2024; 14:20365-20389. [PMID: 38919284 PMCID: PMC11197984 DOI: 10.1039/d4ra03046j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
The recent advancements in utilizing organocatalysts for the synthesis of organic compounds have been described in this review by focusing on their simplicity, effectiveness, reproducibility, and high selectivity which lead to excellent product yields. The organocatalytic methods for various derivatives, such as indoles, pyrazolones, anthrone-functionalized benzylic amines, maleimide, polyester, phthalimides, dihydropyrimidin, heteroaryls, N-aryl benzimidazoles, stilbenoids, quinazolines, quinolines, and oxazolidinones have been specifically focused. The review provides more understanding by delving into potential reaction mechanisms. We anticipate that this collection of data and findings on successful synthesis of diverse compound derivatives will serve as valuable resources and stimulating current and future research efforts in organocatalysis and industrial chemistry.
Collapse
Affiliation(s)
- Ayesha Zafar
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
| | - Muhammad Adnan Iqbal
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
- Organometallic and Coordination Chemistry Laboratory, Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
| | - Ghazala Iram
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
| | - Umar Sohail Shoukat
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
| | - Faisal Jamil
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
| | - Muhammad Saleem
- Department of Basic and Applied Chemistry, Faculty of Sciences and Technology, University of Central Punjab Lahore Pakistan
| | - Muhammad Yousif
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
| | - Zain Ul Abidin
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
| | - Mohammad Asad
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
| |
Collapse
|
4
|
Borra S, Kim HY, Oh K. One-Pot Tandem Nickel-Catalyzed α-Vinyl Aldol Reaction and Cycloaddition Approach to [1,2,3]Triazolo[1,5- a]quinolines. Org Lett 2023; 25:288-292. [PMID: 36580377 DOI: 10.1021/acs.orglett.2c04188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A one-pot tandem approach to [1,2,3]triazolo[1,5-a]quinolines was developed from (E)-β-chlorovinyl ketones and 2-azidoaryl carbonyls using a sequence of α-vinyl aldol and azide-alkyne cycloaddition reactions. In particular, the intramolecular azide-alkyne cycloaddition of allenol intermediates was readily promoted by a synergistic action of NEt3 and nickel catalysts. Given that the [1,2,3]triazolo[1,5-a]quinolines are useful synthetic precursors to α-diazoimines through ring-chain isomerization process, the subsequent denitrogenative transformations should provide ready access to valuable heterocyclic compounds.
Collapse
Affiliation(s)
- Satheesh Borra
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Hun Young Kim
- Department of Global Innovative Drugs, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Kyungsoo Oh
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| |
Collapse
|
5
|
Gaspar FV, Azevedo MF, Carneiro LS, Ribeiro SB, Esteves PM, Buarque CD. 1,3-Dipolar cycloaddition reactions of enaminones and azides: Synthesis of 4-acyl-1,2,3-triazoles and mechanistic studies. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Barak DS, Dahatonde DJ, Batra S. Metal‐ and Photoredox‐Catalyst Free Unified Approach for the Synthesis of Azole‐Fused Quinolines via
tert
‐Butyl Nitrite‐Mediated Regioselective Annulation. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Dinesh S. Barak
- Medicinal and Process Chemistry Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road Lucknow 226031, Uttar Pradesh India
| | - Dipak J. Dahatonde
- Medicinal and Process Chemistry Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road Lucknow 226031, Uttar Pradesh India
| | - Sanjay Batra
- Medicinal and Process Chemistry Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road Lucknow 226031, Uttar Pradesh India
- Academy of Scientific and Innovative Research CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus Sector 19, Kamla Nehru Nagar Ghaziabad 201002, UP India
| |
Collapse
|
7
|
Diethyl (2-(4-Phenyl-1H-1,2,3-triazol-1-yl)benzyl) Phosphate. MOLBANK 2021. [DOI: 10.3390/m1223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Here we describe a full structural elucidation of the diethyl (2-(4-phenyl-1H-1,2,3-triazol-1-yl)benzyl) phosphate. This compound is a common by-product present in the synthetic protocols to access the α-hydroxy phosphonate compounds through of a Phospha-Brook rearrangement. Thus, a complete NMR structural characterization of this rearrangement by-product was performed by 1H, 13C{1H}, 31P{1H}, COSY, HSQC, and HMBC NMR experiments. Additionally, we have demonstrated that the 1H-31P HMBC is a 2D heteroatom NMR experiment which combines the simple identification by 31P chemical shift with the detection sensitivity by 1H spectrum in a practical procedure.
