1
|
Altharawi A, Aldakhil T, A. Alossaimi M. Synthesis of Rh-MOF/PVA-PVP nanofibers for skin cancer and infection inhibition. Front Chem 2025; 13:1575183. [PMID: 40357128 PMCID: PMC12066281 DOI: 10.3389/fchem.2025.1575183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025] Open
Abstract
Using electrospinning for nanofiber production, we can create unique materials with multiple applications in various industries, including medical bandages and wound dressings. One of the most important features of these materials and using the electrospinning technique, is the incorporation of compounds and metals into their structure. In this study, a new metal-organic framework (MOF) was synthesized from rhodium, a metal with significant biological potential, which was then used to produce new nanofibers using electrospinning technique, (Rh-MOF/PVA-PVP nanofiber) by mixing polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP). The newly synthesized nanofiber was tested against common microbial skin pathogens and cancer cells, showing significant inhibition. Specifically, an IC50 value of 19.45 μg/mL against cancer cells and MIC values ranging from 4 μg/mL to 64 μg/mL μg against skin pathogenic strains were observed. This notable inhibitory ability can be attributed to both physical characteristics (with specific surface area of 2,348 m2/g), and chemical factors, including the active compounds present in its rhodium (Rh) structure. The synthesized Rh-MOF/PVA-PVP nanofiber has the potential for use in developing bioactive bandages, and wound dressings.
Collapse
Affiliation(s)
- Ali Altharawi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | | | |
Collapse
|
2
|
Polo-Cuadrado E, Acosta-Quiroga K, Rojas-Peña C, Rodriguez-Nuñez YA, Blanco-Acuña EF, Lopez JJ, Brito I, Cisterna J, Alderete JB, Gutiérrez M. Regioselective cyclocondensations with thiobarbituric acid: spirocyclic and azocine products, X-ray characterization, and antioxidant evaluation. RSC Adv 2025; 15:8609-8621. [PMID: 40109931 PMCID: PMC11921768 DOI: 10.1039/d4ra07966c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/11/2025] [Indexed: 03/22/2025] Open
Abstract
Multicomponent cyclocondensations of 5-amino-3-methyl-1-phenyl-1H-pyrazole (AMPZ), thiobarbituric acid, and p-formaldehyde under conventional thermal heating or ultrasonic irradiation were studied. Treatment of the reaction mixture in ethanol in an ultrasonic bath for 3 h produced azocine compound 4b, while the same mixture in ethanol under reflux conditions for 15 h produced spiro compound 4a. This work encompasses intricate experimental details, X-ray diffraction measurements, and multifaceted computational analyses employing methods such as the density functional theory and Hirshfeld surface analysis. Crystallographic investigations revealed the molecular structure of the compound and clarified its interactions involving hydrogen bonds and weak intermolecular forces. This article describes the synthesis and characterization of a novel spirocyclic compound. The study also evaluated the antioxidant potential in vitro using the DPPH and ABTS methods. The results showed that these compounds showed the best free radical scavenging ability, even in very small amounts, and that even at very low concentrations, these compounds showed excellent radical scavenging potential. Surprisingly, these compounds exhibited strong (ABTS+) radical scavenging activities, mainly attributed to the HAT mechanism, indicating their potential as therapeutic agents. Facile multipurpose, three-component selective procedures for new spiroheterocycles have been proposed, presenting intriguing perspectives in the field of medicine, particularly in the field of antioxidants. The geometric values of the computationally optimized structure were calculated using the density functional theory in LC-BLYP/6-31(d), aligned with the X-ray diffraction data, reinforcing the precision of our findings.
