1
|
Mira ZF, Palkar V, Kuksenok O. Characterizing dynamic heterogeneities during nanogel degradation. SOFT MATTER 2025; 21:1624-1638. [PMID: 39853096 DOI: 10.1039/d4sm01256a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Understanding photodegradation of nanogels is critical for dynamic control of their properties and functionalities. We focus on nanogels formed by end-linking of four-arm polyethylene glycol precursors with photolabile groups and characterize dynamic heterogeneities in these systems during degradation. We use our recently developed dissipative particle dynamics framework that captures the controlled scission of bonds between the precursors and diffusion of degraded fragments at the mesoscale. To quantify spatiotemporal fluctuations in the local dynamic behavior, we calculate the self-part of the van-Hove correlation function for the reactive beads for nanogels degrading in various environments. We demonstrate strong deviations from the Gaussian behavior during the degradation and quantify variations in the non-Gaussian parameter as a function of the relative extent of degradation. We show that for the nanogels degrading in a good solvent, the peak values in the non-Gaussian parameter are observed significantly earlier than the reverse gel point, and earlier than the peak values in the dispersity of the broken off fragments. Further, our study shows that a systematic decrease in solvent quality significantly affects the behavior of the non-Gaussian parameter as a function of the relative extent of degradation. The findings of this study allow one to quantify the dynamic heterogeneities during degradation in various environments and can potentially provide guidelines for designing controllably degrading nanocarriers.
Collapse
Affiliation(s)
- Zafrin Ferdous Mira
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, USA.
| | - Vaibhav Palkar
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, USA.
| | - Olga Kuksenok
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, USA.
| |
Collapse
|
2
|
Zhang J, Tang H, Zhang J, Zhang Z. Mesoscopic simulation of multi-scheme particle separation in deterministic lateral displacement devices using two-piece hybrid pillars. J Chromatogr A 2023; 1711:464434. [PMID: 37837711 DOI: 10.1016/j.chroma.2023.464434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/16/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023]
Abstract
Pillar shape exploration in deterministic lateral displacement (DLD) technique holds great promise for developing high-performance microfluidic devices with versatile sorting schemes. A recent innovative design using filter-like micropillars was proposed to improve cell separation, but its significance might be greatly underestimated due to an inaccurate understanding of the underlying mechanism. In this study, we employ mesoscopic hydrodynamic simulations to explore the movement and separation of rigid spherical particles in DLD arrays using various two-piece hybrid (TPH) pillars, where each pillar consists of two individual pieces separated by a tunable inter-piece channel. In comparison with the conventional one-piece pillars, the back piece of TPH-pillars is found to hierarchically tailor the flow profile of the front piece on the basis of the row shift fraction and the inter-piece channel width, resulting in unique tunable multi-scheme separation at low, intermediate, and high row shift fractions, respectively. At the intermediate regime, in particular, the first flow lane that determines the critical separation size could be physically fenced out by the inter-piece channel, and a delicate coupling of hydrodynamic filtration and DLD has been revealed to induce a constant critical size in the whole regime. This work theoretically demonstrates the feasibility and significance of TPH-pillars, which may open up a new direction of the geometry design by exploiting rich multi-piece hybrid structures to expand the versatility of the DLD technique.
Collapse
Affiliation(s)
- Jinliang Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Haoxiang Tang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jianchuan Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zunmin Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
3
|
Zhang X, Dai X, Gao L, Xu D, Wan H, Wang Y, Yan LT. The entropy-controlled strategy in self-assembling systems. Chem Soc Rev 2023; 52:6806-6837. [PMID: 37743794 DOI: 10.1039/d3cs00347g] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Self-assembly of various building blocks has been considered as a powerful approach to generate novel materials with tailorable structures and optimal properties. Understanding physicochemical interactions and mechanisms related to structural formation and transitions is of essential importance for this approach. Although it is well-known that diverse forces and energies can significantly contribute to the structures and properties of self-assembling systems, the potential entropic contribution remains less well understood. The past few years have witnessed rapid progress in addressing the entropic effects on the structures, responses, and functions in the self-assembling systems, and many breakthroughs have been achieved. This review provides a framework regarding the entropy-controlled strategy of self-assembly, through which the structures and properties can be tailored by effectively tuning the entropic contribution and its interplay with the enthalpic counterpart. First, we focus on the fundamentals of entropy in thermodynamics and the entropy types that can be explored for self-assembly. Second, we discuss the rules of entropy in regulating the structural organization in self-assembly and delineate the entropic force and superentropic effect. Third, we introduce the basic principles, significance and approaches of the entropy-controlled strategy in self-assembly. Finally, we present the applications where this strategy has been employed in fields like colloids, macromolecular systems and nonequilibrium assembly. This review concludes with a discussion on future directions and future research opportunities for developing and applying the entropy-controlled strategy in complex self-assembling systems.
