1
|
Reinhard DL, Iniutina A, Reese S, Shaw T, Merten C, List B, Huber SM. Asymmetric Counteranion-Directed Halogen Bonding Catalysis. J Am Chem Soc 2025; 147:8107-8112. [PMID: 40029961 PMCID: PMC11912313 DOI: 10.1021/jacs.4c18378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/19/2025]
Abstract
Halogen bonding has been established as a promising tool in organocatalysis. Asymmetric processes are nevertheless scarce, and their applications are limited to a few studies applying chiral halogen bond donors. Herein, we combine halogen bonding with asymmetric counteranion-directed catalysis, providing the first highly enantioselective example of such an approach. A strong bidentate iodine(III)-based catalyst with chiral disulfonimides as counteranions is applied in the first asymmetric organocatalysis of the Diels-Alder reaction between cyclopentadiene and trans-β-nitrostyrene, the key step in the synthesis of the drug fencamfamine, which was prepared with high enantioselectivity.
Collapse
Affiliation(s)
- Dominik L Reinhard
- Fakultät für Chemie und Biochemie, Organische Chemie II, Ruhr-Universität Bochum, 44801 Bochum, Germany
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany
| | - Anna Iniutina
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany
| | - Sven Reese
- Fakultät für Chemie und Biochemie, Organische Chemie II, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Tushar Shaw
- Fakultät für Chemie und Biochemie, Organische Chemie II, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Christian Merten
- Fakultät für Chemie und Biochemie, Organische Chemie II, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Benjamin List
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany
| | - Stefan M Huber
- Fakultät für Chemie und Biochemie, Organische Chemie II, Ruhr-Universität Bochum, 44801 Bochum, Germany
| |
Collapse
|
2
|
Yoshida Y, Aono M, Mino T, Sakamoto M. Asymmetric synthesis of β-amino cyanoesters with contiguous tetrasubstituted carbon centers by halogen-bonding catalysis with chiral halonium salt. Beilstein J Org Chem 2025; 21:547-555. [PMID: 40099300 PMCID: PMC11912644 DOI: 10.3762/bjoc.21.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 02/26/2025] [Indexed: 03/19/2025] Open
Abstract
β-Amino cyanoesters are important scaffolds because they can be transformed into useful chiral amines, amino acids, and amino alcohols. Halogen bonding, which can be formed between halogen atoms and electron-rich chemical species, is attractive because of its unique interaction in organic synthesis. Chiral halonium salts have been found to have strong halogen-bonding-donor abilities and work as powerful asymmetric catalysts. Recently, we have developed binaphthyl-based chiral halonium salts and applied them in several enantioselective reactions, which formed the corresponding products in high to excellent enantioselectivities. In this paper, the asymmetric synthesis of β-amino cyanoesters with contiguous tetrasubstituted carbon stereogenic centers by the Mannich reaction through chiral halonium salt catalysis is presented, which provided the corresponding products in excellent yields with up to 86% ee. To the best of our knowledge, the present paper is the first to report the asymmetric construction of β-amino cyanoesters with contiguous tetrasubstituted carbon stereogenic centers by the catalytic Mannich reaction.
Collapse
Affiliation(s)
- Yasushi Yoshida
- Institute for Advanced Academic Research (IAAR), Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
- Molecular Chirality Research Center, Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi, Chiba 263-8522, Japan
| | - Maho Aono
- Molecular Chirality Research Center, Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi, Chiba 263-8522, Japan
| | - Takashi Mino
- Molecular Chirality Research Center, Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi, Chiba 263-8522, Japan
| | - Masami Sakamoto
- Molecular Chirality Research Center, Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi, Chiba 263-8522, Japan
| |
Collapse
|
3
|
O'Brien J, Melnyk N, Lee RS, James M, Trujillo C. Computational Design of Bidentate Hypervalent Iodine Catalysts in Halogen Bond-Mediated Organocatalysis. Chemphyschem 2024; 25:e202400515. [PMID: 38973286 DOI: 10.1002/cphc.202400515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/12/2024] [Accepted: 07/08/2024] [Indexed: 07/09/2024]
Abstract
In recent years, halogen bond-based organocatalysis has garnered significant attention as an alternative to hydrogen-based catalysis, capturing considerable interest within the scientific community. This transition has witnessed the evolution of catalytic scaffolds from monodentate to bidentate architectures, and from monovalent to hypervalent species. In this DFT-based study, we explored a bidentate hypervalent iodine(III)-based system that has already undergone experimental validation. Additionally, we explore various functionalisations (-CF3, -CH3, -tBu, -OH, -OMe, -NO2, -CN) and scaffold modifications, such as sulfur oxidation, theoretically proposed for an indole-based Michael addition. The investigated systems favour bidentate O-type binding, underlining the importance of ligand coordination in catalytic activity. Electron-deficient scaffolds exhibited stronger binding and lower activation energies, indicating the pivotal role of electronic properties for σ-hole-based catalysis. Of these groups, Lewis-base-like moieties formed stabilising intramolecular interactions with hypervalent iodines when in the ortho-position. Furthermore, inductive electron withdrawal was deemed more effective than mesomeric withdrawal in enhancing catalytic efficacy for these systems. Lastly, increasing sulfur oxidation was theoretically proven to improve catalytic activity significantly.
