1
|
Sun Y, Jia C, Zhang S, Zhang Q, Chen J, Liu X. Accelerated molecular dynamics study of the interaction mechanism between small molecule inhibitors and phosphoglycerate mutase 1. Phys Chem Chem Phys 2024; 26:26784-26798. [PMID: 39403732 DOI: 10.1039/d4cp03309d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
In 2020, cancer-related deaths reached 9.96 million globally, of which China accounted for 3 million, ranking first in the world. Phosphoglycerate mutase 1 (PGAM1) is a key metabolic enzyme in glycolysis, catalysing the conversion of 3-phosphoglycerate to 2-phosphoglycerate. Based on the excellent anticancer activity of PGMI-004A and HKB99, new small molecules with an anthraquinone core were synthesised to inhibit tumour growth. Developing small molecules with an anthraquinone core targeting PGAM1 may be an effective strategy for treating cancer. In this study, accelerated molecular dynamics (aMD) simulation, dynamic cross-correlation map (DCCM) calculation, principal component analysis (PCA) and free energy landscape (FEL) analysis were used to analyse conformational changes of PGAM1 caused by binding of inhibitors 8KX, 9HU and HKB. DCCM calculations and PCA showed that inhibitor binding significantly affected the kinetic behaviour of PGAM1 and conformational rearrangement of PGAM1. The binding ability and mechanism of 8KX, 9HU and HKB to PGAM1 were studied using the molecular mechanics generalised Born surface area (MM-GBSA) method. The results showed that compared with 8KX, the binding ability of 9HU and HKB to PGAM1 was enhanced by sulphonamide reversal and aminocarboxyl trifluoromethyl substitution. There were several hydrophobic interactions between inhibitors and PGAM1, providing significant contributions for inhibitor binding. Calculation of residue-based free energy decomposition revealed that F22, R90, Y92, L95, V112, W115, R116, V121, P123, P124, R191 and M206 were key residues of the PGAM1-inhibitor interaction and could be used as effective targets for designing drugs that inhibit the activity of PGAM1.
Collapse
Affiliation(s)
- Yanqi Sun
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China.
| | - Chaoyue Jia
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China.
| | - Shaolong Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China.
| | - Qinggang Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China.
| | - Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan, 250357, China.
| | - Xinguo Liu
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China.
| |
Collapse
|
2
|
Wang X, Huai Z, Sun Z. Host Dynamics under General-Purpose Force Fields. Molecules 2023; 28:5940. [PMID: 37630194 PMCID: PMC10458655 DOI: 10.3390/molecules28165940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Macrocyclic hosts as prototypical receptors to gaseous and drug-like guests are crucial components in pharmaceutical research. The external guests are often coordinated at the center of these macromolecular containers. The formation of host-guest coordination is accompanied by the broken of host-water and host-ion interactions and sometimes also involves some conformational rearrangements of the host. A balanced description of various components of interacting terms is indispensable. However, up to now, the modeling community still lacks a general yet detailed understanding of commonly employed general-purpose force fields and the host dynamics produced by these popular selections. To fill this critical gap, in this paper, we profile the energetics and dynamics of four types of popular macrocycles, including cucurbiturils, pillararenes, cyclodextrins, and octa acids. The presented investigations of force field definitions, refitting, and evaluations are unprecedently detailed. Based on the valuable observations and insightful explanations, we finally summarize some general guidelines on force field parametrization and selection in host-guest modeling.
