1
|
Dutt S, Duhan N, Kale V, Banerjee P. Electrochemical Ring Opening and [3 + 2] Cycloaddition of Aziridines: Access to 1,2-Bifunctionalized Products and Imidazolines. Org Lett 2025; 27:989-994. [PMID: 39834024 DOI: 10.1021/acs.orglett.4c04523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Herein, we report an electricity-driven activation of aziridine via direct anodic oxidation to give N-heterocycles and 1,2-bifunctionalized products by excluding any oxidant/reductant or metal catalyst. Many structurally modified aziridines were employed in the presence of different nitriles. A large variety of nucleophiles were screened to furnish chemoselectively O-alkylated and C-alkylated products. Late-stage derivatization of aziridine with natural and medicinally active compounds has also been done. Remarkably, our strategy was found to be a greener, sustainable, and atom-economical approach (E-factor = ca. 0.8). Azetidine was also found to be compatible with our protocol and generated six-membered N-heterocycles. The detailed mechanistic study highlighted that the reaction is driven via the generation of an aziridine radical cation followed by the SN2 nucleophilic attack.
Collapse
Affiliation(s)
- Shiv Dutt
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Neelam Duhan
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Vikas Kale
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Prabal Banerjee
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
2
|
Kim N, Choi M, Suh SE, Chenoweth DM. Aryne Chemistry: Generation Methods and Reactions Incorporating Multiple Arynes. Chem Rev 2024; 124:11435-11522. [PMID: 39383091 DOI: 10.1021/acs.chemrev.4c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Arynes hold significance for the efficient fusion of (hetero) arenes with diverse substrates, advancing the construction of complex molecular frameworks. Employing multiple equivalents of arynes is particularly effective in the rapid formation of polycyclic cores found in optoelectronic materials and bioactive compounds. However, the inherent reactivity of arynes often leads to side reactions, yielding unanticipated products and underlining the importance of a detailed investigation into the use of multiple arynes to fine-tune their reactivity. This review centers on methodologies and syntheses in organic reactions involving multiple arynes, categorizing based on mechanisms like cycloadditions, σ-bond insertions, nucleophilic additions, and ene reactions, and discusses aryne polymerization. The categorization based on these mechanisms includes two primary approaches: the first entails multiple aryne engagement within a single step while the second approach involves using a single equivalent of aryne sequentially across multiple steps, with both requiring strict reactivity control to ensure precise aryne participation in each respective step. Additionally, the review provides an in-depth analysis of the selection of aryne precursors, organized chronologically and by activation strategy, offering a comprehensive background that supports the main theme of multiple aryne utilization. The expectation remains that this comprehensive review will be invaluable in designing advanced syntheses engaging multiple arynes.
Collapse
Affiliation(s)
- Nayoung Kim
- Ajou Energy Science Research Center, Ajou University, Suwon 16499, Republic of Korea
| | - Myungsoo Choi
- Ajou Energy Science Research Center, Ajou University, Suwon 16499, Republic of Korea
| | - Sung-Eun Suh
- Department of Chemistry, Ajou University, Suwon 16499, Republic of Korea
| | - David M Chenoweth
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
3
|
Lan H, Liu Y, Ackermann L, Wang L, Wang D. Ruthenium(II)-Catalyzed Remote C-H Alkylation of Arenes Using Diverse N-Directing Groups through Aziridine Ring Opening. Org Lett 2024; 26:7993-7998. [PMID: 39264308 DOI: 10.1021/acs.orglett.4c02254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
An efficient approach for the remote C-H alkylation of arenes, employing a variety of N-directing groups is described. This method facilitates the straightforward synthesis of valuable phenylethylamine derivatives by exclusively cleaving the benzylic C-N bond in aziridines. Furthermore, these products can easily remove the protecting groups, resulting in a variety of meta-substituted compounds, such as amines and ketones, which hold significance in synthetic chemistry.
