1
|
Asif MMA, Lisa SR, Qais N. Synthetic pathways to create asymmetric center at C1 position of 1-substituted-tetrahydro-β-carbolines - a review. RSC Adv 2024; 14:29827-29847. [PMID: 39301229 PMCID: PMC11411349 DOI: 10.1039/d4ra05961a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024] Open
Abstract
The 2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indoles or tetrahydro-β-carbolines (THβCs) are tricyclic compounds that are found in various natural sources that exhibit a wide range of important pharmacological activities. Chiral 1-substituted-THβCs, which have an asymmetric center at C1, have attained significant interest due to their possible Monoamine Oxidase (MAO) inhibitory activity, benzodiazepine receptor binding activity, and antimalarial effectiveness against chloroquine-resistant Plasmodium falciparum. This review highlights and summarizes various novel stereoselective approaches to introduce chirality at the C1 position of 1-substituted-THβCs in good yield and enantiomeric excess (ee) or diastereomeric excess (de). These methods include the Pictet-Spengler reaction, chiral auxiliary, Asymmetric Transfer Hydrogenation (ATH) with chiral catalysts, asymmetric addition reaction, and enzymatic catalysis. The syntheses of chiral THβCs are reviewed comprehensively, emphasizing their role in drug development from 1977 to 2024.
Collapse
Affiliation(s)
- Md Moaz Ahmed Asif
- Department of Pharmacy, Faculty of Science & Engineering, University of Information Technology & Sciences Holding 190, Road 5, Block J, Baridhara, Maddha Nayanagar, Vatara Dhaka-1212 Bangladesh
| | - Susmita Roy Lisa
- Department of Chemistry, Syracuse University Syracuse NY 13244 USA
| | - Nazmul Qais
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka Dhaka-1000 Bangladesh
| |
Collapse
|
2
|
Lin X, Li Y, Xu Z, Yu S, Feng J, Diao A, Yao P, Wu Q, Zhu D. Engineered Imine Reductase for Asymmetric Synthesis of Dextromethorphan Key Intermediate. Org Lett 2024; 26:4463-4468. [PMID: 38747552 DOI: 10.1021/acs.orglett.4c01079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
(S)-1-(4-Methoxybenzyl)-1,2,3,4,5,6,7,8-octahydroisoquinoline ((S)-1-(4-methoxybenzyl)-OHIQ) is the key intermediate of the nonopioid antitussive dextromethorphan. In this study, (S)-IR61-V69Y/P123A/W179G/F182I/L212V (M4) was identified with a 766-fold improvement in catalytic efficiency compared with wide-type IR61 through enzyme engineering. M4 could completely convert 200 mM of 1-(4-methoxybenzyl)-3,4,5,6,7,8-hexahydroisoquinoline into (S)-1-(4-methoxybenzyl)-OHIQ in 77% isolated yield, with >99% enantiomeric excess and a high space-time yield of 542 g L-1 day-1, demonstrating a great potential for the synthesis of dextromethorphan intermediate in industrial applications.
Collapse
Affiliation(s)
- Xiaofeng Lin
- School of Biotechnology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, National Engineering Research Center of Industrial Enzymes, National Center of Technology Innovation for Synthetic Biology, Tianjin Engineering Research Center of Biocatalytic Technology, and Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yixuan Li
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, National Engineering Research Center of Industrial Enzymes, National Center of Technology Innovation for Synthetic Biology, Tianjin Engineering Research Center of Biocatalytic Technology, and Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zefei Xu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, National Engineering Research Center of Industrial Enzymes, National Center of Technology Innovation for Synthetic Biology, Tianjin Engineering Research Center of Biocatalytic Technology, and Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Shanshan Yu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, National Engineering Research Center of Industrial Enzymes, National Center of Technology Innovation for Synthetic Biology, Tianjin Engineering Research Center of Biocatalytic Technology, and Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinhui Feng
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, National Engineering Research Center of Industrial Enzymes, National Center of Technology Innovation for Synthetic Biology, Tianjin Engineering Research Center of Biocatalytic Technology, and Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aipo Diao
- School of Biotechnology, Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Peiyuan Yao
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, National Engineering Research Center of Industrial Enzymes, National Center of Technology Innovation for Synthetic Biology, Tianjin Engineering Research Center of Biocatalytic Technology, and Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiaqing Wu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, National Engineering Research Center of Industrial Enzymes, National Center of Technology Innovation for Synthetic Biology, Tianjin Engineering Research Center of Biocatalytic Technology, and Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dunming Zhu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, National Engineering Research Center of Industrial Enzymes, National Center of Technology Innovation for Synthetic Biology, Tianjin Engineering Research Center of Biocatalytic Technology, and Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Yuan B, Yang D, Qu G, Turner NJ, Sun Z. Biocatalytic reductive aminations with NAD(P)H-dependent enzymes: enzyme discovery, engineering and synthetic applications. Chem Soc Rev 2024; 53:227-262. [PMID: 38059509 DOI: 10.1039/d3cs00391d] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Chiral amines are pivotal building blocks for the pharmaceutical industry. Asymmetric reductive amination is one of the most efficient and atom economic methodologies for the synthesis of optically active amines. Among the various strategies available, NAD(P)H-dependent amine dehydrogenases (AmDHs) and imine reductases (IREDs) are robust enzymes that are available from various sources and capable of utilizing a broad range of substrates with high activities and stereoselectivities. AmDHs and IREDs operate via similar mechanisms, both involving a carbinolamine intermediate followed by hydride transfer from the co-factor. In addition, both groups catalyze the formation of primary and secondary amines utilizing both organic and inorganic amine donors. In this review, we discuss advances in developing AmDHs and IREDs as biocatalysts and focus on evolutionary history, substrate scope and applications of the enzymes to provide an outlook on emerging industrial biotechnologies of chiral amine production.
