1
|
Shirvandi Z, Ghorashi N, Rostami A. Copper catalyzed carbon-selenium bond formation via the coupling reaction of aryl halides, phenylboronic acid and Se. Sci Rep 2025; 15:13114. [PMID: 40240807 PMCID: PMC12003743 DOI: 10.1038/s41598-025-96747-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
This is the first report for C-Se bond formation involving the reaction of aryl halides with arylboronic acid and selenium powder to synthesis of unsymmetrical diaryl selenides in the presence of CuI as a homogeneous catalyst. A wide range of aryl halides react with various substituted groups under optimal conditions to provide the desired unsymmetrical diaryl selenides with good to high yields. Also, the same reactions were investigated in the presence of M-MCF@Gua-Cu as a reusable magnetic nanocatalyst under optimal conditions. The M-MCF@Gua-Cu catalyst allows for simpler (easy work-up) and greener methodology. In addition, the advantages of the presented method include the use of arylboronic acid/Se as a safe and cost-effective arylselenating system, the simplicity of operation, and green and cheap solvent.
Collapse
Affiliation(s)
- Zeinab Shirvandi
- Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, 66177-15175, Iran.
| | - Nadya Ghorashi
- Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, 66177-15175, Iran
| | - Amin Rostami
- Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, 66177-15175, Iran.
| |
Collapse
|
2
|
Gómez-Mudarra FA, Aullón G, Jover J. Exploring nickel-catalyzed organochalcogen synthesis via cross-coupling of benzonitrile and alkyl chalcogenols with computational tools. Org Biomol Chem 2025; 23:1673-1682. [PMID: 39783826 DOI: 10.1039/d4ob01865f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The preparation of organochalcogens has increased in recent times due to their promising biological activity properties. This work studies the reaction mechanism of a nickel(0)-catalyzed cross-coupling between benzonitrile and propanethiol to produce new C-S bonds by computational means. The proposed mechanism follows the classical oxidative addition/transmetalation/reductive elimination cross-coupling sequence, involving an unusual oxidative addition of a Ph-CN bond onto the active species. The computed catalytic cycle for thioether synthesis has been examined to determine whether the same protocol could be employed to build the analogous C-Se and C-Te bonds. The proposed mechanism for C-S coupling is validated by microkinetic modeling and shows a very good agreement with available experimental data. The extension of the proposed mechanism to C-Se and C-Te couplings indicates that these new reactions should be operative, although their reaction rates appear to be significantly slower.
Collapse
Affiliation(s)
- Francisco A Gómez-Mudarra
- Secció de Química Inorgànica, Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.
- Institut de Química Teòrica i Computacional (IQTC-UB), Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Gabriel Aullón
- Secció de Química Inorgànica, Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.
- Institut de Química Teòrica i Computacional (IQTC-UB), Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Jesús Jover
- Secció de Química Inorgànica, Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.
- Institut de Química Teòrica i Computacional (IQTC-UB), Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| |
Collapse
|
3
|
Xu R, Hu S, Wu L, Ning Y, Xu J. N, N-Dimethylformamide's Participation in Domino Reactions for the Synthesis of Se-Phenyl Dimethylcarbamoselenoate Derivatives. Molecules 2025; 30:747. [PMID: 39942849 PMCID: PMC11820005 DOI: 10.3390/molecules30030747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
N,N-dimethylformamide's (DMF) participation in domino reactions has been developed. Starting from substituted halogenobenzenes and selenium powder, versatile biologically active Se-phenyl dimethylcarbamoselenoate derivatives were efficiently synthesized under mild reaction conditions. The reaction mechanism was studied using control experiments. These protocols involve a wider substrate scope and provide an economical approach toward C-selenium bond formation.
