1
|
Chen W, Xu H, Liu FX, Chen K, Zhou Z, Yi W. Chiral Osmium(II)/Salox Species Enabled Enantioselective γ-C(sp 3)-H Amidation: Integrated Experimental and Computational Validation For the Ligand Design and Reaction Development. Angew Chem Int Ed Engl 2024; 63:e202401498. [PMID: 38499469 DOI: 10.1002/anie.202401498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/01/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024]
Abstract
Herein, multiple types of chiral Os(II) complexes have been designed to address the appealing yet challenging asymmetric C(sp3)-H functionalization, among which the Os(II)/Salox species is found to be the most efficient for precise stereocontrol in realizing the asymmetric C(sp3)-H amidation. As exemplified by the enantioenriched pyrrolidinone synthesis, such tailored Os(II)/Salox catalyst efficiently enables an intramolecular site-/enantioselective C(sp3)-H amidation in the γ-position of dioxazolone substrates, in which benzyl, propargyl and allyl groups bearing various substituted forms are well compatible, affording the corresponding chiral γ-lactam products with good er values (up to 99 : 1) and diverse functionality (>35 examples). The unique performance advantage of the developed chiral Os(II)/Salox system in terms of the catalytic energy profile and the chiral induction has been further clarified by integrated experimental and computational studies.
Collapse
Affiliation(s)
- Weijie Chen
- the Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Huiying Xu
- the Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Fu-Xiaomin Liu
- the Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Kaifeng Chen
- the Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Zhi Zhou
- the Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Wei Yi
- the Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| |
Collapse
|
2
|
Aimon A, Dow MJ, Hanby AR, Okolo EA, Pask CM, Nelson A, Marsden SP. Synthesis of spirocyclic 1,2-diamines by dearomatising intramolecular diamination of phenols. Chem Commun (Camb) 2023; 59:607-610. [PMID: 36533578 DOI: 10.1039/d2cc06137f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The stereocontrolled synthesis of complex spirotricyclic systems containing an embedded syn-1,2-diaminocyclohexane unit is reported, based upon a dearomatising oxidation of phenols bearing pendant ureas capable of acting as double nucleophiles. This complexity-generating transformation yields products with rich functionality suitable for application in the synthesis of potentially bioactive compounds.
Collapse
Affiliation(s)
- Anthony Aimon
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK.
| | - Mark J Dow
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK.
| | - Abigail R Hanby
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK.
| | - Ephraim A Okolo
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK.
| | | | - Adam Nelson
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK. .,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | | |
Collapse
|
3
|
Shan L, Li H, Zheng W, Wang X, Wang X, Hu Y. Tandem Synthesis of 2-Azaspiro[4.5]deca-1,6,9-trien-8-ones Based on Tf 2O-Promoted Activation of N-(2-Propyn-1-yl) Amides. J Org Chem 2023; 88:525-533. [PMID: 36522846 DOI: 10.1021/acs.joc.2c02504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Structurally novel 2-azaspiro[4.5]deca-1,6,9-trien-8-ones were synthesized from N-(2-propyn-1-yl) amides and 1,3,5-trimethoxybenzenes by a tandem method consisting of a Tf2O-promoted amide activation and a TfOH-promoted Friedel-Crafts ipso-cyclization. The method offered the first example of using N-(2-propyn-1-yl) amides as substrates in both Tf2O-promoted secondary amide activation and the synthesis of azaspiro[4.5]deca-6,9-diene-8-ones.
Collapse
Affiliation(s)
- Lidong Shan
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Hongchen Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Weiping Zheng
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Xingyong Wang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Xinyan Wang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yuefei Hu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
4
|
Zhu BH, Shen CH, Nie ML, Zheng F, Huang C, Chen F, Li L, Deng C, Ye LW, Qian PC. Highly Site-Selective Oxidative Cyclization of Ene-ynamides via Non-Noble-Metal Catalysis: Access to Functionalized Lactams. Org Lett 2022; 24:7009-7014. [PMID: 36121648 DOI: 10.1021/acs.orglett.2c02871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, an unprecedented non-noble-metal-catalyzed oxidation/cyclization of ene-ynamides is developed, allowing the synthesis of diversely functionalized lactams in moderate to good yields with excellent diastereoselectivities without the observation of typical cyclopropanation products. In combination with Ellman's tert-butylsulfinimine chemistry, chiral γ-lactams containing three contiguous stereocenters are obtained with high diastereo- and enantioselectivity. Moreover, density functional theory (DFT) calculations indicate that this protocol probably undergoes a carbon cation or proton transfer process.
Collapse
Affiliation(s)
- Bo-Han Zhu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.,State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Cang-Hai Shen
- State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Min-Ling Nie
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Fumin Zheng
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Chengzhe Huang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Fan Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Long Li
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Chao Deng
- Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Peng-Cheng Qian
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|