1
|
Jaithum K, Tummatorn J, Theppitak C, Chainok K, Thongsornkleeb C, Ruchirawat S. Silver-Catalyzed and Base-Mediated Double Cyclization for the Streamlined Synthesis of Benzo[4,5]imidazo[2,1-b]naphtho[2,3-d]oxazole from ortho-Alkynylarylketones. Chem Asian J 2025. [PMID: 40079900 DOI: 10.1002/asia.202500235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/09/2025] [Accepted: 03/13/2025] [Indexed: 03/15/2025]
Abstract
We report a novel silver-catalyzed and base-mediated double cyclization strategy for the streamlined synthesis of benzo[4,5]imidazo[2,1-b]naphtho[2,3-d]oxazoles from ortho-alkynylarylketones. The transformation proceeds through an initial ketonization step catalyzed by silver trifluoroacetate (AgTFA), generating a reactive 1,5-diketone intermediate, followed by a sequential double cyclization under basic conditions. This method affords a broad range of benzo[4,5]imidazo[2,1-b]naphtho[2,3-d]oxazoles with good functional group tolerance in moderate-to-good yields. Moreover, this methodology also enhances the synthetic utility of ortho-alkynylarylketones, expanding their applicability in constructing diverse fused heterocycles.
Collapse
Affiliation(s)
- Kanokwan Jaithum
- Program on Chemical Sciences, Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
| | - Jumreang Tummatorn
- Program on Chemical Sciences, Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
| | - Chatphorn Theppitak
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
| | - Kittipong Chainok
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani, 12121, Thailand
| | - Charnsak Thongsornkleeb
- Program on Chemical Sciences, Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
| | - Somsak Ruchirawat
- Program on Chemical Sciences, Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
| |
Collapse
|
2
|
Hüßler C, Dietl MC, Scherr M, Blaum IE, Stuntebeck H, Trogemann L, Schmidt S, Kahle J, Krämer P, Rominger F, Rudolph M, Hashmi ASK. Gold-Catalyzed Access to Pyrrolo- and (Aryl)Indolo-Fused Phenazines. Chemistry 2025; 31:e202404184. [PMID: 39660739 DOI: 10.1002/chem.202404184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024]
Abstract
Novel fused phenazines were synthesized through a combination of gold-catalyzed hydroamination and cascade cyclization reactions towards azaacenes. In total, 30 new compounds were synthesized and investigated with respect to their structural and optoelectronic properties. In solution, these targets exhibit strong green to red emission, with quantum yields of up to 60 %. The emission wavelength can be finely adjusted by the choice of solvent due to their solvatochromic behavior, as demonstrated with a representative example.
Collapse
Affiliation(s)
- Christopher Hüßler
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Martin C Dietl
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Matthias Scherr
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Immanuel E Blaum
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Hanno Stuntebeck
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Lea Trogemann
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Sophia Schmidt
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Justin Kahle
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Petra Krämer
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Matthias Rudolph
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - A Stephen K Hashmi
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
3
|
Shuai S, Mao J, Zhou F, Yan Q, Chen L, Li J, Walsh PJ, Liang G. Base-Promoted Synthesis of Isoquinolines through a Tandem Reaction of 2-Methyl-arylaldehydes and Nitriles. J Org Chem 2024; 89:6793-6797. [PMID: 38691096 DOI: 10.1021/acs.joc.4c00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
A convenient method for preparing 3-aryl isoquinolines via a base-promoted tandem reaction is presented. Simply combining commercially available 2-methyl-arylaldehydes, benzonitriles, NaN(SiMe3)2, and Cs2CO3 enabled the synthesis of a variety of isoquinolines (23 examples, ≤90% yield). Among the syntheses of isoquinolines, the transition metal-free method described here is straightforward, practical, and operationally simple.
Collapse
Affiliation(s)
- Sujuan Shuai
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
- Department of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, Hangzhou 310015, P. R. China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jianyou Mao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Fan Zhou
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
- Department of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, Hangzhou 310015, P. R. China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Qifeng Yan
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
- Department of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, Hangzhou 310015, P. R. China
| | - Lingfeng Chen
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Jie Li
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
- Department of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, Hangzhou 310015, P. R. China
| | - Patrick J Walsh
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Guang Liang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| |
Collapse
|
4
|
Ma P, Wang Y, Ma N, Wang J. Alkaline-Metal-Promoted Divergent Synthesis of 1-Aminoisoquinolines and Isoquinolines. J Org Chem 2024. [PMID: 38193431 DOI: 10.1021/acs.joc.3c02384] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Alkaline-metal-promoted divergent syntheses of 1-aminoisoquinolines and isoquinolines have been reported involving 2-methylaryl aldehydes, nitriles, and LiN(SiMe3)2 as reactants. In addition, the three-component reaction of 2-methylaryl nitriles, aldehydes, and LiN(SiMe3)2 has been developed to furnish 1-aminoisoquinolines. This protocol features readily available starting materials, excellent chemoselectivity, broad substrate scope, and satisfactory yields.