Collapse
Affiliation(s)
- Runsheng Xu
- College of Life and Health, Huzhou College, Huzhou 211300, China; (S.H.); (L.W.); (Y.N.)
| | | | | | | | - Jin Xu
- College of Life and Health, Huzhou College, Huzhou 211300, China; (S.H.); (L.W.); (Y.N.)
| |
Collapse
|
4
|
Capperucci A, Tanini D. Recent Advances in Selenium-Mediated Redox Functional Group Interconversions. CHEM REC 2024; 24:e202400174. [PMID: 39578242 DOI: 10.1002/tcr.202400174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/21/2024] [Indexed: 11/24/2024]
Abstract
The conversion of a functional group into another represents the core of organic synthesis. Within the arena of functional group interconversions, oxidative and reductive transformations occupy a privileged position and the development of new sustainable, selective, and general methodologies continue to attract significant interest. Owing to the versatility of their chemistry, selenium compounds offer significant opportunities to achieve both oxidation and reduction of a wide range of functional groups. Additionally, the possibility to generate in situ the active oxidant or reducing selenium species from suitable inert precursors enables the development of catalytic processes. In this review, recent advances in selenium-mediated oxidative and reductive functional group interconversions, with particular emphasis on cutting-edge researches bringing about new insights into the comprehension of their mechanistic aspects, will be discussed.
Collapse
Affiliation(s)
- Antonella Capperucci
- Department of Chemistry ''Ugo Schiff'', University of Florence, Via della Lastruccia 3-13, I-50019, Sesto Fiorentino, Italy
| | - Damiano Tanini
- Department of Chemistry ''Ugo Schiff'', University of Florence, Via della Lastruccia 3-13, I-50019, Sesto Fiorentino, Italy
| |
Collapse
|
5
|
De Luca V, Angeli A, Nocentini A, Gratteri P, Pratesi S, Tanini D, Carginale V, Capperucci A, Supuran CT, Capasso C. Leveraging SARS-CoV-2 Main Protease (M pro) for COVID-19 Mitigation with Selenium-Based Inhibitors. Int J Mol Sci 2024; 25:971. [PMID: 38256046 PMCID: PMC10815619 DOI: 10.3390/ijms25020971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The implementation of innovative approaches is crucial in an ongoing endeavor to mitigate the impact of COVID-19 pandemic. The present study examines the strategic application of the SARS-CoV-2 Main Protease (Mpro) as a prospective instrument in the repertoire to combat the virus. The cloning, expression, and purification of Mpro, which plays a critical role in the viral life cycle, through heterologous expression in Escherichia coli in a completely soluble form produced an active enzyme. The hydrolysis of a specific substrate peptide comprising a six-amino-acid sequence (TSAVLQ) linked to a p-nitroaniline (pNA) fragment together with the use of a fluorogenic substrate allowed us to determine effective inhibitors incorporating selenium moieties, such as benzoselenoates and carbamoselenoates. The new inhibitors revealed their potential to proficiently inhibit Mpro with IC50-s in the low micromolar range. Our study contributes to the development of a new class of protease inhibitors targeting Mpro, ultimately strengthening the antiviral arsenal against COVID-19 and possibly, related coronaviruses.
Collapse
Affiliation(s)
- Viviana De Luca
- Department of Biology, Agriculture and Food Sciences, National Research Council (CNR), Institute of Biosciences and Bioresources, 80131 Naples, Italy; (V.D.L.); (V.C.)
| | - Andrea Angeli
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (A.A.); (A.N.); (P.G.)
| | - Alessio Nocentini
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (A.A.); (A.N.); (P.G.)
| | - Paola Gratteri
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (A.A.); (A.N.); (P.G.)
| | - Silvia Pratesi
- Department of Chemistry “Ugo Schiff”, University of Florence, Via Della Lastruccia 3-13, Sesto Fiorentino, 50019 Florence, Italy (D.T.); (A.C.)
| | - Damiano Tanini
- Department of Chemistry “Ugo Schiff”, University of Florence, Via Della Lastruccia 3-13, Sesto Fiorentino, 50019 Florence, Italy (D.T.); (A.C.)
| | - Vincenzo Carginale
- Department of Biology, Agriculture and Food Sciences, National Research Council (CNR), Institute of Biosciences and Bioresources, 80131 Naples, Italy; (V.D.L.); (V.C.)
| | - Antonella Capperucci
- Department of Chemistry “Ugo Schiff”, University of Florence, Via Della Lastruccia 3-13, Sesto Fiorentino, 50019 Florence, Italy (D.T.); (A.C.)
| | - Claudiu T. Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (A.A.); (A.N.); (P.G.)