Collapse
Affiliation(s)
- Efraín Polo-Cuadrado
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción Concepcion Chile
| | - Karen Acosta-Quiroga
- Doctorado en Quimica, Departamento de Quımica Organica y Fisicoquımica, Universidad de Chile Santiago Chile
| | - Cristian Rojas-Peña
- Doctorado en Quimica, Departamento de Quımica Organica y Fisicoquımica, Universidad de Chile Santiago Chile
| | - Yeray A Rodriguez-Nuñez
- Universidad Andrés Bello, Facultad de Ciencias Exactas, Departamento de Ciencias Químicas, Laboratorio de Síntesis y Reactividad de Compuestos Orgánicos Santiago 8370146 Chile
| | - Edgard Fabián Blanco-Acuña
- Grupo de Investigación en Ciencias Basicas (NUCLEO), Facultad de Ciencias e Ingenieria, Universidad de Boyacá Tunja Boyacá 150003 Colombia
| | - Jhon J Lopez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción Concepcion Chile
| | - Iván Brito
- Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta Avda, Universidad de Antofagasta, Campus Coloso Antofagasta 02800 Chile
| | - Jonathan Cisterna
- Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta Avda, Universidad de Antofagasta, Campus Coloso Antofagasta 02800 Chile
- Departamento de Química, Facultad de Ciencias, Universidad de Católica del Norte Sede Casa Central, Av. Angamos Antofagasta 0610 Chile
| | - Joel B Alderete
- Instituto de Química de Recursos Naturales, Universidad de Talca Casilla 747 Talca 3460000 Chile
| | - Margarita Gutiérrez
- Laboratorio Síntesis Orgánica y Actividad Biológica (LSO-Act-Bio), Instituto de Química de Recursos Naturales, Universidad de Talca Casilla 747 Talca 3460000 Chile
| |
Collapse
|
3
|
Luo Q, Zhou Y, Zhang J, Dong S, Feng X. Asymmetric Catalytic (3 + 2) Cyclization and Sequential Reaction to Construct Dihydrofuran- and Azepine-Based Spirooxindoles. Org Lett 2025; 27:2133-2138. [PMID: 39985477 DOI: 10.1021/acs.orglett.5c00182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2025]
Abstract
The enantioselective formal (3 + 2) cyclization and sequential reaction of 2-malononitrile-substituted oxindoles with benzaldehydes and ortho-aminobenzaldehydes were achieved by chiral N,N'-dioxide/metal complex Lewis acid catalysts. This protocol supplies facile and efficient access to highly functionalized chiral dihydrofuran- and azepine-based spirooxindoles. Based on the control experiments and the deuterium labeling studies, the interconversion of (3 + 2) diastereomeric intermediates under the reaction conditions and reversible 1,5-H transfer step were disclosed.
Collapse
Affiliation(s)
- Qiliang Luo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jing Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shunxi Dong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
4
|
Nipate DS, Swami PN, Gadekar AB, Jangir T, Rangan K, Kumar A. Ruthenium(II)-Catalyzed C-H/C-H (4+2) Annulation of 2-Aryl-N-heterocycles with Vinylene Carbonate. Chem Asian J 2025; 20:e202401104. [PMID: 39581877 DOI: 10.1002/asia.202401104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
A ruthenium(II)-catalyzed direct C-H/C-H (4+2) annulation of 2-aryl-N-heterocycles such as 2-aryl-4H-pyrido[1,2-a]pyrimidin-4-ones, 2-arylimidazo[1,2-a]pyridines, 2-aryl-2H-indazoles and 2-arylquinolin-4(1H)-ones with vinylene carbonate has been described. This one-pot cascade strategy provided the diversely substituted fused-polyheterocycles such as 7H-benzo[h]pyrido[2,1-b]quinazolin-7-ones, naphtho[1',2':4,5]imidazo[1,2-a]pyridines, indazolo[2,3-a]quinolines and benzo[c]acridin-7(12H)-ones in moderate to excellent yields. The developed protocol exhibited a broad substrate scope with good functional group tolerance and acid/base-free conditions. Based on a preliminary mechanistic investigation, a tentative mechanism of Ru(II)-catalyzed (4+2) annulation reaction has been proposed.
Collapse
Affiliation(s)
- Dhananjay S Nipate
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Prakash N Swami
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Amol B Gadekar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Tarun Jangir
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Krishnan Rangan
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad, Telangana, 500078, India
| | - Anil Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Pilani, Rajasthan, 333031, India
| |
Collapse
|
5
|
Gao L, Wang M, Ren H, Yao J, Miao M, Zhou H. Rhodium(III)-Catalyzed Sequential Cyclization of Enaminones with 1,3-Dienes via C-H Activation for the Synthesis of Fluorenones. J Org Chem 2025; 90:116-123. [PMID: 39700463 DOI: 10.1021/acs.joc.4c01956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
An efficient method for construction of various fluorenones has been achieved via Rh(III)-catalyzed C-H activation/[4 + 2] annulation/aromatization sequences of simple and readily available enaminones and 1,3-dienes. This protocol showed good substrate compatibility as an array of structurally and electronically diverse fluorenones prepared efficiently in moderate to good yields and preparative scale utility showing very good efficiency in the late-stage functionalization of complex valuable molecules.