Collapse
Affiliation(s)
- James O'Brien
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M139PL, UK
| | - Nika Melnyk
- School of Chemistry, Trinity College Dublin, College Green, Dublin, D02 PN40, Ireland
| | - Rico Shing Lee
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M139PL, UK
| | - Michael James
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M139PL, UK
| | - Cristina Trujillo
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M139PL, UK
| |
Collapse
|
4
|
Jovanovic D, Poliyodath Mohanan M, Huber SM. Halogen, Chalcogen, Pnictogen, and Tetrel Bonding in Non-Covalent Organocatalysis: An Update. Angew Chem Int Ed Engl 2024; 63:e202404823. [PMID: 38728623 DOI: 10.1002/anie.202404823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024]
Abstract
The use of noncovalent interactions based on electrophilic halogen, chalcogen, pnictogen, or tetrel centers in organocatalysis has gained noticeable attention. Herein, we provide an overview on the most important developments in the last years with a clear focus on experimental studies and on catalysts which act via such non-transient interactions.
Collapse
Affiliation(s)
- Dragana Jovanovic
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Meghana Poliyodath Mohanan
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Stefan M Huber
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| |
Collapse
|
5
|
Kumar R, Dohi T, Zhdankin VV. Organohypervalent heterocycles. Chem Soc Rev 2024; 53:4786-4827. [PMID: 38545658 DOI: 10.1039/d2cs01055k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
This review summarizes the structural and synthetic aspects of heterocyclic molecules incorporating an atom of a hypervalent main-group element. The term "hypervalent" has been suggested for derivatives of main-group elements with more than eight valence electrons, and the concept of hypervalency is commonly used despite some criticism from theoretical chemists. The significantly higher thermal stability of hypervalent heterocycles compared to their acyclic analogs adds special features to their chemistry, particularly for bromine and iodine. Heterocyclic compounds of elements with double bonds are not categorized as hypervalent molecules owing to the zwitterionic nature of these bonds, resulting in the conventional 8-electron species. This review is focused on hypervalent heterocyclic derivatives of nonmetal main-group elements, such as boron, silicon, nitrogen, carbon, phosphorus, sulfur, selenium, bromine, chlorine, iodine(III) and iodine(V).
Collapse
Affiliation(s)
- Ravi Kumar
- Department of Chemistry, J C Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, 121006, Haryana, India.
| | - Toshifumi Dohi
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Viktor V Zhdankin
- Department of Chemistry and Biochemistry, 1038 University Drive, 126 HCAMS University of Minnesota Duluth, Duluth, Minnesota 55812, USA.
| |
Collapse
|
6
|
Li Y, Zhao C, Wang Z, Zeng Y. Halogen Bond Catalysis: A Physical Chemistry Perspective. J Phys Chem A 2024; 128:507-527. [PMID: 38214658 DOI: 10.1021/acs.jpca.3c06363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
As important noncovalent interactions, halogen bonds have been widely used in material science, supramolecular chemistry, medicinal chemistry, organocatalysis, and other fields. In the past 15 years, halogen bond catalysis has become a developed field in organocatalysis for the catalysts' advantages of being environmentally friendly, inexpensive, and recyclable. Halogen bonds can induce various organic reactions, and halogen bond catalysis has become a powerful alternative to the fully explored hydrogen bond catalysis. From a physical chemistry view, this perspective provides an overview of the latest progress and key examples of halogen bond catalysis via activation of the lone pair systems of organic functional group, π systems, and metal complexes. The research progresses in halogen bond catalysis by our group were also introduced.
