1
|
Leslie N, Mena-Morcillo E, Morel A, Mauzeroll J. General Method for Fitting Kinetics from the SECM Images of Reactive Sites on Flat Surfaces. Anal Chem 2024; 96:10877-10885. [PMID: 38917090 PMCID: PMC11238733 DOI: 10.1021/acs.analchem.3c05793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/21/2024] [Accepted: 03/22/2024] [Indexed: 06/27/2024]
Abstract
Scanning electrochemical microscopy (SECM) is a technique for imaging electrochemical reactions at a surface. The interaction between electrochemical reactions occurring at the sample and scanning electrode tip is quite complicated and requires computer modeling to obtain quantitative information from SECM images. Often, existing computer models must be modified, or a new model must be created from scratch to fit kinetic parameters for different reactive features. This work presents a method that can simulate the SECM image of a reactive feature of any shape on a flat surface which is coupled to a computer program which effectuates the automated fitting of kinetic information from these images. This fitting program is evaluated along with several methods for estimating the shapes of reactive features from their SECM images. Estimates of the reactive feature shape from SECM images were not sufficiently accurate and produced median relative errors for the surface rate constant that were >50%. Fortunately, more precise techniques for imaging the reactive features such as optical microscopy can supply sufficiently accurate shapes for the fitting procedure to produce accurate results. Fits of simulated SECM images using the actual shape from the simulation produced median relative errors for the surface rate constant that were <10% for the smallest reactive features tested. This method was applied to the SECM images of aluminum alloy AA7075 which revealed diffusion-limited kinetics for ferrocene methanol reduction over inclusions in the surface of the alloy.
Collapse
Affiliation(s)
- Nathaniel Leslie
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | | | - Alban Morel
- Automotive and Surface Transportation, National Research Council Canada, Saguenay, Quebec G7H 8C3, Canada
| | - Janine Mauzeroll
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
2
|
Thomas N, Lima D, Trinh D, Kuss S. Temperature Effect on the Electrochemical Current Response during Scanning Electrochemical Microscopy of Living Cells. Anal Chem 2023; 95:17962-17967. [PMID: 38029336 PMCID: PMC10720632 DOI: 10.1021/acs.analchem.3c03716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
Scanning electrochemical microscopy (SECM) is being used increasingly to monitor electrochemical processes at the interface of living cells and electrodes. This allows the detection and quantification of biomarkers that further the understanding of various diseases. Rapid SECM experiments are often carried out without monitoring the analyte solution temperature or are performed at room temperature. The reported research demonstrates that temperature control is crucial during SECM imaging of living cells to obtain reliable data. In this study, a SECM-integrated thermostatic ring on the sample stage enabled imaging of living biological cells in a constant height mode at various temperatures. Two-dimensional line scans were conducted while scanning single Adenocarcinoma Cervical cancer (HeLa) cells. Numerical modeling was carried out to evaluate the effect of the temperature on the electrochemical current response of living cells to compare the apparent heterogeneous rate constant (k0), representing cellular reaction kinetics. This study reveals that even slight temperature variations of approximately 2 °C affect the reaction kinetics of single living cells, altering the measured current during SECM.
Collapse
Affiliation(s)
- Nikita Thomas
- Chemistry
Department, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| | - Dhésmon Lima
- Chemistry
Department, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| | - Dao Trinh
- Laboratoire
des Sciences de l’ Ingenieur Pour l’Environment UMR-7536
CNRS, Université de la Rochelle, Avenue Michel Crépeau, 17042 La Rochelle, France
| | - Sabine Kuss
- Chemistry
Department, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| |
Collapse
|
3
|
Zhang J, Liu Y, Li Y, Zhu T, Qiu J, Xu F, Zhang H, Li F. In Situ and Quantitatively Imaging of Heat-Induced Oxidative State and Oxidative Damage of Living Neurons Using Scanning Electrochemical Microscopy. SMALL METHODS 2022; 6:e2200689. [PMID: 36373714 DOI: 10.1002/smtd.202200689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Central nervous system is sensitive and vulnerable to heat. Oxidative state and oxidative damage of neurons under heat stress are vital for understanding early consequences and mechanisms of heat-related neuronal injury, which remains elusive partly due to the technical challenge of in situ and quantitative monitoring methods. Herein, a temperature-controlled scanning electrochemical microscopy (SECM) platform with programmable pulse potential and depth scan modes is developed for in situ and quantitatively monitoring of oxygen consumption, extracellular hydrogen peroxide level, and cell membrane permeability of neurons under thermal microenvironment of 37-42 °C. The SECM results show that neuronal oxygen consumption reaches a maximum at 40 °C and then decreases, extracellular H2 O2 level increases from 39 °C, and membrane permeability increases from 2.0 ± 0.6 × 10-5 to 7.2 ± 0.8 × 10-5 m s-1 from 39 to 42 °C. The therapeutic effect on oxidative damage of neurons under hyperthermia conditions (40-42 °C) is further evaluated by SECM and fluorescence methods, which can be partially alleviated by the potent antioxidant edaravone. This work realizes in situ and quantitatively observing the heat-induced oxidative state and oxidative damage of living neurons using SECM for the first time, which results can contribute to a better understanding of the heat-related cellular injury mechanism.