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, National Research Council (CNR), Institute of Biosciences and Bioresources, 80131 Naples, Italy; (V.D.L.); (V.C.)
| |
Collapse
|
6
|
Capperucci A, Clemente M, Cenni A, Tanini D. Transition Metal-free Selenium-mediated Aryl Amines via Reduction of Nitroarenes. CHEMSUSCHEM 2023; 16:e202300086. [PMID: 36971384 DOI: 10.1002/cssc.202300086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/22/2023] [Accepted: 03/25/2023] [Indexed: 06/18/2023]
Abstract
A scalable and operationally simple on water seleno-mediated reduction of nitroarenes to the respective aryl amines with NaBH4 is described. The reaction proceeds under transition metal-free conditions and is promoted by the formation of Na2 Se, which is the effective reducing agent involved in the mechanism. This mechanistic information enabled the development of a mild NaBH4 -free protocol for the selective reduction of nitro derivatives bearing labile moieties, including nitrocarbonyl compounds. The selenium-containing aqueous phase can be successfully reused up to four reduction cycles, thus further improving the efficiency of the protocol disclosed.
Collapse
Affiliation(s)
- Antonella Capperucci
- Department of Chemistry 'Ugo Schiff', University of Florence, Via Della Lastruccia 3-13, Sesto Fiorentino, Firenze, Italy
| | - Martina Clemente
- Department of Chemistry 'Ugo Schiff', University of Florence, Via Della Lastruccia 3-13, Sesto Fiorentino, Firenze, Italy
| | - Alessio Cenni
- Department of Chemistry 'Ugo Schiff', University of Florence, Via Della Lastruccia 3-13, Sesto Fiorentino, Firenze, Italy
| | - Damiano Tanini
- Department of Chemistry 'Ugo Schiff', University of Florence, Via Della Lastruccia 3-13, Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
7
|
Capperucci A, Dalia C, Cenni A, Tanini D. Synthesis of nitroarenes and azoxyarenes through the selenium-mediated on water oxidation of aryl amines. PHOSPHORUS SULFUR 2023. [DOI: 10.1080/10426507.2023.2166044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Antonella Capperucci
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Firenze, Italy
| | - Camilla Dalia
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Firenze, Italy
| | - Alessio Cenni
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Firenze, Italy
| | - Damiano Tanini
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
8
|
Lutz G, Jung JTK, Back DF, Nogueira CW, Zeni G. Stereoselective Reduction of Alkynes: Synthesis of 4-Organoselenyl Quinolines. J Org Chem 2022; 87:12710-12720. [PMID: 36083616 DOI: 10.1021/acs.joc.2c01255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study describes the reaction of 2-amino arylalkynyl ketones with organoselenolates to form (Z)-vinyl selenides, which lead to 4-organoselenyl quinolines via an intramolecular condensation. Using the optimized reaction conditions, the generality of this cyclization was studied with various arylalkynyl ketones and diorganyl diselenides. The study of the reaction mechanisms led to the isolation and identification of a vinyl selenide, which was the key intermediate for this cyclization. To expand the structural diversity and to demonstrate the applicability of the 4-organoselenyl quinolines prepared, we studied their application as substrates in the cleavage of the carbon-selenium bond using n-butyllithium followed by the capture of the lithium intermediate by electrophiles and Suzuki and Sonogashira cross-coupling reactions.