Collapse
Affiliation(s)
- Ying Li
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Chang Zhao
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhuo Wang
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Yanli Zeng
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
7
|
Il'in MV, Polonnikov DA, Novikov AS, Sysoeva AA, Safinskaya YV, Bolotin DS. Influence of Coordination to Silver(I) Centers on the Activity of Heterocyclic Iodonium Salts Serving as Halogen-Bond-Donating Catalysts. Chempluschem 2023; 88:e202300304. [PMID: 37675949 DOI: 10.1002/cplu.202300304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/08/2023]
Abstract
Kinetic data based on 1 H NMR monitoring and computational studies indicate that in solution, pyrazole-containing iodonium triflates and silver(I) triflate bind to each other, and such an interplay results in the decrease of the total catalytic activity of the mixture of these Lewis acids compared to the separate catalysis of the Schiff condensation, the imine-isocyanide coupling, or the nucleophilic attack on a triple carbon-carbon bond. Moreover, the kinetic data indicate that such a cooperation with the silver(I) triflate results in prevention of decomposition of the iodonium salts during the reaction progress. XRD study confirms that the pyrazole-containing iodonium triflate coordinates to the silver(I) center via the pyrazole N atom to produce a rare example of a pentacoordinated trigonal bipyramidal dinuclear silver(I) complex featuring cationic ligands.
Collapse
Affiliation(s)
- Mikhail V Il'in
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russia
| | - Denis A Polonnikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russia
| | - Alexander S Novikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russia
- Research Institute of Chemistry, Рeoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow, 117198, Russia
| | - Alexandra A Sysoeva
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russia
| | - Yana V Safinskaya
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russia
| | - Dmitrii S Bolotin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russia
| |
Collapse
|
8
|
Keuper AC, Fengler K, Ostler F, Danelzik T, Piekarski DG, García Mancheño O. Fine-Tuning Substrate-Catalyst Halogen-Halogen Interactions for Boosting Enantioselectivity in Halogen-Bonding Catalysis. Angew Chem Int Ed Engl 2023; 62:e202304781. [PMID: 37228095 DOI: 10.1002/anie.202304781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/08/2023] [Accepted: 05/25/2023] [Indexed: 05/27/2023]
Abstract
A new approach towards highly enantioselective halogen-bonding catalysis has been developed. To circumvent the intrinsic issues of the nature of the halogen-bond (XB) and the resultant unresolved limitations in asymmetric catalysis, fine-tuned halogen-halogen interactions between the substrate and XB-donor were designed to preorganize the substrate in the catalyst's cavity and boost enantiocontrol. The present strategy exploits both the electron cloud (Lewis base site) and the sigma (σ)-hole site of the halogen substituent of the substrates to form a tight catalyst-substrate-counteranion chiral complex, thus enabling a controlled induction of high levels of chirality transfer. Remarkable enantioselectivities of up to 95 : 5 e.r. (90 % ee) have been achieved in a model dearomatization reaction of halogen-substituted (iso)quinolines with tetrakis-iodotriazole multidentate anion-binding catalysts.
Collapse
Affiliation(s)
- Alica C Keuper
- Organic Chemistry Institute, University of Münster, Correnstraße 36/40, 48149, Münster, Germany
| | - Kevin Fengler
- Organic Chemistry Institute, University of Münster, Correnstraße 36/40, 48149, Münster, Germany
| | - Florian Ostler
- Organic Chemistry Institute, University of Münster, Correnstraße 36/40, 48149, Münster, Germany
| | - Tobias Danelzik
- Organic Chemistry Institute, University of Münster, Correnstraße 36/40, 48149, Münster, Germany
| | - Dariusz G Piekarski
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224, Warsaw, Poland
| | - Olga García Mancheño
- Organic Chemistry Institute, University of Münster, Correnstraße 36/40, 48149, Münster, Germany
| |
Collapse
|
9
|
Montgomery CA, Murphy GK. Exploring the role of halogen bonding in iodonium ylides: insights into unexpected reactivity and reaction control. Beilstein J Org Chem 2023; 19:1171-1190. [PMID: 37592937 PMCID: PMC10428621 DOI: 10.3762/bjoc.19.86] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/18/2023] [Indexed: 08/19/2023] Open
Abstract
Halogen bonding is commonly found with iodine-containing molecules, and it arises when Lewis bases interact with iodine's σ-holes. Halogen bonding and σ-holes have been encountered in numerous monovalent and hypervalent iodine-containing compounds, and in 2022 σ-holes were computationally confirmed and quantified in the iodonium ylide subset of hypervalent iodine compounds. In light of this new discovery, this article provides an overview of the reactions of iodonium ylides in which halogen bonding has been invoked. Herein, we summarize key discoveries and mechanistic proposals from the early iodonium ylide literature that invoked halogen bonding-type mechanisms, as well as recent reports of reactions between iodonium ylides and Lewis basic nucleophiles in which halogen bonding has been specifically invoked. The reactions discussed herein are organized to enable the reader to build an understanding of how halogen bonding might impact yield and chemoselectivity outcomes in reactions of iodonium ylides. Areas of focus include nucleophile σ-hole selectivity, and how ylide structural modifications and intramolecular halogen bonding (e.g., the ortho-effect) can improve ylide stability or solubility, and alter reaction outcomes.
