1
|
Wu Q, Li HP, Liu Y, Shou C, Chen Q, Xu JH, Li CX. Discovery and Engineering of a Bacterial (+)-Pulegone Reductase for Efficient (-)-Menthol Biosynthesis. CHEMSUSCHEM 2024; 17:e202400704. [PMID: 38860330 DOI: 10.1002/cssc.202400704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/02/2024] [Accepted: 06/10/2024] [Indexed: 06/12/2024]
Abstract
The biosynthesis of valuable plant-derived monoterpene (-)-menthol from readily available feedstocks (e. g., (-)-limonene) is of great significance because of the high market demand for this product. However, biotransforming (+)-pulegone into (-)-menthone, the (-)-menthol precursor, through (+)-pulegone reductase (PGR) catalysis is inefficient because of the poor protein expression or catalytic efficiency (kcat/Km) of plant origin PGRs. In this study, a novel bacterial PGR from Pseudomonas resinovorans (PrPGR) was identified, and the most successful variant, PrPGRM2-1 (A50 V/G53 W), was obtained, showing respective 20-fold and 204-fold improvements in specific activity and catalytic efficiency. PrPGRM2-1 was employed to bioreduce (+)-pulegone, resulting in 4.4-fold and 35-fold enhancements in (-)-menthone titers compared with the bioreductions catalyzed by wild-type (WT) PrPGR and MpPGR, respectively. Furthermore, a whole-cell biocatalyst containing PrPGRM2-1, MpMMR, and BstFDH was constructed and achieved the highest (-)-menthol titer reported to date without externally supplemented NADPH/NADP+. Overall, this study details an efficient PGR with high catalytic efficiency that possesses great potential for (-)-menthol biosynthesis.
Collapse
Affiliation(s)
- Qiong Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Hai-Peng Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Ya Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Chao Shou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Qi Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Chun-Xiu Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| |
Collapse
|
2
|
Huang A, Zhang X, Yang Y, Shi C, Zhang B, Tuo X, Shen P, Jiao X, Zhang N. Biocatalytic Synthesis of Ruxolitinib Intermediate via Engineered Imine Reductase. J Org Chem 2024; 89:11446-11454. [PMID: 39113180 DOI: 10.1021/acs.joc.4c01119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
An enzyme catalyzed strategy for the synthesis of a chiral hydrazine from 3-cyclopentyl-3-oxopropanenitrile 5 and hydrazine hydrate 2 is presented. An imine reductase (IRED) from Streptosporangium roseum was identified to catalyze the reaction between 3-cyclopentyl-3-oxopropanenitrile 5 and hydrazine hydrate 2 to produce trace amounts of (R)-3-cyclopentyl-3-hydrazineylpropanenitrile 4. We employed a 2-fold approach to optimize the catalytic performance of this enzyme. First, a transition state analogue (TSA) model was constructed to illuminate the enzyme-substrate interactions. Subsequently, the Enzyme_design and Funclib methods were utilized to predict mutants for experimental evaluation. Through three rounds of site-directed mutagenesis, site saturation mutagenesis, and combinatorial mutagenesis, we obtained mutant M6 with a yield of 98% and an enantiomeric excess (ee) of 99%. This study presents an effective method for constructing a hydrazine derivative via IRED-catalyzed reductive amination of ketone and hydrazine. Furthermore, it provides a general approach for constructing suitable enzymes, starting from nonreactive enzymes and gradually enhancing their catalytic activity through active site modifications.