Collapse
Affiliation(s)
- Junjie Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yulin Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yabei Li
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Tong Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Department of Cardiovasology, Xidian Group Hospital, Xi'an, 710077, P. R. China
| | - Jinbin Qiu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hua Zhang
- Department of Neurosurgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Fei Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
4
|
Leslie N, Mena-Morcillo E, Morel A, Mauzeroll J. Fitting Kinetics from Scanning Electrochemical Microscopy Images of Finite Circular Features. Anal Chem 2022; 94:15315-15323. [DOI: 10.1021/acs.analchem.2c02681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nathaniel Leslie
- Department of Chemistry, McGill University, MontrealQC H3A 0B8, Canada
| | | | - Alban Morel
- Automotive and Surface Transportation, National Research Council Canada, SaguenayQC G7H 8C3, Canada
| | - Janine Mauzeroll
- Department of Chemistry, McGill University, MontrealQC H3A 0B8, Canada
| |
Collapse
|
5
|
Chen S, Prins S, Chen A. Patterning of BiVO 4 Surfaces and Monitoring of Localized Catalytic Activity Using Scanning Photoelectrochemical Microscopy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18065-18073. [PMID: 32195563 DOI: 10.1021/acsami.9b22605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
There is a lot of interest in understanding localized catalytic activities at the micro and nanoscale and designing robust catalysts for photoelectrochemical oxidation of water to address the pressing energy and environmental challenges. Here, we demonstrate that scanning photoelectrochemical microscopy (SPECM) can be effectively employed as a novel technique (i) to modify a photocatalyst surface with an electrocatalyst layer in a matrix fashion and (ii) to monitor its localized activity toward the photoelectrochemical (PEC) water oxidation reaction. The three-dimensional SPECM image clearly shows that the loading of the FeOOH electrocatalyst on the BiVO4 semiconductor surface strongly affects its local PEC reaction activity. The optimal photoelectrodeposition time of FeOOH on the BiVO4 photocatalyst was found to be ∼20 min when FeOOH was employed as the electrocatalyst. The electrocatalyst optimization process was conducted on a single photoanode electrode surface, making the optimization process efficient and reliable. The morphology of the formed photocatalyst/electrocatalyst hybrid, inclusive of its localized activity toward the water oxidation reaction, was simultaneously probed. A photoanode surface comprising CuWO4/BiVO4/FeOOH was further prepared in this study and investigated. It was found that the localized photoactivity truly reflects the activity of the local area, differs from region to region, and is contingent on the morphology of the surface. Moreover, the Pt UME is determined as an efficient probe to analyze the photoactivity of the PEC water splitting reaction. This work highlights the novel SPECM technique for enhancement and examination of the catalytic activity of the nanostructured materials.
Collapse
Affiliation(s)
- Shuai Chen
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Scott Prins
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Aicheng Chen
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
6
|
Li Y, Lang J, Ye Z, Wang M, Yang Y, Guo X, Zhuang J, Zhang J, Xu F, Li F. Effect of Substrate Stiffness on Redox State of Single Cardiomyocyte: A Scanning Electrochemical Microscopy Study. Anal Chem 2020; 92:4771-4779. [PMID: 32157867 DOI: 10.1021/acs.analchem.9b03178] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mechanical microenvironment plays a key role in the regulation of the phenotype and function of cardiac cells, which are strongly associated with the intracellular redox mechanism of cardiomyocytes. However, the relationship between the redox state of cardiomyocytes and their mechanical microenvironment remains elusive. In this work, we used polyacrylamide (PA) gels with varying stiffness (6.5-92.5 kPa) as the substrate to construct a mechanical microenvironment for cardiomyocytes. Then we employed scanning electrochemical microscopy (SECM) to in situ characterize the redox state of a single cardiomyocyte in terms of the apparent rate constant (kf) of the regeneration rate of ferrocenecarboxylic by glutathione (GSH) released from cardiomyocyte, which is the most abundant reactant of intracellular reductive-oxidative metabolic cycles in cells and can represent the redox level of cardiomyocytes. The obtained SECM results show that the cardiomyocytes cultured on the stiffer substrates present lower kf values than those on the softer ones, that is, the more oxidative state of cardiomyocytes on the stiffer substrates compared to those on the softer ones. It proves the relationship between mechanical factors and the redox state of cardiomyocytes. This work can contribute to understanding the intracellular chemical process of cardiomyocytes during physiopathologic conditions. Besides, it also provides a new SECM method to in situ investigate the redox mechanism of cardiomyocytes at a single-cell level.
Collapse
|