Collapse
Affiliation(s)
- Lei Gao
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Min Wang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Hongwei Ren
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Jinzhong Yao
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Maozhong Miao
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Hongwei Zhou
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| |
Collapse
|
6
|
Chen X, Gao Y, Luo J, Liu Y, Chen Q, Huo Y, Li X. Access to Functionalized Amines and Medium N-Heterocycles via Amine-Enabled Remote C-H Alkynylation. J Org Chem 2024; 89:17544-17549. [PMID: 39541590 DOI: 10.1021/acs.joc.4c02278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
By using weakly coordinating amines, we developed remote C-H alkynylation with precise control of reactivity and regioselectivity, enabling modification of complex drugs, natural products, and materials. The readily transformable alkyne-containing amine products would facilitate expedient delivery of molecular libraries of functionalized amines and medium N-heterocycles, which are previously elusive to access. Moreover, the introduced alkyne functionality could serve as a versatile handle to expand the diversity and synthetic application of this remote C-H functionalization.
Collapse
Affiliation(s)
- Xiaojian Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiye Luo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuan Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Qian Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xianwei Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
7
|
Zhang Q, Li Y, Chen Y, Jiang J, Liu Y, Luo J, Gao Y, Huo Y, Chen Q, Li X. Ru(II)-Catalyzed Divergent C-H Alkynylation Cascade with Bifunctional α-Alcohol Haloalkynes. Org Lett 2024; 26:2186-2191. [PMID: 38452270 DOI: 10.1021/acs.orglett.4c00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Native functionality directed the C-H activation cascade to enable rapid construction of molecular complexity, featuring step-economy and synthetic efficiency. Herein, by exploiting bifunctional α-alcohol haloalkynes, we developed Ru(II)-catalyzed carboxylic acid, amine, and amide assisted divergent C-H alkynylation and annulation cascade, affording polyfunctional heterocycles. Significantly, a bilateral aryl C-H polycyclization cascade of azobenzenes was achieved using the versatile haloalkynes.
Collapse
Affiliation(s)
- Qiaoya Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yinling Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yabo Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jiahua Jiang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yuan Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jiye Luo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qian Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xianwei Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
8
|
Meena N, Nipate DS, Swami PN, Rangan K, Kumar A. Ru(II)-Catalyzed [4 + 2]-Annulation of 2-Alkenyl/Arylimidazoles with N-Substituted Maleimides and 1,4-Naphthoquinones: Access to Imidazo-Fused Polyheterocycles. J Org Chem 2024; 89:2272-2282. [PMID: 38305185 DOI: 10.1021/acs.joc.3c02229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Synthesis of imidazo-fused polyheterocyclic molecular frameworks, viz. imidazo[1,2-a]pyrrolo[3,4-e]pyridines, imidazo[2,1-a]pyrrolo[3,4-c]isoquinolines, and benzo[g]imidazo[1,2-a]quinoline-6,11-diones, has been achieved by the ruthenium(II)-catalyzed [4 + 2] C-H/N-H annulation of 2-alkenyl/2-arylimidazoles with N-substituted maleimides and 1,4-naphthoquinones. The developed protocol is operationally simple, exhibits broad substrate scope with excellent functional group tolerance, and provides the desired products in moderate to good yields. The mechanistic studies suggest that the reaction involves the formation of a C-C bond through Ru-catalyzed C(sp2)-H bond activation followed by intramolecular cyclization.
Collapse
Affiliation(s)
- Neha Meena
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani, Rajasthan 333031, India
| | - Dhananjay S Nipate
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani, Rajasthan 333031, India
| | - Prakash N Swami
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani, Rajasthan 333031, India
| | - Krishnan Rangan
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad, Telangana 500078, India
| | - Anil Kumar
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani, Rajasthan 333031, India
| |
Collapse
|
9
|
Prabhakar Ganesh PSK, Muthuraja P, Gopinath P. Rh(III) Catalyzed Redox-Neutral C-H Activation/[5 + 2] Annulation of Aroyl Hydrazides and Sulfoxonium Ylides: Synthesis of Benzodiazepinones. Org Lett 2023; 25:8361-8366. [PMID: 37963274 DOI: 10.1021/acs.orglett.3c03495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
We herein report the Rh(III) catalyzed redox-neutral C-H activation/[5 + 2] annulation of aroyl hydrazides with sulfoxonium ylides as safe carbene precursors. The reaction shows excellent functional group tolerance, broad substrate scope, and scalability. We demonstrated the synthetic utility of the protocol via the synthesis of various diazepam drug analogues, late-stage functionalization of probenecid drug, and large scale synthesis. Finally, kinetic studies revealed C-H activation as the rate-determining step.