Collapse
Affiliation(s)
- Bo Yuan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Dameng Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Ge Qu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Nicholas J Turner
- Department of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK.
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| |
Collapse
|
4
|
Asymmetric Synthesis of Both Enantiomers of Dimethyl 2-Methylsuccinate by the Ene-Reductase-Catalyzed Reduction at High Substrate Concentration. Catalysts 2022. [DOI: 10.3390/catal12101133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Chiral dimethyl 2-methylsuccinate (1) is a very important building block for the manufacturing of many active pharmaceutical ingredients and fine chemicals. The asymmetric reduction of C=C double bond of dimethyl citraconate (2), dimethyl mesaconate (3) or dimethyl itaconate (4) by ene-reductases (ERs) represents an attractive straightforward approach, but lack of high-performance ERs, especially (S)-selective ones, has limited implementing this method to prepare the optically pure dimethyl 2-methylsuccinate. Herein, three ERs (Bac-OYE1 from Bacillus sp., SeER from Saccharomyces eubayanus and AfER from Aspergillus flavus) with high substrate tolerance and stereoselectivity towards 2, 3 and 4 have been identified. Up to 500 mM of 3 was converted to (S)-dimethyl 2-methylsuccinate ((S)-1) by SeER in high yields (80%) and enantioselectivity (98% ee), and 700 mM of 2 and 400 mM of 4 were converted to (R)-1 by Bac-OYE1 and AfER, respectively, in high yields (86% and 77%) with excellent enantioselectivity (99% ee). The reductions of diethyl citraconate (5), diethyl mesaconate (6) and diethyl itaconate (7) were also tested with the three ERs. Although up to 500 mM of 5 was completely converted to (R)-diethyl 2-methylsuccinate ((R)-8) by Bac-OYE1 with excellent enantioselectivity (99% ee), the alcohol moiety of the esters had a great effect on the activity and enantioselectivity of ERs. This work provides an efficient methodology for the enantiocomplementary production of optically pure dimethyl 2-methylsuccinate from dimethyl itaconate and its isomers at high titer.
Collapse
|
5
|
Yang L, Li J, Xu Z, Yao P, Wu Q, Zhu D, Ma Y. Asymmetric Synthesis of Fused-Ring Tetrahydroisoquinolines and Tetrahydro-β-carbolines from 2-Arylethylamines via a Chemoenzymatic Approach. Org Lett 2022; 24:6531-6536. [PMID: 36066397 DOI: 10.1021/acs.orglett.2c02466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While chiral fused-ring tetrahydroisoquinoline (THIQ) and tetrahydro-β-carboline (THβC) scaffolds have attracted considerable interest due to their wide spectrum of biological activities, the synthesis of optically pure chiral fused-ring THIQs and THβCs remains a challenging task. Herein, a group of active imine reductases were identified to convert the imine precursors into the corresponding enantiocomplementary fused-ring THIQs and THβCs with high enantioselectivity and conversion, establishing an efficient and green chemoenzymatic approach to fused-ring alkaloids from 2-arylethylamines.