Collapse
Affiliation(s)
- Xuanyu Zhang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Xiaobin Dai
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Lijuan Gao
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Duo Xu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Haixiao Wan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Yuming Wang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
4
|
Wang Y, Mou X, Ji Y, Pan F, Li S. Interaction of Macromolecular Chain with Phospholipid Membranes in Solutions: A Dissipative Particle Dynamics Simulation Study. Molecules 2023; 28:5790. [PMID: 37570760 PMCID: PMC10420874 DOI: 10.3390/molecules28155790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
The interaction between macromolecular chains and phospholipid membranes in aqueous solution was investigated using dissipative particle dynamics simulations. Two cases were considered, one in which the macromolecular chains were pulled along parallel to the membrane surfaces and another in which they were pulled vertical to the membrane surfaces. Several parameters, including the radius of gyration, shape factor, particle number, and order parameter, were used to investigate the interaction mechanisms during the dynamics processes by adjusting the pulling force strength of the chains. In both cases, the results showed that the macromolecular chains undergo conformational transitions from a coiled to a rod-like structure. Furthermore, the simulations revealed that the membranes can be damaged and repaired during the dynamic processes. The role of the pulling forces and the adsorption interactions between the chains and membranes differed in the parallel and perpendicular pulling cases. These findings contribute to our understanding of the interaction mechanisms between macromolecules and membranes, and they may have potential applications in biology and medicine.
Collapse
Affiliation(s)
- Yuane Wang
- Department of Physics, Wenzhou University, Wenzhou 325035, China; (Y.W.); (X.M.); (Y.J.)
| | - Xuankang Mou
- Department of Physics, Wenzhou University, Wenzhou 325035, China; (Y.W.); (X.M.); (Y.J.)
| | - Yongyun Ji
- Department of Physics, Wenzhou University, Wenzhou 325035, China; (Y.W.); (X.M.); (Y.J.)
| | - Fan Pan
- School of Data Science and Artificial Intelligence, Wenzhou University of Technology, Wenzhou 325035, China
| | - Shiben Li
- Department of Physics, Wenzhou University, Wenzhou 325035, China; (Y.W.); (X.M.); (Y.J.)
| |
Collapse
|
5
|
Xiong Y, Choudhury CK, Palkar V, Wunderlich R, Bordia RK, Kuksenok O. Mesoscale Modeling of Phase Separation Controlled by Hydrosilylation in Polyhydromethylsiloxane (PHMS)-Containing Blends. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3117. [PMID: 36144904 PMCID: PMC9502167 DOI: 10.3390/nano12183117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Controlling morphology of polysiloxane blends crosslinked by the hydrosilylation reaction followed by pyrolysis constitutes a robust strategy to fabricate polymer-derived ceramics (PDCs) for a number of applications, from water purification to hydrogen storage. Herein, we introduce a dissipative particle dynamics (DPD) approach that captures the phase separation in binary and ternary polymer blends undergoing hydrosilylation. Linear polyhydromethylsiloxane (PHMS) chains are chosen as preceramic precursors and linear vinyl-terminated polydimethylsiloxane (v-PDMS) chains constitute the reactive sacrificial component. Hydrosilylation of carbon-carbon unsaturated double bonds results in the formation of carbon-silicon bonds and is widely utilized in the synthesis of organosilicons. We characterize the dynamics of binary PHMS/v-PDMS blends undergoing hydrosilylation and ternary blends in which a fraction of the reactive sacrificial component (v-PDMS) is replaced with the non-reactive sacrificial component (methyl-terminated PDMS (m-PDMS), polyacrylonitrile (PAN), or poly(methyl methacrylate) (PMMA)). Our results clearly demonstrate that the morphology of the sacrificial domains in the nanostructured polymer network formed can be tailored by tunning the composition, chemical nature, and the degree of polymerization of the sacrificial component. We also show that the addition of a non-reactive sacrificial component introduces facile means to control the self-assembly and morphology of these nanostructured materials by varying the fraction, degree of polymerization, or the chemical nature of this component.