Collapse
Affiliation(s)
| | - Perumal Muthuraja
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Purushothaman Gopinath
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| |
Collapse
|
10
|
Gayyur, Choudhary S, Kant R, Ghosh N. Twofold Heteroannulation Reactions Enabled by Gold(I)/Zinc(II) Catalysts: Synthesis of Amine-Substituted Diaryl[ c, h][1,6]naphthyridines. Org Lett 2023; 25:7400-7405. [PMID: 37787541 DOI: 10.1021/acs.orglett.3c02899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
A straightforward and atom-economical one-pot protocol catalyzed by gold(I) and zinc(II) for the synthesis of amine-substituted diaryl[c,h][1,6]naphthyridines from two different aromatic nitriles has been showcased. This dual-catalytic strategy is highly efficient, offering an array of tetracyclic heteroaromatic products in good to excellent yields. Furthermore, the base can efficiently catalyze the second annulation step, yielding structurally unique thiophene-fused [1,6]naphthyridines in good yields.
Collapse
Affiliation(s)
- Gayyur
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Shivani Choudhary
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ruchir Kant
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Nayan Ghosh
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
11
|
Gao Y, Wang H, Chen X, Qiao Y, Miao Z. Gold and Palladium Relay Catalytic [4 + 4] Cycloadditions of Enynamides and γ-Methylene-δ-valerolactones: Diastereoselective Construction of Furan-Fused Azacyclooctanes. J Org Chem 2023; 88:11822-11833. [PMID: 37534854 DOI: 10.1021/acs.joc.3c01114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
We report a highly efficient and diastereoselective gold and palladium sequential relay catalysis system for the synthesis of furan-fused eight-membered heterocycles. Employing a one-pot procedure, easily accessible enynamides undergo cyclization to generate azadienes in situ, which subsequently participate in diastereoselective formal [4 + 4] cycloadditions with γ-methylene-δ-valerolactones. This strategy enables the rapid and efficient construction of a series of furan-fused azacyclooctanes with diverse substituents in good yields (63-97%) and a high level of diastereoselectivity (7:1 → 20:1 dr).
Collapse
Affiliation(s)
- Yanfeng Gao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Hui Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Xiaoquan Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Yiyang Qiao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, China
| | - Zhiwei Miao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|
12
|
Mao Y, Chen W, Li C, Miao L, Lin Y, Ling F, Chen Z, Yao J. Synthesis of 3,4,5-trisubstituted phenols via Rh(III)-catalyzed alkenyl C-H activation assisted by phosphonium cations. Chem Commun (Camb) 2023; 59:3775-3778. [PMID: 36912283 DOI: 10.1039/d3cc00017f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
An efficient method for the construction of various 3,4,5-trisubstituted phenol derivatives has been achieved via the Rh(III)-catalyzed coupling of phosphonium cations with internal alkynes. This protocol shows good substrate compatibility, as an array of structurally and electronically diverse phosphonium compounds react efficiently with up to 87% yield.
Collapse
Affiliation(s)
- Yan Mao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Wenxi Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Changchang Li
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Lin Miao
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Yanfei Lin
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Fei Ling
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Zhangpei Chen
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, China.
| | - Jinzhong Yao
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| |
Collapse
|
13
|
Chen D, Zhou L, Liu Y, Wan JP. Three-component synthesis of N-naphthyl pyrazoles via Rh(III)-catalyzed cascade pyrazole annulation and Satoh-Miura benzannulation. Chem Commun (Camb) 2023; 59:4036-4039. [PMID: 36924202 DOI: 10.1039/d3cc00649b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The synthesis of N-naphthyl pyrazoles has been realized by the direct three-component reactions of enaminones, aryl hydrazine hydrochlorides and internal alkynes via Rh(III) catalysis. The synthetic reactions employing simple substrates lead to simultaneous construction of dual cyclic moieties, including a pyrazole ring and a phenyl ring, via sequential formation of two C-N and three C-C bonds.
Collapse
Affiliation(s)
- Demao Chen
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| | - Liyun Zhou
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| | - Yunyun Liu
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| | - Jie-Ping Wan
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China. .,International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
14
|
Sankaram GS, Sahoo T, Sridhar B, Subba Reddy BV. Rhodium(III)-catalyzed oxidative annulation of N-arylbenzamidines with maleimides via dual C-H activation. Org Biomol Chem 2023; 21:1719-1724. [PMID: 36723131 DOI: 10.1039/d2ob01972h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
An oxidative annulation of N-arylbenzimidamides with maleimides has been developed for the first time using a catalytic amount of the [Cp*RhCl2]2 complex for the synthesis of a diverse range of 1H-benzo[4,5]imidazo[2,1-a]pyrrolo[3,4-c]isoquinoline-1,3(2H)-dione derivatives. This method is versatile and atom-economical for producing polycyclic benzo[4,5]imidazo[2,1-a]pyrrolo[3,4-c] isoquinoline-1,3(2H)-dione scaffolds in a single step.