Collapse
Affiliation(s)
- Guilherme Lutz
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Juliano Ten Kathen Jung
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Davi Fernando Back
- Laboratório de Materiais Inorgânicos, Departamento de Química, UFSM, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Cristina Wayne Nogueira
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Gilson Zeni
- Laboratório de Síntese, Reatividade, Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE, UFSM, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| |
Collapse
|
9
|
Synthesis of Metalorganic Copolymers Containing Various Contorted Units and Iron(II) Clathrochelates with Lateral Butyl Chains: Conspicuous Adsorbents of Lithium Ions and Methylene Blue. Polymers (Basel) 2022; 14:polym14163394. [PMID: 36015650 PMCID: PMC9412635 DOI: 10.3390/polym14163394] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 12/12/2022] Open
Abstract
We report the synthesis of three highly soluble metalorganic copolymers, TCP1-3, that were made from a one-pot complexation of iron(II) clathrochelate units that are interconnected by various thioether-containing contorted groups. TCP1-3 were converted into their poly(vinyl sulfone) derivatives OTCP1-3 quantitatively via the selective oxidation of the thioether moieties into their respective sulfones. All of the copolymers, TCP1-3 and OTCP1-3, underwent structural analysis by various techniques; namely, 1H- and 13C-nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and gel permeation chromatography (GPC). The copolymers were tested as potent lithium ions adsorbents revealing a maximum adsorption (qm) value of 2.31 mg g-1 for OTCP2. Furthermore, this same copolymer was found to be a promising adsorbent of methylene blue (MEB); an isothermal adsorption study divulged that OTCP2's uptake of MEB from an aqueous solution (following the Langmuir model) was, at maximum adsorption capacity, (qm) of 480.77 mg g-1; whereas the kinetic study divulged that the adsorption follows pseudo second-order kinetics with an equilibrium adsorption capacity (qe,cal) of 45.40 mg g-1.
Collapse
|
10
|
Batabyal M, Upadhyay A, Kadu R, Birudukota NC, Chopra D, Kumar S. Tetravalent Spiroselenurane Catalysts: Intramolecular Se···N Chalcogen Bond-Driven Catalytic Disproportionation of H 2O 2 to H 2O and O 2 and Activation of I 2 and NBS. Inorg Chem 2022; 61:8729-8745. [PMID: 35638247 DOI: 10.1021/acs.inorgchem.2c00651] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chalcogen-bonding interactions have recently gained considerable attention in the field of synthetic chemistry, structure, and bonding. Here, three organo-spiroselenuranes, having a Se(IV) center with a strong intramolecular Se···N chalcogen-bonded interaction, have been isolated by the oxidation of the respective bis(2-benzamide) selenides derived from an 8-aminoquinoline ligand. Further, the synthesized spiroselenuranes, when assayed for their antioxidant activity, show disproportionation of hydrogen peroxide into H2O and O2 with first-order kinetics with respect to H2O2 for the first time by any organoselenium molecules as monitored by 1H NMR spectroscopy. Electron-donating 5-methylthio-benzamide ring-substituted spiroselenurane disproportionates hydrogen peroxide at a high rate of 15.6 ± 0.4 × 103 μM min-1 with a rate constant of 8.57 ± 0.50 × 10-3 s-1, whereas 5-methoxy and unsubstituted-benzamide spiroselenuranes catalyzed the disproportionation of H2O2 at rates of 7.9 ± 0.3 × 103 and 2.9 ± 0.3 × 103 μM min-1 with rate constants of 1.16 ± 0.02 × 10-3 and 0.325 ± 0.025 × 10-3 s-1, respectively. The evolved oxygen gas from the spiroselenurane-catalyzed disproportion of H2O2 has also been confirmed by a gas chromatograph-thermal conductivity detector (GCTCD) and a portable digital polarographic dissolved O2 probe. Additionally, the synthesized spiroselenuranes exhibit thiol peroxidase antioxidant activities for the reduction of H2O2 by a benzenethiol co-reductant monitored by UV-visible spectroscopy. Next, the Se···N bonded spiroselenuranes have been explored as catalysts in synthetic oxidation iodolactonization and bromination of arenes. The synthesized spiroselenurane has activated I2 toward the iodolactonization of alkenoic acids under base-free conditions. Similarly, efficient chemo- and regioselective monobromination of various arenes with NBS catalyzed by chalcogen-bonded synthesized spiroselenuranes has been achieved. Mechanistic insight into the spiroselenuranes in oxidation reactions has been gained by 77Se NMR, mass spectrometry, UV-visible spectroscopy, single-crystal X-ray structure, and theoretical (DFT, NBO, and AIM) studies. It seems that the highly electrophilic nature of the selenium center is attributed to the presence of an intramolecular Se···N interaction and a vacant coordination site in spiroselenuranes is crucial for the activation of H2O2, I2, and NBS. The reaction of H2O2, I2, and NBS with tetravalent spiroselenurane would lead to an octahedral-Se(VI) intermediate, which is reduced back to Se(IV) due to thermodynamic instability of selenium in its highest oxidation state and the presence of a strong intramolecular N-donor atom.