Collapse
Affiliation(s)
- Yao Xiong
- Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA
| | - Chandan K. Choudhury
- Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA
- Prescience Insilico Pvt. Ltd., Bengaluru 560037, Karnataka, India
| | - Vaibhav Palkar
- Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA
| | - Raleigh Wunderlich
- Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA
- Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Rajendra K. Bordia
- Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA
| | - Olga Kuksenok
- Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
6
|
Liu Z, Lan Y, Jia J, Geng Y, Dai X, Yan L, Hu T, Chen J, Matyjaszewski K, Ye G. Multi-scale computer-aided design and photo-controlled macromolecular synthesis boosting uranium harvesting from seawater. Nat Commun 2022; 13:3918. [PMID: 35798729 PMCID: PMC9262957 DOI: 10.1038/s41467-022-31360-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 06/15/2022] [Indexed: 11/09/2022] Open
Abstract
By integrating multi-scale computational simulation with photo-regulated macromolecular synthesis, this study presents a new paradigm for smart design while customizing polymeric adsorbents for uranium harvesting from seawater. A dissipative particle dynamics (DPD) approach, combined with a molecular dynamics (MD) study, is performed to simulate the conformational dynamics and adsorption process of a model uranium grabber, i.e., PAOm-b-PPEGMAn, suggesting that the maximum adsorption capacity with atomic economy can be achieved with a preferred block ratio of 0.18. The designed polymers are synthesized using the PET-RAFT polymerization in a microfluidic platform, exhibiting a record high adsorption capacity of uranium (11.4 ± 1.2 mg/g) in real seawater within 28 days. This study offers an integrated perspective to quantitatively assess adsorption phenomena of polymers, bridging metal-ligand interactions at the molecular level with their spatial conformations at the mesoscopic level. The established protocol is generally adaptable for target-oriented development of more advanced polymers for broadened applications.
Collapse
Affiliation(s)
- Zeyu Liu
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, People's Republic of China
| | - Youshi Lan
- China Institute of Atomic Energy, Department of Radiochemistry, 102413, Beijing, People's Republic of China
| | - Jianfeng Jia
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, People's Republic of China
| | - Yiyun Geng
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, People's Republic of China
| | - Xiaobin Dai
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, People's Republic of China
| | - Litang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, People's Republic of China
| | - Tongyang Hu
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, People's Republic of China
| | - Jing Chen
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, People's Republic of China
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA.
| | - Gang Ye
- Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, People's Republic of China.