Collapse
Affiliation(s)
- G Siva Sankaram
- Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India
| | - Tanmoy Sahoo
- Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, India
| | - B Sridhar
- Laboratory of X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.
| | - B V Subba Reddy
- Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| |
Collapse
|
15
|
A Lewis Acid-Promoted Michael Addition and Ring-Expansion Cascade for the Construction of Nitrogen-Containing Medium-Sized Rings. Molecules 2023; 28:molecules28041650. [PMID: 36838638 PMCID: PMC9966210 DOI: 10.3390/molecules28041650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
A Lewis acid-promoted annulation of azadienes and cyclobutamines was developed. This reaction proceeded through Michael addition and ring-expansion cascade, affording the corresponding nitrogen-containing medium-sized rings with a broad scope in moderate to high yields. The catalytic asymmetric version of this reaction has also been explored using a chiral base.
Collapse
|
16
|
Chen W, Mao Y, Wang M, Ling F, Li C, Chen Z, Yao J. Rh(III)-catalyzed [4 + 1] cyclization of aryl substituted pyrazoles with cyclopropanols via C-H activation. Org Biomol Chem 2023; 21:775-782. [PMID: 36594518 DOI: 10.1039/d2ob02001g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A rhodium-catalyzed formal [4 + 1]-cyclization reaction of aryl substituted pyrazoles with cyclopropanols via C-H bond activation/cyclization processes to selectively construct a series of carbonyl functionalized pyrazolo[5,1-a]isoindoles is described. The reaction features good functional group compatibility and a broad substrate scope with respect to both cyclization components with up to 84% yields. Mechanistic studies indicated that the C-H cleavage might be the rate-determining step in this transformation.
Collapse
Affiliation(s)
- Wenxi Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China. .,College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Yan Mao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China. .,College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Min Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China. .,College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Fei Ling
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Changchang Li
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Zhangpei Chen
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, China.
| | - Jinzhong Yao
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| |
Collapse
|
17
|
Maayuri R, Gandeepan P. Manganese-catalyzed hydroarylation of multiple bonds. Org Biomol Chem 2023; 21:441-464. [PMID: 36541044 DOI: 10.1039/d2ob01674e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transition metal-catalyzed C-H activation has become a promising strategy in organic synthesis due to its improved atom-, step- and resource economy. Considering the Earth's abundance, economic benefits, and low toxicity, 3d metal catalysts for C-H activation have received a significant focus. In particular, organometallic manganese-catalyzed C-H activation has proven to be versatile and suitable for a wide range of transformations such as C-H addition to π-components, arylation, alkylation, alkynylation, amination, and many more. Among them, manganese-catalyzed C-H addition to C-C and C-heteroatom multiple bonds exhibited unique and promising reactivity to construct a wide range of complex organic molecules. In this review, we highlight the developments in the field of manganese-catalyzed hydroarylation of multiple bonds via C-H activation with a range of applications until August 2022.
Collapse
Affiliation(s)
- Rajaram Maayuri
- Department of Chemistry, Indian Institute of Technology Tirupati, Yerpedu-Venkatagiri Road, Yerpedu Post, Tirupati District, Andhra Pradesh 517619, India.
| | - Parthasarathy Gandeepan
- Department of Chemistry, Indian Institute of Technology Tirupati, Yerpedu-Venkatagiri Road, Yerpedu Post, Tirupati District, Andhra Pradesh 517619, India.
| |
Collapse
|
18
|
Álvarez-Constantino A, Álvarez-Pérez A, Varela JA, Sciortino G, Ujaque G, Saá C. Chemoselective Ru-Catalyzed Oxidative Lactamization vs Hydroamination of Alkynylamines: Insights from Experimental and Density Functional Theory Studies. J Org Chem 2022; 88:1185-1193. [PMID: 36579612 PMCID: PMC9872091 DOI: 10.1021/acs.joc.2c02770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The Ru-catalyzed intramolecular oxidative amidation (lactamization) of aromatic alkynylamines with 4-picoline N-oxide as an external oxidant has been developed. This chemoselective process is very efficient to achieve medium-sized ε- and ζ-lactams (seven- and eight-membered rings) but not for the formation of common δ-lactams (six-membered rings). DFT studies unveiled the capital role of the chain length between the amine and the alkyne functionalities: the longer the connector, the more favored the lactamization process vs hydroamination.