Collapse
Affiliation(s)
- Monojit Batabyal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri Bhopal 462 066, Madhya Pradesh, India
| | - Aditya Upadhyay
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri Bhopal 462 066, Madhya Pradesh, India
| | - Rahul Kadu
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri Bhopal 462 066, Madhya Pradesh, India.,MIT School of Engineering, MIT Art, Design and Technology University Pune, Loni Kalbhor, Maharashtra 412201, India
| | - Nihal Chaitanya Birudukota
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri Bhopal 462 066, Madhya Pradesh, India
| | - Deepak Chopra
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri Bhopal 462 066, Madhya Pradesh, India
| | - Sangit Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri Bhopal 462 066, Madhya Pradesh, India
| |
Collapse
|
11
|
Tanini D, Capperucci A, Locuoco M, Ferraroni M, Costantino G, Angeli A, Supuran CT. Benzoselenoates: A novel class of carbonic anhydrase inhibitors. Bioorg Chem 2022; 122:105751. [PMID: 35344894 DOI: 10.1016/j.bioorg.2022.105751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/11/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022]
Abstract
A series of benzoselenoates has been prepared and their inhibitory properties against the most relevant human Carbonic Anhydrases (CAs) isoforms, among which hCA I, II, IV, VII, IX, and XII were investigated. These inhibitors were designed considering the carboxylates and mono-/dithiocarbamates as lead and led to the observation that the COSe- is a new zinc-binding group (ZBG) for metalloenzymes possessing zinc ions at their active site. The substitution pattern on aromatic ring of the benzoselenoates is the crucial structural element influencing selectivity towards various isoforms. We elucidated the binding mode of benzoselenoates to hCA I and hCA II by using X-ray crystallography. The negatively charged selenium atom from the new ZBG was observed coordinated to the zinc ion from the CA active site at a distance of 2.30-2.40 Å from it. Overall, these data might be useful for the development of new inhibitors with higher selectivity and efficacy for various hCAs.
Collapse
Affiliation(s)
- Damiano Tanini
- University of Florence, Department of Chemistry "Ugo Schiff", Via della Lastruccia 3-13, I-50019, Sesto Fiorentino, Italy
| | - Antonella Capperucci
- University of Florence, Department of Chemistry "Ugo Schiff", Via della Lastruccia 3-13, I-50019, Sesto Fiorentino, Italy
| | - Maria Locuoco
- University of Florence, Department of Chemistry "Ugo Schiff", Via della Lastruccia 3-13, I-50019, Sesto Fiorentino, Italy
| | - Marta Ferraroni
- University of Florence, Department of Chemistry "Ugo Schiff", Via della Lastruccia 3-13, I-50019, Sesto Fiorentino, Italy
| | - Gabriele Costantino
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/A, 43124 Parma, Italy
| | - Andrea Angeli
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/A, 43124 Parma, Italy; NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
12
|
Angeli A, Ferraroni M, Capperucci A, Tanini D, Costantino G, Supuran CT. Selenocarbamates as a novel prodrug-based approach towards Carbonic Anhydrase inhibition. ChemMedChem 2022; 17:e202200085. [PMID: 35238480 PMCID: PMC9310613 DOI: 10.1002/cmdc.202200085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/01/2022] [Indexed: 12/05/2022]
Abstract
A study on the activity of selenocarbamates as a novel chemotype acting as carbonic anhydrase (CA, EC 4.2.1.1) inhibitors is reported. Undergoing CA‐mediated hydrolysis, selenocarbamates release selenolates behaving as zinc binding groups and effectively inhibiting CAs. A series of selenocarbamates characterised by high molecular diversity and complexity have been studied against different human CA isoforms such as hCA I, II, IX and XII. Selenocarbamates behave as masked selenols with potential biological applications as prodrugs for CAs inhibition‐based strategies. X‐ray studies provided insights into the binding mode of this novel class of CA inhibitors.