Collapse
Affiliation(s)
- Peng Ma
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Yuhang Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Ning Ma
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Jianhui Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
5
|
Vijayakumar A, Manod M, Krishna RB, Mathew A, Mohan C. Diversely functionalized isoquinolines and their core-embedded heterocyclic frameworks: a privileged scaffold for medicinal chemistry. RSC Med Chem 2023; 14:2509-2534. [PMID: 38107174 PMCID: PMC10718595 DOI: 10.1039/d3md00248a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/23/2023] [Indexed: 12/19/2023] Open
Abstract
Isoquinoline-enrooted organic small-molecules represent a challenging molecular target in the organic synthesis arsenal attributed to their structural diversity and therapeutic importance. Into the bargain, isoquinolines are significant structural frameworks in modern medicinal chemistry and drug development. Consequently, synthetic organic and medicinal chemists have been intensely interested in efficient synthetic tactics for the sustainable construction of isoquinoline frameworks and their derivatives in enantiopure or racemic forms. This review accentuates an overview of the literature on the modern synthetic approaches exploited in synthesising isoquinolines and their core embedded heterocyclic skeletons from 2021 to 2022. In detail, the methodologies and inspected pharmacological studies for the array of diversely functionalized isoquinolines or their core-embedded heterocyclic/carbocyclic structures involving the introduction of substituents at C-1, C-3, and C-4 carbon and N-2 atom, bond constructions at the C1-N2 atom and C3-N2 atom, and structural scaffolding within isoquinoline compounds have been reviewed. This intensive study highlights the need for and relevance of relatively unexplored bioisosterism employing isoquinoline-based small-molecules in drug design.
Collapse
Affiliation(s)
- Archana Vijayakumar
- School of Chemical Sciences, Mahatma Gandhi University Kottayam 686560 India
| | - M Manod
- School of Chemical Sciences, Mahatma Gandhi University Kottayam 686560 India
| | - R Bharath Krishna
- Institute for Integrated Programmes and Research in Basic Sciences, Mahatma Gandhi University Kottayam 686560 India
| | - Abra Mathew
- School of Chemical Sciences, Mahatma Gandhi University Kottayam 686560 India
- Department of Chemistry, Indian Institute of Technology Palakkad Kerala 678577 India
| | - Chithra Mohan
- School of Chemical Sciences, Mahatma Gandhi University Kottayam 686560 India
| |
Collapse
|
6
|
de Carvalho RL, Diogo EBT, Homölle SL, Dana S, da Silva Júnior EN, Ackermann L. The crucial role of silver(I)-salts as additives in C-H activation reactions: overall analysis of their versatility and applicability. Chem Soc Rev 2023; 52:6359-6378. [PMID: 37655711 PMCID: PMC10714919 DOI: 10.1039/d3cs00328k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Indexed: 09/02/2023]
Abstract
Transition-metal catalyzed C-H activation reactions have been proven to be useful methodologies for the assembly of synthetically meaningful molecules. This approach bears intrinsic peculiarities that are important to be studied and comprehended in order to achieve its best performance. One example is the use of additives for the in situ generation of catalytically active species. This strategy varies according to the type of additive and the nature of the pre-catalyst that is being used. Thus, silver(I)-salts have proven to play an important role, due to the resulting high reactivity derived from the pre-catalysts of the main transition metals used so far. While being powerful and versatile, the use of silver-based additives can raise concerns, since superstoichiometric amounts of silver(I)-salts are typically required. Therefore, it is crucial to first understand the role of silver(I) salts as additives, in order to wisely overcome this barrier and shift towards silver-free systems.
Collapse
Affiliation(s)
- Renato L de Carvalho
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais-UFMG, 31270-901, Belo Horizonte, MG, Brazil.
| | - Emilay B T Diogo
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais-UFMG, 31270-901, Belo Horizonte, MG, Brazil.
| | - Simon L Homölle
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany.
| | - Suman Dana
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany.
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais-UFMG, 31270-901, Belo Horizonte, MG, Brazil.