Collapse
Affiliation(s)
- Andrés
M. Álvarez-Constantino
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - Andrea Álvarez-Pérez
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - Jesús A. Varela
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - Giuseppe Sciortino
- Departament
de Química and Centro de Innovación en Química
Avanzada (ORFEO-CINQA), Universitat Autònoma
de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain,
| | - Gregori Ujaque
- Departament
de Química and Centro de Innovación en Química
Avanzada (ORFEO-CINQA), Universitat Autònoma
de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain,
| | - Carlos Saá
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain,
| |
Collapse
|
19
|
Yang C, Shi L, Wang F, Su Y, Xia JB, Li F. Rhodium-Catalyzed Asymmetric (3 + 2 + 2) Annulation via N–H/C–H Dual Activation and Internal Alkyne Insertion toward N-Fused 5/7 Bicycles. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chao Yang
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Lijun Shi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Fang Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yijin Su
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Ji-Bao Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Fuwei Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
20
|
Li Q, Yan K, Zhu Y, Qi G, Wang Y, Hao WJ, Jiang B. Rh(III)-Catalyzed annulative aldehydic C-H functionalization for accessing ring-fluorinated benzo[b]azepin-5-ones. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Kharitonov VB, Muratov DV, Loginov DA. Cyclopentadienyl complexes of group 9 metals in the total synthesis of natural products. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Lee JY, Varshnaya RK, Yoo EJ. Synthesis of Chiral Diazocine Derivatives via a Copper-Catalyzed Dearomative [5+3] Cycloaddition. Org Lett 2022; 24:3731-3735. [PMID: 35549493 DOI: 10.1021/acs.orglett.2c01389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Copper-catalyzed [5+3] cycloaddition of N-aromatic zwitterions and enol diazoacetates produced enantio-enriched diazocine derivatives. A sterically encumbered BOX ligand and NaBArF additive played significant roles in driving the overall catalytic process via the unfavorable dearomatization to construct the desired eight-membered heterocyclic compounds. The induced stereoselectivity was preserved after further modifications of the skeleton, which demonstrates the potential applications of the developed asymmetric catalysis.
Collapse
Affiliation(s)
- Ju Young Lee
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Rohit Kumar Varshnaya
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Eun Jeong Yoo
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
23
|
Deng C, Jiang L, Yao J, Liang Q, Miao L, Li C, Miao M, Zhou H. Rhodium(III)-Catalyzed Sequential Cyclization of N-Boc Hydrazones with Propargylic Monofluoroalkynes via C-H Activation/C-F Cleavage for the Synthesis of Spiro[cyclobutane-1,9'-indeno[1,2- a]indenes]. J Org Chem 2022; 87:6105-6114. [PMID: 35471941 DOI: 10.1021/acs.joc.2c00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An effective rhodium(III) catalysis for the construction of valuable tetracyclic compounds is described herein. This domino process involving the C-H activation/[3 + 2] annulation/intramolecular Friedel-Crafts reaction sequences of simple and readily available N-Boc hydrazones and propargylic monofluoroalkynes afforded fused tetracyclic spiro[cyclobutane-1,9'-indeno[1,2-a]indenes] in moderate to good yields, featuring three C-C bond formation. Moreover, control experiments indicated that the C-H activation might be involved in the rate-determining step.
Collapse
Affiliation(s)
- Cheng Deng
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China.,College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Lu Jiang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China.,College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Jinzhong Yao
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Qian Liang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Lin Miao
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Changchang Li
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| | - Maozhong Miao
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Hongwei Zhou
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, P. R. China
| |
Collapse
|
24
|
Liu M, Xin Y, Xing YH, Bai FY, Shi Z. Construction and Properties of Ag-I Polymeric Clusters Attach with Nitrogen Heterocyclic Transition Metal Moiety. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02229-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
25
|
Dorababu A. Update of Recently (2016–2020) Designed Azepine Analogs and Related Heterocyclic Compounds with Potent Pharmacological Activities. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2041677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Ouyang W, Liu B, He Y, Wen Y, Gao Y, Huo Y, Chen Q, Li X. Modular construction of functionalized anilines via switchable C–H and N-alkylations of traceless N-nitroso anilines with olefins. Org Chem Front 2022. [DOI: 10.1039/d2qo00389a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Switchable C–H or N-alkylations of N-nitroso anilines with olefins.