Collapse
Affiliation(s)
- Linsong Yang
- National Center of Technology Innovation for Synthetic Biology, National Engineering Research Center of Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Jianjiong Li
- National Center of Technology Innovation for Synthetic Biology, National Engineering Research Center of Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Zefei Xu
- National Center of Technology Innovation for Synthetic Biology, National Engineering Research Center of Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Peiyuan Yao
- National Center of Technology Innovation for Synthetic Biology, National Engineering Research Center of Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Qiaqing Wu
- National Center of Technology Innovation for Synthetic Biology, National Engineering Research Center of Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Dunming Zhu
- National Center of Technology Innovation for Synthetic Biology, National Engineering Research Center of Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yanhe Ma
- National Center of Technology Innovation for Synthetic Biology, National Engineering Research Center of Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| |
Collapse
|
6
|
Zhan Z, Xu Z, Yu S, Feng J, Liu F, Yao P, Wu Q, Zhu D. Stereocomplementary Synthesis of a Key Intermediate for Tofacitinib via Enzymatic Dynamic Kinetic Resolution‐Reductive Amination. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zhuangzhuang Zhan
- Key Laboratory of Industrial Fermentation Microbiology Ministry of Education College of Biotechnology Tianjin University of Science & Technology Tianjin 300457 People's Republic of China
- National Technology Innovation Center of Synthetic Biology National Engineering Research Center of Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 People's Republic of China
| | - Zefei Xu
- National Technology Innovation Center of Synthetic Biology National Engineering Research Center of Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 People's Republic of China
| | - Shanshan Yu
- National Technology Innovation Center of Synthetic Biology National Engineering Research Center of Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 People's Republic of China
| | - Jinhui Feng
- National Technology Innovation Center of Synthetic Biology National Engineering Research Center of Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 People's Republic of China
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology Ministry of Education College of Biotechnology Tianjin University of Science & Technology Tianjin 300457 People's Republic of China
| | - Peiyuan Yao
- National Technology Innovation Center of Synthetic Biology National Engineering Research Center of Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 People's Republic of China
| | - Qiaqing Wu
- National Technology Innovation Center of Synthetic Biology National Engineering Research Center of Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 People's Republic of China
| | - Dunming Zhu
- National Technology Innovation Center of Synthetic Biology National Engineering Research Center of Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 Xi Qi Dao, Tianjin Airport Economic Area Tianjin 300308 People's Republic of China
| |
Collapse
|
7
|
Carballares D, Rocha-Martin J, Fernandez-Lafuente R. Chemical amination of immobilized enzymes for enzyme coimmobilization: Reuse of the most stable immobilized and modified enzyme. Int J Biol Macromol 2022; 208:688-697. [PMID: 35358572 DOI: 10.1016/j.ijbiomac.2022.03.151] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 12/25/2022]
Abstract
Although Lecitase and the lipase from Thermomyces lanuginosus (TLL) could be coimmobilized on octyl-agarose, the stability of Lecitase was lower than that of TLL causing the user to discard active immobilized TLL when Lecitase was inactivated. Here, we propose the chemical amination of immobilized TLL to ionically exchange Lecitase on immobilized TLL, which should be released to the medium after its inactivation by incubation at high ionic strength. Using conditions where Lecitase was only adsorbed on immobilized TLL after its amination, the combibiocatalyst was produced. Unfortunately, the release of Lecitase was not possible using just high ionic strength solutions, and if detergent was added, TLL was also released from the support. This occurred when using 0.25 M ammonium sulfate, Lecitase did not immobilize on aminated TLL. That makes the use octyl-vinylsulfone supports necessary to irreversibly immobilize TLL, and after blocking with ethylendiamine, the immobilized TLL was aminated. Lecitase immobilized and released from this biocatalyst using 0.25 M ammonium sulfate and 0.1% Triton X-100. That way, a coimmobilized TLL and Lecitase biocatalyst could be produced, and after Lecitase inactivation, it could be released and the immobilized, aminated, and fully active TLL could be utilized to build a new combibiocatalyst.
Collapse
Affiliation(s)
- Diego Carballares
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain
| | - Javier Rocha-Martin
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, Madrid 28040, Spain.
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Center of Excellence in Bionanoscience Research, External Scientific Advisory Academic, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
8
|
Kumar Roy T, Sreedharan R, Ghosh P, Gandhi T, Maiti D. Ene-Reductase: A Multifaceted Biocatalyst in Organic Synthesis. Chemistry 2022; 28:e202103949. [PMID: 35133702 DOI: 10.1002/chem.202103949] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Indexed: 12/13/2022]
Abstract
Biocatalysis integrate microbiologists, enzymologists, and organic chemists to access the repertoire of pharmaceutical and agrochemicals with high chemoselectivity, regioselectivity, and enantioselectivity. The saturation of carbon-carbon double bonds by biocatalysts challenges the conventional chemical methodology as it bypasses the use of precious metals (in combination with chiral ligands and molecular hydrogen) or organocatalysts. In this line, Ene-reductases (ERs) from the Old Yellow Enzymes (OYEs) family are found to be a prominent asymmetric biocatalyst that is increasingly used in academia and industries towards unparalleled stereoselective trans-hydrogenations of activated C=C bonds. ERs gained prominence as they were used as individual catalysts, multi-enzyme cascades, and in conjugation with chemical reagents (chemoenzymatic approach). Besides, ERs' participation in the photoelectrochemical and radical-mediated process helps to unlock many scopes outside traditional biocatalysis. These up-and-coming methodologies entice the enzymologists and chemists to explore, expand and harness the chemistries displayed by ERs for industrial settings. Herein, we reviewed the last five year's exploration of organic transformations using ERs.
Collapse
Affiliation(s)
- Triptesh Kumar Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| | - Ramdas Sreedharan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Pintu Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Thirumanavelan Gandhi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Debabrata Maiti
- Chemistry Department and Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Maharashtra 400076, India
| |
Collapse
|