| |
Collapse
|
7
|
Wu F, Lin J, Wang L, Lin S. Polymer Vesicles in a Nanochannel under Flow Fields: A DPD Simulation Study. MACROMOL THEOR SIMUL 2022. [DOI: 10.1002/mats.202200027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Fangsheng Wu
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Shaoliang Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
8
|
Zakeri R, Lee ES. Simulation of nano elastic polymer chain displacement under pressure gradient/electroosmotic flow with the target of less dispersion of transition. Sci Rep 2021; 11:19610. [PMID: 34608229 PMCID: PMC8490360 DOI: 10.1038/s41598-021-99093-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/20/2021] [Indexed: 11/23/2022] Open
Abstract
Since non-scattering transfer of polymer chain in nanochannel is one of the important issue in biology, in this research, the behavior study of a long polymer chain in the nanofluid in two modes of free motion and restricted motion (fixed two ends) under two different forces including constant force (pressure gradient (PG)) and variable force (electroosmotic force (EOF)) has been investigated using dissipative particle dynamics (DPD) method. Our aim is that displacement of polymer chain carries out with less dispersion. Initially, without the presence of polymer, the results have been validated in a nanochannel by analytical results for both cases (PG, EOF) with an error of less than 10%. Then, assuming 50 beads of polymer chain, the polymer chain motion in free motion and fixed two ends modes has been examined by different spring coefficients between beads and different forces including PG (0.01 DPD unite) and EOF (zeta potential = − 25 mV, electric field = 250 V/mm, kh parameter = 8). The results show that in free polymer motion-PG mode, by increasing 1.6 times of spring coefficient of the polymer, a 40% reduction in transition of polymer is achieved, which high dispersion of polymer chain is resulted for this mode. In the EOF, the spring coefficient has a slight effect on transferring of polymer and also, EOF moves the polymer chain with extremely low polymer chain scattering. Also, for fixed two ends-PG mode, a 36% reduction in displacement is achieved and in the same way, in EOF almost 39% declining in displacement is resulted by enhancing the spring coefficients. The results have developed to 25 and 100 beads which less dispersion of polymer chain transfer for free polymer chain-EOF is reported again for both circumstances and for restricted polymer chain state in two PG and EOF modes, less differences are reported for two cases. The results show that the EOF has the benefit of low dispersion for free polymer chain transfer, also, almost equal displacement for restricted polymer chain mode is observed for both cases.
Collapse
Affiliation(s)
- Ramin Zakeri
- Department of Mechanical Engineering, Shahrood University of Technology, Shahrood, Iran.
| | - Eon Soo Lee
- Department of Mechanical & Industrial Engineering, NJIT, Newark, NJ, USA
| |
Collapse
|
9
|
Xu Z, Gao L, Chen P, Yan LT. Diffusive transport of nanoscale objects through cell membranes: a computational perspective. SOFT MATTER 2020; 16:3869-3881. [PMID: 32236197 DOI: 10.1039/c9sm02338k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Diffusion is an essential and fundamental means of transport of substances on cell membranes, and the dynamics of biomembranes plays a crucial role in the regulation of numerous cellular processes. The understanding of the complex mechanisms and the nature of particle diffusion have a bearing on establishing guidelines for the design of efficient transport materials and unique therapeutic approaches. Herein, this review article highlights the most recent advances in investigating diffusion dynamics of nanoscale objects on biological membranes, focusing on the approaches of tailored computer simulations and theoretical analysis. Due to the presence of the complicated and heterogeneous environment on native cell membranes, the diffusive transport behaviors of nanoparticles exhibit unique and variable characteristics. The general aspects and basic theories of normal diffusion and anomalous diffusion have been introduced. In addition, the influence of a series of external and internal factors on the diffusion behaviors is discussed, including particle size, membrane curvature, particle-membrane interactions or particle-inclusion, and the crowding degree of membranes. Finally, we seek to identify open problems in the existing experimental, simulation, and theoretical research studies, and to propose challenges for future development.
Collapse
Affiliation(s)
- Ziyang Xu
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China.
| | - Lijuan Gao
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China.
| | - Pengyu Chen
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China.
| | - Li-Tang Yan
- Key Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
10
|
Investigation of Magneto Hydro-Dynamics Effects on a Polymer Chain Transfer in Micro-Channel Using Dissipative Particle Dynamics Method. Symmetry (Basel) 2020. [DOI: 10.3390/sym12030397] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this paper, the effect of Magneto Hydro-Dynamics (MHD) on a polymer chain in the micro channel is studied by employing the Dissipative Particle Dynamics simulation (DPD) method. First, in a simple symmetric micro-channel, the results are evaluated and validated for different values of Hartmann (Ha) Number. The difference between the simulation and analytical solution is below 10%. Then, two types of polymer chain including short and long polymer chain are examined in the channel and the effective parameters such as Ha number, the harmony bond coefficient or spring constant (K), and the length of the polymer chain (N) are studied in the MHD flow. It is shown that by increasing harmony bond constant to 10 times with Ha = 20, the reduction of about 80% in radius of gyration squared, and half in polymer length compared to Ha = 1 would occur for both test cases. For short and long length of polymer, proper transfer of a polymer chain through MHD particles flow is observed with less perturbations (80%) and faster polymer transfer in the symmetric micro-channel.