Collapse
Affiliation(s)
- Wensen Ouyang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Bairong Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yi He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanmei Wen
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qian Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xianwei Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
27
|
Yang WL, Shen JH, Zhao ZH, Wang Z, Deng WP. Stereoselective synthesis of functionalized azepines via gold and palladium relay catalysis. Org Chem Front 2022. [DOI: 10.1039/d2qo00646d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed a cycloisomerization/asymmetric [4 + 3] cycloaddition cascade reaction via gold/palladium relay catalysis, furnishing enantioenriched furan-fused azepines efficiently.
Collapse
Affiliation(s)
- Wu-Lin Yang
- Shanghai Key Laboratory of Chemical Biology & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jia-Huan Shen
- Shanghai Key Laboratory of Chemical Biology & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zeng-Hui Zhao
- Shanghai Key Laboratory of Chemical Biology & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhongao Wang
- Shanghai Key Laboratory of Chemical Biology & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Wei-Ping Deng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China
- Shanghai Key Laboratory of Chemical Biology & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
28
|
Belen’kii LI, Gazieva GA, Evdokimenkova YB, Soboleva NO. The literature of heterocyclic chemistry, Part XX, 2020. ADVANCES IN HETEROCYCLIC CHEMISTRY 2022. [DOI: 10.1016/bs.aihch.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
29
|
Xie X, Bao M, Chen KW, Xu X, Hu W. Asymmetric three-component reaction of diazo compound with alcohol and seven-membered imine. Org Chem Front 2022. [DOI: 10.1039/d2qo00076h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A dirhodium and chiral phosphoric acid co-catalyzed asymmetric three-component reaction of diazo compound with alcohol and seven-membered imine has been developed via Mannich-type interception of transient oxonium ylide. This reaction...
Collapse
|
30
|
Bhattacharjee S, Laru S, Hajra A. Remote difunctionalization of 2 H-indazoles using Koser's reagents. Chem Commun (Camb) 2021; 58:981-984. [PMID: 34937080 DOI: 10.1039/d1cc06129a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A new, efficient, and metal-free protocol has been developed for remote difunctionalization of unreactive C-H bonds at the benzene core of 2H-indazole by employing Koser's reagents, which act as both sulfonyloxylating and iodinating agents under ambient air. The present methodology represents facile access to C-4-sulfonyloxylated and C-7-iodinated 2H-indazole derivatives with high regioselectivity, wide functional group tolerance, and broad substrate scope in good to excellent yields. The formed 4,7 disubstituted 2H-indazoles are the precursors of various C-4,7-functionalized 2H-indazoles through simple transformations.
Collapse
Affiliation(s)
- Suvam Bhattacharjee
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| | - Sudip Laru
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| |
Collapse
|
31
|
Li Y, Wang Y, Huang X, Shi Y, Tang Y, Jiao J, Li J, Xu S. Rapid Construction of Hexacyclic Indolines via the Ru(II)-Catalyzed C-H Activation Initiated Cascade Cyclization of Phenidones with Enynones. Org Lett 2021; 24:435-440. [PMID: 34928618 DOI: 10.1021/acs.orglett.1c04133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A highly efficient cascade cyclization of phenidones and enynones has been developed via a Ru(II)-catalyzed C-H activation initiated indole formation/Diels-Alder reaction/iminium ion cyclization sequence, which afforded hexacyclic indolines as single diastereomer in good to excellent yields with a broad substrate scope under mild conditions. The reaction features the simultaneous generation of five new chemical bonds and four new rings in one pot, providing a rapid and concise approach toward polycyclic indoline alkaloids and their analogues.
Collapse
Affiliation(s)
- Yang Li
- Department of Material Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yongzhuang Wang
- Department of Material Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Xiaoli Huang
- Department of Material Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yan Shi
- Department of Material Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yuhai Tang
- Department of Material Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Jiao Jiao
- Department of Material Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Jing Li
- Department of Material Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Silong Xu
- Department of Material Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
32
|
Ghosh B, Bera S, Ghosh P, Samanta R. Rh(III)-Catalyzed mild straightforward synthesis of quinoline-braced cyclophane macrocycles via migratory insertion. Chem Commun (Camb) 2021; 57:13134-13137. [PMID: 34807203 DOI: 10.1039/d1cc04418d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient Rh(III)-catalyzed straightforward strategy is developed for the synthesis of quinoline braced cyclophane macrocycles via methyl (sp3) C-H functionalization. The method is mild, simple and regioselective with various ring sizes and has good functional group tolerance. The method proceeds via C8-methyl metalation, metal-carbene formation and a subsequent migratory insertion. High dilution is not necessary for this macrocyclization and the only byproduct is nitrogen. A preliminary investigation shows that the C-H metalation step is the rate-determining step.