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany.
| |
Collapse
|
7
|
Singh A, Kumar S, Volla CMR. α-Carbonyl sulfoxonium ylides in transition metal-catalyzed C-H activation: a safe carbene precursor and a weak directing group. Org Biomol Chem 2023; 21:879-909. [PMID: 36562262 DOI: 10.1039/d2ob01835g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transition metal-catalyzed cross-coupling of sp2 C-H bonds with diazo compounds via carbene migratory insertion represents an efficient strategy for the construction of C-C and C-heteroatom bonds in organic synthesis. Despite the popularity of diazo compounds as coupling partners in C-H activation, they pose serious safety and stability issues due to potential exothermic reactions linked with the release of N2 gas. However, compared with diazo compounds, sulfoxonium ylides are generally crystalline solids, more stable, widely used in industrial scales, and easier/safer to prepare. Therefore, recent years have witnessed an upsurge in employing α-carbonyl sulfoxonium ylides as an alternative carbene surrogate in transition metal-catalyzed C-H activation. Unlike diazo compounds, α-carbonyl sulfoxonium ylides contain inherent potential to serve as a coupling partner as well as a weak directing group. This review will summarize the progress made in both categories of reactions.
Collapse
Affiliation(s)
- Anurag Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Shreemoyee Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Chandra M R Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| |
Collapse
|
8
|
Zhang L, Xiong W, Yao B, Liu H, Li M, Qin Y, Yu Y, Li X, Chen M, Wu W, Li J, Wang J, Jiang H. Facile synthesis of isoquinolines and isoquinoline N-oxides via a copper-catalyzed intramolecular cyclization in water. RSC Adv 2022; 12:30248-30252. [PMID: 36349148 PMCID: PMC9607880 DOI: 10.1039/d2ra06097c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023] Open
Abstract
A highly efficient method for the facile access of isoquinolines and isoquinoline N-oxides via a Cu(i)-catalyzed intramolecular cyclization of (E)-2-alkynylaryl oxime derivatives in water has been developed. This protocol was performed under simple and mild conditions without organic solvent, additives or ligands. By switching on/off a hydroxyl protecting group of oximes, the selective N-O/O-H cleavage could be triggered, delivering a series of isoquinolines and isoquinoline N-oxides, respectively, in moderate to high yields with good functional group tolerance and high atom economy. Moreover, the practicality of this method was further demonstrated by the total synthesis of moxaverine in five steps.
Collapse
Affiliation(s)
- Lujun Zhang
- Institute of Chemistry Co. Ltd, Henan Academy of Sciences Zhengzhou 450000 China
| | - Wenfang Xiong
- School of Pharmacy, Guangdong Medical University Dongguan 523808 China
| | - Biao Yao
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 China
| | - Haitao Liu
- Institute of Chemistry Co. Ltd, Henan Academy of Sciences Zhengzhou 450000 China
| | - Meng Li
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 China
| | - Yu Qin
- Institute of Chemistry Co. Ltd, Henan Academy of Sciences Zhengzhou 450000 China
| | - Yujian Yu
- Institute of Chemistry Co. Ltd, Henan Academy of Sciences Zhengzhou 450000 China
| | - Xu Li
- Institute of Chemistry Co. Ltd, Henan Academy of Sciences Zhengzhou 450000 China
| | - Meng Chen
- Institute of Chemistry Co. Ltd, Henan Academy of Sciences Zhengzhou 450000 China
| | - Wanqing Wu
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 China
| | - Jianxiao Li
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 China
| | - Jinliang Wang
- Institute of Chemistry Co. Ltd, Henan Academy of Sciences Zhengzhou 450000 China
| | - Huanfeng Jiang
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 China
| |
Collapse
|
9
|
Ma P, Wang Y, Wang J. Copper-Catalyzed Domino Three-Component Benzannulation: Access to Isoquinolines. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Peng Ma
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Yuhang Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Jianhui Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| |
Collapse
|
10
|
Ni Q, Xu F, Song X. Diastereoselective and E/Z-Selective Synthesis of Functionalized Quinolizine Scaffolds via the Dearomative Annulation of 2-Pyridylacetates with Nitroenynes. J Org Chem 2022; 87:9507-9517. [PMID: 35801688 DOI: 10.1021/acs.joc.2c00448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An organocatalytic Michael/aza-Michael cascade reaction was developed to build the functionalized quinolizine scaffolds in 60-82% yields, excellent diastereoselectivities, and E/Z selectivities. This protocol involves the [3 + 3] annulations of 2-pyridylacetates with nitroenynes through the dearomative strategy in the presence of an organic base under mild conditions. The versatile late-stage derivatizations further demonstrated the synthetic utility of this methodology.
Collapse
Affiliation(s)
- Qijian Ni
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Fangfang Xu
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Xiaoxiao Song
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| |
Collapse
|
11
|
Bhorali P, Sultana S, Gogoi S. Recent Advances in Metal‐Catalyzed C−H Bond Functionalization Reactions of Sulfoxonium Ylides. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Pratiksha Bhorali
- Applied Organic Chemistry Chemical Sciences & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Sabera Sultana
- Applied Organic Chemistry Chemical Sciences & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 India
| | - Sanjib Gogoi
- Applied Organic Chemistry Chemical Sciences & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|