Collapse
Affiliation(s)
- Aiping Huang
- Center of Biosynthesis Technology, Asymchem Life Science (Tianjin) Co, Ltd, Tianjin 300457, P.R. China
| | - Xuewen Zhang
- Center of Biosynthesis Technology, Asymchem Life Science (Tianjin) Co, Ltd, Tianjin 300457, P.R. China
| | - Yiming Yang
- Center of Biosynthesis Technology, Asymchem Life Science (Tianjin) Co, Ltd, Tianjin 300457, P.R. China
| | - Chengcheng Shi
- Center of Biosynthesis Technology, Asymchem Life Science (Tianjin) Co, Ltd, Tianjin 300457, P.R. China
| | - Bifei Zhang
- Center of Biosynthesis Technology, Asymchem Life Science (Tianjin) Co, Ltd, Tianjin 300457, P.R. China
| | - Xinkun Tuo
- Center of Biosynthesis Technology, Asymchem Life Science (Tianjin) Co, Ltd, Tianjin 300457, P.R. China
| | - Peili Shen
- Center of Biosynthesis Technology, Asymchem Life Science (Tianjin) Co, Ltd, Tianjin 300457, P.R. China
| | - Xuecheng Jiao
- Center of Biosynthesis Technology, Asymchem Life Science (Tianjin) Co, Ltd, Tianjin 300457, P.R. China
| | - Na Zhang
- Center of Biosynthesis Technology, Asymchem Life Science (Tianjin) Co, Ltd, Tianjin 300457, P.R. China
| |
Collapse
|
3
|
Dickey RM, Gopal MR, Nain P, Kunjapur AM. Recent developments in enzymatic and microbial biosynthesis of flavor and fragrance molecules. J Biotechnol 2024; 389:43-60. [PMID: 38616038 DOI: 10.1016/j.jbiotec.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
Flavors and fragrances are an important class of specialty chemicals for which interest in biomanufacturing has risen during recent years. These naturally occurring compounds are often amenable to biosynthesis using purified enzyme catalysts or metabolically engineered microbial cells in fermentation processes. In this review, we provide a brief overview of the categories of molecules that have received the greatest interest, both academically and industrially, by examining scholarly publications as well as patent literature. Overall, we seek to highlight innovations in the key reaction steps and microbial hosts used in flavor and fragrance manufacturing.
Collapse
Affiliation(s)
- Roman M Dickey
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA
| | - Madan R Gopal
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA
| | - Priyanka Nain
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA
| | - Aditya M Kunjapur
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA.
| |
Collapse
|
4
|
Ye RY, Song J, Zhang ZJ, Yu HL. Prokaryotic expression and characterization of artificial self-sufficient CYP120A monooxygenases. Appl Microbiol Biotechnol 2023; 107:5727-5737. [PMID: 37477695 DOI: 10.1007/s00253-023-12678-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 07/22/2023]
Abstract
Cytochrome P450 monooxygenases CYP120As are the unique non-membrane P450s, which are extensively involved in retinoid biodegradation. As the O-functionalized 1,3,3-trimethylcyclohex-1-ene moiety exists in many bioactive compounds which could only be catalyzed by Class II P450s, exploration of the catalytic repertoire of CYP120As is therefore highly attractive. However, up to date, only one bacteriogenic candidate (CYP120A1) was demonstrated for the hydroxylation of C16 and C17 of retinoic acid, by utilizing the integral membrane protein cytochrome P450 reductase redox partner for the electron transfer. Herein, we provided an efficient prokaryotic functional expression system of CYP120As in E. coli by expression of the CYP120A1 coupled with several reductase partners. Fusion redox partners to the C-terminal of the heme-domain are also working on other CYP120A members. Among them, the fusion protein of CYP120A29 and FAD/FMN reductase from Bacillus megaterium P450BM3 (CYP101A2) showed the highest expression level. Based on the available translational fusion systems, the regioselectivity and the substrate scope of the CYP120As have also been explored. This work represents a good starting point for further expanding the catalytic potential of CYP120 family. KEY POINTS: • Characterization of CYP120As in E. coli is firstly achieved by constructing fusion proteins. • The feasibility of three P450 reductase domains to CYP120As was evaluated. • Hydroxylated products of retinoic acid by six CYP120As were sorted and analyzed.