Collapse
Affiliation(s)
- Bidhan Ghosh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Satabdi Bera
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Pintu Ghosh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Rajarshi Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
33
|
Velasco-Rubio Á, Bernárdez R, Varela JA, Saá C. Enantioenriched α-Vinyl 1,4-Benzodiazepines and 1,4-Benzoxazepines via Enantioselective Rhodium-Catalyzed Hydrofunctionalizations of Alkynes and Allenes. J Org Chem 2021; 86:10889-10902. [PMID: 34259003 PMCID: PMC8499028 DOI: 10.1021/acs.joc.1c01268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
![]()
Benzofused seven-membered heterocycles
such as 1,4-benzo[e]diazepines (1,4-BZDs) and 1,4-benzo[e]oxazepines (1,4-BZOs) were efficiently synthesized by
Rh-catalyzed
hydrofunctionalization of internal alkynes and allenes in good to
excellent yields. The asymmetric hydroamination of (aminomethyl)anilines
gave rise to 3-vinyl-1,4-BZDs with excellent enantioselectivities.
Orthogonal N-deprotection of 1,4-BZDs allowed an
easy entry to an advanced pyrrolobenzodiazepine metabolite of the
V2-receptor antagonist Lixivaptan.
Collapse
Affiliation(s)
- Álvaro Velasco-Rubio
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Rodrigo Bernárdez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Jesús A Varela
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carlos Saá
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
34
|
Deng C, Li C, Yao J, Jin Q, Miao M, Zhou H. Rh(III)‐Catalyzed [4+2] Cyclization of 2‐Aryl‐1
H
‐benzo[
d
]imidazoles with Maleimides via C‐H Activation. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chen Deng
- College of Biological Chemical Sciences and Engineering Jiaxing University Jiaxing 314001 P. R. China
- Department of Chemistry Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province Zhejiang Sci-Tech University Hangzhou Zhejiang 310018 P. R. China
| | - Changchang Li
- College of Biological Chemical Sciences and Engineering Jiaxing University Jiaxing 314001 P. R. China
| | - Jinzhong Yao
- College of Biological Chemical Sciences and Engineering Jiaxing University Jiaxing 314001 P. R. China
| | - Quanli Jin
- College of Biological Chemical Sciences and Engineering Jiaxing University Jiaxing 314001 P. R. China
| | - Maozhong Miao
- Department of Chemistry Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province Zhejiang Sci-Tech University Hangzhou Zhejiang 310018 P. R. China
| | - Hongwei Zhou
- College of Biological Chemical Sciences and Engineering Jiaxing University Jiaxing 314001 P. R. China
| |
Collapse
|
35
|
Chen T, Ding Z, Guan Y, Zhang R, Yao J, Chen Z. Ruthenium-catalyzed coupling of α-carbonyl phosphoniums with sulfoxonium ylides via C–H activation/Wittig reaction sequences. Chem Commun (Camb) 2021; 57:2665-2668. [DOI: 10.1039/d1cc00433f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A Ru(ii)-catalyzed coupling of various α-carbonyl phosphoniums with sulfoxonium ylides has been realized for the facile synthesis of 1-naphthols in good to excellent yields.
Collapse
Affiliation(s)
- Tian Chen
- Center for Molecular Science and Engineering
- College of Sciences
- Northeastern University
- Shenyang 110819
- P. R. China
| | - Zhiqiang Ding
- Center for Molecular Science and Engineering
- College of Sciences
- Northeastern University
- Shenyang 110819
- P. R. China
| | - Yuqiu Guan
- Center for Molecular Science and Engineering
- College of Sciences
- Northeastern University
- Shenyang 110819
- P. R. China
| | - Ruike Zhang
- Center for Molecular Science and Engineering
- College of Sciences
- Northeastern University
- Shenyang 110819
- P. R. China
| | - Jinzhong Yao
- College of Biological
- Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing 314001
- People's Republic of China
| | - Zhangpei Chen
- Center for Molecular Science and Engineering
- College of Sciences
- Northeastern University
- Shenyang 110819
- P. R. China
| |
Collapse
|