Collapse
Affiliation(s)
- Carlee A Montgomery
- Department of Chemistry, University of Waterloo, 200 University Ave W., Waterloo, Ontario, N2L3G1, Canada
| | - Graham K Murphy
- Department of Chemistry, University of Waterloo, 200 University Ave W., Waterloo, Ontario, N2L3G1, Canada
| |
Collapse
|
10
|
Yoshida Y, Aso N, Karatsu T, Mino T, Sakamoto M. Intramolecular Azo Coupling Reaction of Binaphthyl Compounds: Synthesis of Pyrazole-Containing Helicene-Like Molecules. Org Lett 2023; 25:3412-3416. [PMID: 37154527 DOI: 10.1021/acs.orglett.3c00974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A method for accessing pyrazole-containing helicene-like molecules from easily accessible NOBIN derivatives was developed. The reaction proceeded efficiently via diazonium salt intermediates, which provided a series of helicene-like molecular products in yields of 77%-89% regardless of their steric and electronic natures. The photophysical properties of the products were investigated. The 3,3'-disubstituted molecules showed a characteristic blue shift in their emission spectra. Product derivatizations were conducted, and interesting reactivities toward nucleophiles were observed.
Collapse
Affiliation(s)
- Yasushi Yoshida
- Molecular Chirality Research Center, Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi, Chiba 263-8522, Japan
| | - Naoyuki Aso
- Molecular Chirality Research Center, Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi, Chiba 263-8522, Japan
| | - Takashi Karatsu
- Molecular Chirality Research Center, Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi, Chiba 263-8522, Japan
| | - Takashi Mino
- Molecular Chirality Research Center, Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi, Chiba 263-8522, Japan
| | - Masami Sakamoto
- Molecular Chirality Research Center, Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi, Chiba 263-8522, Japan
| |
Collapse
|
11
|
Peng X, Rahim A, Peng W, Jiang F, Gu Z, Wen S. Recent Progress in Cyclic Aryliodonium Chemistry: Syntheses and Applications. Chem Rev 2023; 123:1364-1416. [PMID: 36649301 PMCID: PMC9951228 DOI: 10.1021/acs.chemrev.2c00591] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 01/18/2023]
Abstract
Hypervalent aryliodoumiums are intensively investigated as arylating agents. They are excellent surrogates to aryl halides, and moreover they exhibit better reactivity, which allows the corresponding arylation reactions to be performed under mild conditions. In the past decades, acyclic aryliodoniums are widely explored as arylation agents. However, the unmet need for acyclic aryliodoniums is the improvement of their notoriously low reaction economy because the coproduced aryl iodides during the arylation are often wasted. Cyclic aryliodoniums have their intrinsic advantage in terms of reaction economy, and they have started to receive considerable attention due to their valuable synthetic applications to initiate cascade reactions, which can enable the construction of complex structures, including polycycles with potential pharmaceutical and functional properties. Here, we are summarizing the recent advances made in the research field of cyclic aryliodoniums, including the nascent design of aryliodonium species and their synthetic applications. First, the general preparation of typical diphenyl iodoniums is described, followed by the construction of heterocyclic iodoniums and monoaryl iodoniums. Then, the initiated arylations coupled with subsequent domino reactions are summarized to construct polycycles. Meanwhile, the advances in cyclic aryliodoniums for building biaryls including axial atropisomers are discussed in a systematic manner. Finally, a very recent advance of cyclic aryliodoniums employed as halogen-bonding organocatalysts is described.