Collapse
Affiliation(s)
- Hongyan Lan
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Yingzhen Liu
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Göttingen 37077, Germany
| | - Lanfen Wang
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Dingyi Wang
- College of Sciences, Northeastern University, Shenyang 110004, China
| |
Collapse
|
4
|
Singh B, Kashyap S, Singh S, Gupta S, Ghorai MK. Catalytic Aminium Radical-Cation Salt (Magic Blue)-Initiated S N2-Type Nucleophilic Ring-Opening Transformations of Aziridines. J Org Chem 2024; 89:2247-2263. [PMID: 38323416 DOI: 10.1021/acs.joc.3c02194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
A simple and atom economic protocol for the construction of C-X/C-C bonds via catalytic aminium radical-cation salt (Magic Blue)-initiated SN2-type nucleophilic ring-opening transformations of racemic and nonracemic aziridines with different hetero and carbon nucleophiles to afford various amino ethers, thioethers, and amines in up to 99% yield, and with perfect enantiospecificity for some substrates but reduced ee with others (for nonracemic aziridines), is developed. This aminium radical-cation salt-initiated, SN2-type nucleophilic ring-opening strategy, along with various cyclization protocols, is employed to synthesize various biologically significant compounds.
Collapse
Affiliation(s)
- Bharat Singh
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Suraj Kashyap
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Shishir Singh
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Sikha Gupta
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Manas K Ghorai
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| |
Collapse
|
5
|
Li J, Wang S, Zhao J, Li P. Visible Light-Promoted Radical-Mediated Ring-Opening/Cyclization of Vinyl Benzotriazoles: An Alternative Approach to Phenanthridines. Org Lett 2022; 24:5977-5981. [PMID: 35943433 DOI: 10.1021/acs.orglett.2c02249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A visible light-promoted radical-mediated ring-opening/cyclization of vinyl benzotriazoles has been developed. The method provides an efficient and practical approach to synthesize functionalized phenanthridines from vinyl benzotriazoles with alkyl bromides under mild conditions. Significantly, the readily available and bench-stable vinyl benzotriazoles can serve as valuable alternative radical acceptors during the synthesis of phenanthridines.
Collapse
Affiliation(s)
- Jiaqi Li
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Shichong Wang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Jingjing Zhao
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Pan Li
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| |
Collapse
|
6
|
Zhang T, Wang S, Zuo D, Zhao J, Luo W, Wang C, Li P. Palladium-Catalyzed Carbonylative [5+1] Cycloaddition of N-Tosyl Vinylaziridines: Solvent-Controlled Divergent Synthesis of α,β- and β,γ-Unsaturated δ-Lactams. J Org Chem 2022; 87:10408-10415. [PMID: 35892153 DOI: 10.1021/acs.joc.2c00710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A palladium-catalyzed carbonylative [5+1] cycloaddition of N-tosyl vinylaziridines with CO has been developed. This protocol affords an efficient and practical approach for solvent-controlled divergent synthesis of α,β-unsaturated δ-lactams in dimethylformamide and β,γ-unsaturated δ-lactams in tetrahydrofuran in good to excellent yields. Significantly, the step- and atom-economical reactions are more regioselective toward [5+1] cycloaddition than toward [3+1] cycloaddition.
Collapse
Affiliation(s)
- Tao Zhang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China.,Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Shichong Wang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Dandan Zuo
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Jingjing Zhao
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Wen Luo
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Chaojie Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Pan Li
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China.,Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, P. R. China
| |
Collapse
|
7
|
Zuo D, Zhang T, Zhao J, Luo W, Wang C, Li P. Palladium-Catalyzed Regioselective [5 + 1] Annulation of Vinyl Aziridines/Epoxides with ClCF 2COONa. Org Lett 2022; 24:4630-4634. [PMID: 35731896 DOI: 10.1021/acs.orglett.2c01739] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Palladium-catalyzed regioselective [5 + 1] annulation reactions of vinyl aziridines/epoxides with ClCF2COONa have been developed. Significantly, vinyl aziridines/epoxides act as heteroatom-containing five-atom synthons, and commercially available and cheap ClCF2COONa acts as the source of carbonyl serving as a difluorocarbene precursor. This protocol provides an efficient and practical method for the synthesis of δ-lactams and δ-lactones in good yields.