Collapse
Affiliation(s)
- Andrea Angeli
- University of Florence: Universita degli Studi di Firenze, NEUROFARBA, Sezione di Scienze Farmaceutiche, ITALY
| | - Marta Ferraroni
- University of Florence: Universita degli Studi di Firenze, Chemistry "Ugo Schiff", ITALY
| | - Antonella Capperucci
- University of Florence: Universita degli Studi di Firenze, Chemistry "Ugo Schiff", ITALY
| | - Damiano Tanini
- Università degli Studi di Firenze, Dipartimento di Chimica "Ugo Schiff", Via della Lastruccia, 3-13, 50019, Firenze, ITALY
| | - Gabriele Costantino
- University of Parma: Universita degli Studi di Parma, Department of Food and Drug, ITALY
| | - Claudiu T Supuran
- University of Florence: Universita degli Studi di Firenze, NEUROFARBA, Sezione di Scienze Farmaceutiche, ITALY
| |
Collapse
|
13
|
Abstract
Nitro compounds are an important class of organic molecules with broad application in organic synthesis, medicinal chemistry, and materials science. Among the variety of methodologies available for their synthesis, the direct oxidation of primary amines represents an attractive alternative route. Efforts towards the development of oxidative procedures for the synthesis of nitro derivatives have spanned over the past decades, leading to a wide variety of protocols for the selective oxidative conversion of amines to nitro derivatives. Methods for the synthesis of nitroarenes via oxidation of aryl amines, with particular emphasis on recent advances in the field, are summarised in this review.
Collapse
|
14
|
Barchielli G, Capperucci A, Tanini D. The Role of Selenium in Pathologies: An Updated Review. Antioxidants (Basel) 2022; 11:antiox11020251. [PMID: 35204134 PMCID: PMC8868242 DOI: 10.3390/antiox11020251] [Citation(s) in RCA: 161] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/09/2022] [Accepted: 01/25/2022] [Indexed: 12/10/2022] Open
Abstract
Selenium is an essential microelement required for a number of biological functions. Selenium—and more specifically the amino acid selenocysteine—is present in at least 25 human selenoproteins involved in a wide variety of essential biological functions, ranging from the regulation of reactive oxygen species (ROS) concentration to the biosynthesis of hormones. These processes also play a central role in preventing and modulating the clinical outcome of several diseases, including cancer, diabetes, Alzheimer’s disease, mental disorders, cardiovascular disorders, fertility impairments, inflammation, and infections (including SARS-CoV-2). Over the past years, a number of studies focusing on the relationship between selenium and such pathologies have been reported. Generally, an adequate selenium nutritional state—and in some cases selenium supplementation—have been related to improved prognostic outcome and reduced risk of developing several diseases. On the other hand, supra-nutritional levels might have adverse effects. The results of recent studies focusing on these topics are summarized and discussed in this review, with particular emphasis on advances achieved in the last decade.
Collapse
|
15
|
Affiliation(s)
- Damiano Tanini
- University of Florence Department of Chemistry ‘‘Ugo Schiff'' Via della Lastruccia 3–13 I-50019 Sesto Fiorentino Italy
| | - Antonella Capperucci
- University of Florence Department of Chemistry ‘‘Ugo Schiff'' Via della Lastruccia 3–13 I-50019 Sesto Fiorentino Italy
| |
Collapse
|