Collapse
Affiliation(s)
- Xiaopeng Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| | - Abdur Rahim
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Weijie Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Feng Jiang
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Zhenhua Gu
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Shijun Wen
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| |
Collapse
|
12
|
Robidas R, Reinhard DL, Huber SM, Legault CY. A Quantum-chemical Analysis on the Lewis Acidity of Diarylhalonium Ions. Chemphyschem 2023; 24:e202200634. [PMID: 36043491 PMCID: PMC10092059 DOI: 10.1002/cphc.202200634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 08/30/2022] [Indexed: 01/07/2023]
Abstract
Cyclic diaryliodonium compounds like iodolium derivatives have increasingly found use as noncovalent Lewis acids in the last years. They are more stable toward nucleophilic substitution than acyclic systems and are markedly more Lewis acidic. Herein, this higher Lewis acidity is analyzed and explained via quantum-chemical calculations and energy decomposition analyses. Its key origin is the change in energy levels and hybridization of iodine's orbitals, leading to both more favorable electrostatic interaction and better charge transfer. Both of the latter seem to contribute in similar fashion, while hydrogen bonding as well as steric repulsion with the phenyl rings play at best a minor role. In comparison to iodolium, bromolium and chlorolium are less Lewis acidic the lighter the halogen, which is predominantly based on less favorable charge-transfer interactions.
Collapse
Affiliation(s)
- Raphaël Robidas
- Department of Chemistry, Université de Sherbrooke, Centre in Green Chemistry and Catalysis, J1K 2R1, Sherbrooke, Québec, Canada
| | - Dominik L Reinhard
- Fakultät für Chemie und Biochemie, Organische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Stefan M Huber
- Fakultät für Chemie und Biochemie, Organische Chemie I, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Claude Y Legault
- Department of Chemistry, Université de Sherbrooke, Centre in Green Chemistry and Catalysis, J1K 2R1, Sherbrooke, Québec, Canada
| |
Collapse
|
13
|
Yoshida Y, Ao T, Mino T, Sakamoto M. Chiral Bromonium Salt (Hypervalent Bromine(III)) with N-Nitrosamine as a Halogen-Bonding Bifunctional Catalyst. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010384. [PMID: 36615579 PMCID: PMC9822295 DOI: 10.3390/molecules28010384] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023]
Abstract
There has been a great focus on halogen-bonding as a unique interaction between electron-deficient halogen atoms with Lewis basic moieties. Although the application of halogen-bonded atoms in organic chemistry has been eagerly researched in these decades, the development of chiral molecules with halogen-bonding functionalities and their utilization in asymmetric catalysis are still in the\ir infancy. We have previously developed chiral halonium salts with amide functionalities, which behaved as excellent catalysts albeit in only two reactions due to the lack of substrate activation abilities. In this manuscript, we have developed chiral halonium salts with an N-nitrosamine moiety and applied them to the Mannich reaction of isatin-derived ketimines with malonic esters. The study focused on our novel bromonium salt catalyst which provided the corresponding products in high yields with up to 80% ee. DFT calculations of the chiral catalyst structure suggested that the high asymmetric induction abilities of this catalyst are due to the Lewis basic role of the N-nitrosamine part. To the best of our knowledge, this is the first catalytic application of N-nitrosamines.
Collapse
|
14
|
Novikov AS, Bolotin DS. Halonium, chalconium, and pnictonium salts as noncovalent organocatalysts: a computational study on relative catalytic activity. Org Biomol Chem 2022; 20:7632-7639. [PMID: 36111866 DOI: 10.1039/d2ob01415g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This theoretical study sheds light on the relative catalytic activity of pnictonium, chalconium, and halonium salts in reactions involving elimination of chloride and electrophilic activation of a carbonyl group. DFT calculations indicate that for cationic aromatic onium salts, values of the electrostatic potential on heteroatom σ-holes gradually increase from pnictogen- to halogen-containing species. The higher values of the potential on the halogen atoms of halonium salts result in the overall higher catalytic activity of these species, but in the case of pnictonium and chalconium cations, weak interactions from the side groups provide an additional stabilization effect on the reaction transition states. Based upon quantum-chemical calculations, the catalytic activity of phosphonium(V) and arsenonium(V) salts is expected to be too low to obtain effective noncovalent organocatalytic compounds, whereas stibonium(V), telluronium(IV) and iodonium(III) salts exhibit higher potential in application as noncovalent organocatalysts.