Collapse
Affiliation(s)
- Dandan Zuo
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Tao Zhang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Jingjing Zhao
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, P. R. China.,College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Wen Luo
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Chaojie Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Pan Li
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, P. R. China.,College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| |
Collapse
|
8
|
Liu J, Tang S, Wang S, Cao M, Zhao J, Zhang P, Li P. Visible-Light-Induced 1,6-Enynes Triggered C-Br Bond Homolysis of Bromomalonates: Solvent-Controlled Divergent Synthesis of Carbonylated and Hydroxylated Benzofurans. J Org Chem 2022; 87:9250-9258. [PMID: 35749743 DOI: 10.1021/acs.joc.2c00989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Visible-light-induced 1,6-enyne-triggered C-Br bond homolysis of bromomalonates has been developed. This transition-metal-free, photocatalyst-free, and oxidant- and additive-free protocol affords an efficient approach for divergent synthesis of carbonylated and hydroxylated benzofurans from 1,6-enynes and bromomalonates under mild conditions. Significantly, mechanistic studies reveal that the homolysis of C-Br bonds appears to experience an energy-transfer pathway, and the atom-transfer radical addition products are the key intermediates to generate carbonylated and hydroxylated benzofurans.
Collapse
Affiliation(s)
- Jiupeng Liu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Shuo Tang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Shichong Wang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Mengting Cao
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Jingjing Zhao
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Puyu Zhang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Pan Li
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| |
Collapse
|
9
|
Abstract
AbstractIntermolecular aryne ene reactions present opportunities to arylate a wide range of unsaturated substrates in a single step, whilst intramolecular reactions provide expedient access to valuable benzofused carbo- and heterocyclic frameworks. This short review will chart the development of the aryne ene reaction from initial reports that rationalise unexpected byproduct formation in competing [4+2] and [2+2] cycloadditions through to its exploitation in contemporary synthetic methodology.1 Introduction2 Alkene Ene Reactions2.1 Intermolecular2.2 Intramolecular3 Alkyne Ene Reactions3.1 Intermolecular3.2 Intramolecular4 Allene Ene Reactions5 Aromatic Ene Reactions6 Hetero Ene Reactions6.1 Enols6.2 Enamines6.3 Imines7 Conclusions
Collapse
|
10
|
Liu J, Tang S, Zhao M, Huai J, Yu J, Zhao J, Li P. Reactivity of Vinyl Epoxides/Oxetanes/Cyclopropanes toward Arynes: Access to Functionalized Phenanthrenes. ACS OMEGA 2021; 6:35852-35865. [PMID: 34984314 PMCID: PMC8717566 DOI: 10.1021/acsomega.1c06166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
The reactivity of vinyl epoxides/oxetanes/cyclopropanes toward arynes has been demonstrated under mild conditions to give the corresponding phenanthrenes in moderate to good yields. This transition-metal-free cascade process involves a series of Diels-Alder reaction, ring-opening aromatization, and ene reaction. Various functionalized phenanthrenes could be synthesized utilizing the versatile hydroxy group. Interestingly, vinyl epoxides/oxiranes experience preferentially the Diels-Alder reaction toward arynes over nucleophilic attack of epoxides/oxiranes.
Collapse
|
11
|
Liu Y, Zhu K, Kong Y, Li X, Cui J, Xia Y, Zhao J, Duan S, Li P. Merging Gold/Copper Catalysis and Copper/Photoredox Catalysis: An Approach to Alkyl Oxazoles from N-Propargylamides. J Org Chem 2021; 86:18247-18256. [PMID: 34866385 DOI: 10.1021/acs.joc.1c02668] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Here, we report a mild and highly efficient approach to alkyl oxazoles through merging gold/copper catalysis and copper/photoredox catalysis. Various alkyl oxazoles are synthesized from N-propargylamides with alkyl halides in good to excellent yields with wide functional-group compatibility under blue-light irradiation. Significantly, a copper catalyst plays a dual role in this transformation: as a powerful cocatalyst to accelerate protodeauration of vinyl gold intermediates and improve photoredox catalysis.
Collapse
Affiliation(s)
- Yantao Liu
- Institute of Functional Organic Molecular Engineering, Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Keyong Zhu
- Institute of Functional Organic Molecular Engineering, Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Yuting Kong
- Institute of Functional Organic Molecular Engineering, Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Xiao Li
- Institute of Functional Organic Molecular Engineering, Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Jie Cui
- School of Pharmacy, Henan University, Kaifeng 475004, P. R. China
| | - Yifan Xia
- School of Pharmacy, Henan University, Kaifeng 475004, P. R. China
| | - Jingjing Zhao
- Institute of Functional Organic Molecular Engineering, Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Shaofeng Duan
- School of Pharmacy, Henan University, Kaifeng 475004, P. R. China
| | - Pan Li
- Institute of Functional Organic Molecular Engineering, Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| |
Collapse
|