Collapse
|
11
|
Xu Z, Zhu G, Chen P, Dai X, Yan LT. Optimal ligand-receptor binding for highly efficient capture of vesicles in nanofluidic transportation. NANOSCALE 2019; 11:22305-22315. [PMID: 31746900 DOI: 10.1039/c9nr07337j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Optimizing ligand-receptor binding is essential for exploiting advanced biomedical applications from targeting drug delivery to biosensing. A key challenge is how optimized ligand-receptor binding can be realized during the transport of ligand-modified soft materials through a nanofluidic channel. Here, by combining computer simulations and theoretical analysis, we report that the ligand-receptor binding and resulting capture probability of ligand-functionalized vesicles nonmonotonically depend on their some intrinsic properties, e.g., chain stiffness and vesicle rigidity, during their transport through a nanochannel with imposed Poiseuille flow. Particularly, we find that the systems with semiflexible ligand and receptor chains possess the optimal ligand-receptor binding and capture probability. An analytical model of the blob theory is developed to capture the simulation results quantitatively, leading to a mechanistic interpretation of the optimal vesicle capture based on the conformational-entropy effect. Examination of the detailed dynamics reveals the active rearrangement of ligand-receptor binding during the transport process. Furthermore, the hairy vesicle with moderate rigidity is found to display an enhanced capture probability superior to that of both its soft and hard counterparts, which is rationalized by the faster and more periodic tumbling motion of the semi-rigid vesicle. Our findings highlight that precise control of the intrinsic properties of ligands and receptors as well as the vesicle rigidity can be a versatile strategy in optimizing the ligand-receptor binding in nanofluidic transportation towards advantageous biomedical applications.
Collapse
Affiliation(s)
- Ziyang Xu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China.
| | | | | | | | | |
Collapse
|
12
|
Li S, Yan Z, Luo Z, Xu Y, Huang F, Hu G, Zhang X, Yue T. Directional and Rotational Motions of Nanoparticles on Plasma Membranes as Local Probes of Surface Tension Propagation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5333-5341. [PMID: 30908057 DOI: 10.1021/acs.langmuir.9b00225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mechanical heterogeneity is ubiquitous in plasma membranes and of essential importance to cellular functioning. As a feedback of mechanical stimuli, local surface tension can be readily changed and immediately propagated through the membrane, influencing structures and dynamics of both inclusions and membrane-associated proteins. Using the nonequilibrium coarse-grained membrane simulation, here we investigate the inter-related processes of tension propagation, lipid diffusion, and transport of nanoparticles (NPs) adhering on the membrane of constant tension gradient, mimicking that of migrating cells or cells under prolonged stimulation. Our results demonstrate that the lipid bilayer membrane can by itself propagate surface tension in defined rates and pathways to reach a dynamic equilibrium state where surface tension is linearly distributed along the gradient maintained by the directional flow-like motion of lipids. Such lipid flow exerts shearing forces to transport adhesive NPs toward the region of a larger surface tension. Under certain conditions, the shearing force can generate nonzero torques driving the rotational motion of NPs, with the direction of the NP rotation determined by the NP-membrane interaction state as functions of both NP property and local membrane surface tension. Such features endow NPs with promising applications ranging from biosensing to targeted drug delivery.
Collapse
Affiliation(s)
| | | | | | | | | | - Guoqing Hu
- State Key Laboratory of Nonlinear Mechanics (LNM) , Institute of Mechanics, Chinese Academy of Science , Beijing 100190 , China
- School of Engineering Science , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xianren Zhang
- State Key Laboratory of Organic-Inorganic Composites , Beijing University of Chemical Technology , Beijing 100029 , China
| | | |
Collapse
|