Collapse
Affiliation(s)
- Alexander S Novikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation. .,Infochemistry Scientific Center, ITMO University, Kronverksky Pr. 49, Bldg. A, Saint Petersburg, 197101, Russian Federation
| | - Dmitrii S Bolotin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation.
| |
Collapse
|
15
|
Peluso P, Mamane V. Stereoselective Processes Based on σ-Hole Interactions. Molecules 2022; 27:molecules27144625. [PMID: 35889497 PMCID: PMC9323542 DOI: 10.3390/molecules27144625] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 02/01/2023] Open
Abstract
The σ-hole interaction represents a noncovalent interaction between atoms with σ-hole(s) on their surface (such as halogens and chalcogens) and negative sites. Over the last decade, significant developments have emerged in applications where the σ-hole interaction was demonstrated to play a key role in the control over chirality. The aim of this review is to give a comprehensive overview of the current advancements in the use of σ-hole interactions in stereoselective processes, such as formation of chiral supramolecular assemblies, separation of enantiomers, enantioselective complexation and asymmetric catalysis.
Collapse
Affiliation(s)
- Paola Peluso
- Istituto di Chimica Biomolecolare ICB, CNR, Sede Secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, 07100 Sassari, Italy
- Correspondence: (P.P.); (V.M.)
| | - Victor Mamane
- Institut de Chimie de Strasbourg, UMR CNRS 7177, Equipe LASYROC, 1 Rue Blaise Pascal, 67008 Strasbourg, France
- Correspondence: (P.P.); (V.M.)
| |
Collapse
|
16
|
Il'in MV, Novikov AS, Bolotin DS. Sulfonium and Selenonium Salts as Noncovalent Organocatalysts for the Multicomponent Groebke-Blackburn-Bienaymé Reaction. J Org Chem 2022; 87:10199-10207. [PMID: 35858372 DOI: 10.1021/acs.joc.2c01141] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sulfonium and selenonium salts, represented by S-aryl dibenzothiophenium and Se-aryl dibenzoselenophenium triflates, were found to exhibit remarkable catalytic activity in the model Groebke-Blackburn-Bienaymé reaction. Kinetic analysis and density functional theory (DFT) calculations indicated that their catalytic effect is induced by the ligation of the reaction substrates to the σ-holes on the S or Se atom of the cations. The experimental data indicated that although 10-fold excess of the chloride totally inhibits the catalytic activity of the sulfonium salts, the selenonium salt remains catalytically active, which can be explained by the experimentally found lower binding constant of the selenonium derivative to chloride in comparison with the sulfonium analogue. Both types of salts exhibit lower catalytic activity in the model reaction than dibenziodolium species.
Collapse
Affiliation(s)
- Mikhail V Il'in
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Alexander S Novikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation.,Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation
| | - Dmitrii S Bolotin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| |
Collapse
|
17
|
Takagi K, Sakakibara N, Hasegawa T, Hayashi S. Controlled/Living Cationic Polymerization of p-Methoxystyrene Using Tellurium-Based Chalcogen Bonding Catalyst─Discovery of a New Water-Tolerant Lewis Acid Catalyst. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Koji Takagi
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan
| | - Nao Sakakibara
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan
| | - Tomoki Hasegawa
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan
| | - Shuhei Hayashi
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan
| |
Collapse
|
18
|
To AJ, Murphy GK. Iodolium salts as halogen-bond donor catalysts in the Nazarov cyclization: the molecular oxygen enigma. NEW J CHEM 2022. [DOI: 10.1039/d2nj02731c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nazarov cyclizations of activated precurosrs are achieved under iodolium catalysis, provided that oxygen is present for catalyst activation and turnover.
Collapse
Affiliation(s)
- Avery J. To
- Department of Chemistry and Waterloo Institute for Nanotechnology University of Waterloo 200 University Ave W., Waterloo, Ontario, N2L3G1, Canada
| | - Graham K. Murphy
- Department of Chemistry and Waterloo Institute for Nanotechnology University of Waterloo 200 University Ave W., Waterloo, Ontario, N2L3G1, Canada
| |
Collapse
|