Collapse
Affiliation(s)
- Ru-Yi Ye
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, College of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Juan Song
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, College of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Zhi-Jun Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, College of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, College of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
5
|
Jia Q, Zheng YC, Li HP, Qian XL, Zhang ZJ, Xu JH. Engineering Isopropanol Dehydrogenase for Efficient Regeneration of Nicotinamide Cofactors. Appl Environ Microbiol 2022; 88:e0034122. [PMID: 35442081 PMCID: PMC9088361 DOI: 10.1128/aem.00341-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/03/2022] [Indexed: 12/18/2022] Open
Abstract
Isopropanol dehydrogenase (IPADH) is one of the most attractive options for nicotinamide cofactor regeneration due to its low cost and simple downstream processing. However, poor thermostability and strict cofactor dependency hinder its practical application for bioconversions. In this study, we simultaneously improved the thermostability (433-fold) and catalytic activity (3.3-fold) of IPADH from Brucella suis via a flexible segment engineering strategy. Meanwhile, the cofactor preference of IPADH was successfully switched from NAD(H) to NADP(H) by 1.23 × 106-fold. When these variants were employed in three typical bioredox reactions to drive the synthesis of important chiral pharmaceutical building blocks, they outperformed the commonly used cofactor regeneration systems (glucose dehydrogenase [GDH], formate dehydrogenase [FDH], and lactate dehydrogenase [LDH]) with respect to efficiency of cofactor regeneration. Overall, our study provides two promising IPADH variants with complementary cofactor specificities that have great potential for wide applications. IMPORTANCE Oxidoreductases represent one group of the most important biocatalysts for synthesis of various chiral synthons. However, their practical application was hindered by the expensive nicotinamide cofactors used. Isopropanol dehydrogenase (IPADH) is one of the most attractive biocatalysts for nicotinamide cofactor regeneration. However, poor thermostability and strict cofactor dependency hinder its practical application. In this work, the thermostability and catalytic activity of an IPADH were simultaneously improved via a flexible segment engineering strategy. Meanwhile, the cofactor preference of IPADH was successfully switched from NAD(H) to NADP(H). The resultant variants show great potential for regeneration of nicotinamide cofactors, and the engineering strategy might serve as a useful approach for future engineering of other oxidoreductases.
Collapse
Affiliation(s)
- Qiao Jia
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yu-Cong Zheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Hai-Peng Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiao-Long Qian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Suzhou Bioforany EnzyTech Co., Ltd., Changshu, Jiangsu, China
| | - Zhi-Jun Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
6
|
Shou C, Zheng YC, Zhan JR, Li CX, Xu JH. Removing the Obstacle to (-)-Menthol Biosynthesis by Building a Microbial Cell Factory of (+)-cis-Isopulegone from (-)-Limonene. CHEMSUSCHEM 2022; 15:e202101741. [PMID: 34519416 DOI: 10.1002/cssc.202101741] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Microbial synthesis of plant-based (-)-menthol is of great interest because of its high demand (≈30 kiloton per year) as well as unique odor and cooling characteristics. However, this remains a great challenge due to the yet unfilled gap between (-)-limonene and (+)-cis-isopulegone. Herein, the first artificial and effective system was developed for (+)-cis-isopulegone biosynthesis from (-)-limonene by recruiting two bacterial enzymes to replace their inefficient counterparts from Mentha piperita, limonene-3-hydroxylase, and isopiperitenol dehydrogenase. A cofactor self-regenerative recombinant Escherichia coli strain was constructed by introducing a formate dehydrogenase for nicotinamide adenine dinucleotide phosphate (NADPH) regeneration and an engineered microbial isopiperitenol dehydrogenase. The production of (+)-cis-isopulegone (up to 281.2 mg L-1 ) was improved by 36 times compared with that of the initial strain. This work lays a reliable foundation for the microbial synthesis of (-)-menthol.
Collapse
Affiliation(s)
- Chao Shou
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Yu-Cong Zheng
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Jing-Ru Zhan
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Chun-Xiu Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| |
Collapse
|