Collapse
|
8
|
Marsicano V, Arcadi A, Chiarini M, Fabrizi G, Goggiamani A, Iazzetti A. Sequential condensation/biannulation reactions of β-(2-aminophenyl)-α,β-ynones with 1,3-dicarbonyls. Org Biomol Chem 2021; 19:5177-5190. [PMID: 34042150 DOI: 10.1039/d1ob00795e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A divergent domino condensation/biannulation reaction of β-(2-aminophenyl) α,β-ynones with 1,3-dicarbonyls to construct a polycyclic 4H-pyrano[3,4-c]quinoline core has been developed. The p-TsOH·H2O catalyzed reaction of β-(2-aminophenyl) α,β-ynones with β-ketoesters in ethanol proceeds with good to excellent yields to provide a simple and effective method for the synthesis of functionalized 4H-pyrano[3,4-c]quinolinones. Further elaboration of these latter derivatives with an excess of 20% NH4OH in EtOH at 50 °C helps achieve the synthesis of the perlodinine analogues benzo[c][2,7]naphthyridin-4(3H)-one derivatives in high yields. Moreover, the p-TsOH·H2O mediated reaction of β-(2-aminophenyl) α,β-ynones with β-di-ketones leads to the formation of a variety of structurally diverse 4H-pyrano[3,4-c]quinoline polycyclic ketals by the incorporation of an alcohol solvent molecule in a cascade fashion.
Collapse
Affiliation(s)
- Vincenzo Marsicano
- Dipartimento di Scienze Fisiche e Chimiche, Università di L'Aquila, Via Vetoio- 67010 Coppito (AQ), Italy.
| | - Antonio Arcadi
- Dipartimento di Scienze Fisiche e Chimiche, Università di L'Aquila, Via Vetoio- 67010 Coppito (AQ), Italy.
| | - Marco Chiarini
- Facoltà di Bioscienze e Tecnologie Agro-alimentari e Ambientali, Università di Teramo, Via R. Balzarini 1, 64100 - Teramo (Te), Italy
| | - Giancarlo Fabrizi
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma, P.le A. Moro 5, 00185 Rome, Italy
| | - Antonella Goggiamani
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma, P.le A. Moro 5, 00185 Rome, Italy
| | - Antonia Iazzetti
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma, P.le A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
9
|
Zhang X, Yang J, Xiong N, Han Z, Duan X, Zeng R. Indium-mediated annulation of 2-azidoaryl aldehydes with propargyl bromides to [1,2,3]triazolo[1,5- a]quinolines. Org Biomol Chem 2021; 19:6346-6352. [PMID: 34231622 DOI: 10.1039/d1ob01183a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient indium-mediated cascade annulation reaction of 2-azidoaryl aldehydes with propargyl bromides is reported. The aromatic 5/6/6-fused heterocycles, [1,2,3]triazolo[1,5-a]quinoline derivatives, could be constructed in one pot in moderate yields with a broad substrate scope. Mechanistic studies indicated that the reaction proceeded through allenol formation, azide-allene [3 + 2] cycloaddition, and dehydration. The synthetic potential of the products including the denitrogenative functionalization and the Pd-catalyzed coupling reactions has also been explored.
Collapse
Affiliation(s)
- Xiaomin Zhang
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an 710049, P. R. China.
| | - Jiali Yang
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an 710049, P. R. China.
| | - Ni Xiong
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an 710049, P. R. China.
| | - Zhe Han
- School of Nuclear Science and Technology, Xi'an Jiaotong University (XJTU), Xi'an 710049, P. R. China
| | - Xinhua Duan
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an 710049, P. R. China.
| | - Rong Zeng
- School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an 710049, P. R. China. and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P. R. China
| |
Collapse
|