Collapse
Affiliation(s)
- Xiaohui Wang
- Beijing Leto Laboratories Co., Ltd., Beijing 100083, China
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhe Huai
- XtalPi—AI Research Center, 7F, Tower A, Dongsheng Building, No. 8, Zhongguancun East Road, Beijing 100083, China
| | - Zhaoxi Sun
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Schöller A, Woodcock HL, Boresch S. Exploring Routes to Enhance the Calculation of Free Energy Differences via Non-Equilibrium Work SQM/MM Switching Simulations Using Hybrid Charge Intermediates between MM and SQM Levels of Theory or Non-Linear Switching Schemes. Molecules 2023; 28:4006. [PMID: 37241747 PMCID: PMC10222338 DOI: 10.3390/molecules28104006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Non-equilibrium work switching simulations and Jarzynski's equation are a reliable method for computing free energy differences, ΔAlow→high, between two levels of theory, such as a pure molecular mechanical (MM) and a quantum mechanical/molecular mechanical (QM/MM) description of a system of interest. Despite the inherent parallelism, the computational cost of this approach can quickly become very high. This is particularly true for systems where the core region, the part of the system to be described at different levels of theory, is embedded in an environment such as explicit solvent water. We find that even for relatively simple solute-water systems, switching lengths of at least 5 ps are necessary to compute ΔAlow→high reliably. In this study, we investigate two approaches towards an affordable protocol, with an emphasis on keeping the switching length well below 5 ps. Inserting a hybrid charge intermediate state with modified partial charges, which resembles the charge distribution of the desired high level, makes it possible to obtain reliable calculations with 2 ps switches. Attempts using step-wise linear switching paths, on the other hand, did not lead to improvement, i.e., a faster convergence for all systems. To understand these findings, we analyzed the solutes' properties as a function of the partial charges used and the number of water molecules in direct contact with the solute, and studied the time needed for water molecules to reorient themselves upon a change in the solute's charge distribution.
Collapse
Affiliation(s)
- Andreas Schöller
- Faculty of Chemistry, Department of Computational Biological Chemistry, University of Vienna, Währingerstr. 17, A-1090 Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Währingerstr. 42, A-1090 Vienna, Austria
| | - H. Lee Woodcock
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., CHE205, Tampa, FL 33620-5250, USA;
| | - Stefan Boresch
- Faculty of Chemistry, Department of Computational Biological Chemistry, University of Vienna, Währingerstr. 17, A-1090 Vienna, Austria
| |
Collapse
|
4
|
Molecular modelling of ionic liquids: Perfluorinated anionic species with enlarged halogen substitutions. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
5
|
Sun Z, He Q, Gong Z, Kalhor P, Huai Z, Liu Z. A General Picture of Cucurbit[8]uril Host–Guest Binding: Recalibrating Bonded Interactions. Molecules 2023; 28:molecules28073124. [PMID: 37049887 PMCID: PMC10095826 DOI: 10.3390/molecules28073124] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/15/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Atomic-level understanding of the dynamic feature of host–guest interactions remains a central challenge in supramolecular chemistry. The remarkable guest binding behavior of the Cucurbiturils family of supramolecular containers makes them promising drug carriers. Among Cucurbit[n]urils, Cucurbit[8]uril (CB8) has an intermediate portal size and cavity volume. It can exploit almost all host–guest recognition motifs formed by this host family. In our previous work, an extensive computational investigation of the binding of seven commonly abused and structurally diverse drugs to the CB8 host was performed, and a general dynamic binding picture of CB8-guest interactions was obtained. Further, two widely used fixed-charge models for drug-like molecules were investigated and compared in great detail, aiming at providing guidelines in choosing an appropriate charge scheme in host-guest modelling. Iterative refitting of atomic charges leads to improved binding thermodynamics and the best root-mean-squared deviation from the experimental reference is 2.6 kcal/mol. In this work, we focus on a thorough evaluation of the remaining parts of classical force fields, i.e., the bonded interactions. The widely used general Amber force fields are assessed and refitted with generalized force-matching to improve the intra-molecular conformational preference, and thus the description of inter-molecular host–guest interactions. The interaction pattern and binding thermodynamics show a significant dependence on the modelling parameters. The refitted system-specific parameter set improves the consistency of the modelling results and the experimental reference significantly. Finally, combining the previous charge-scheme comparison and the current force-field refitting, we provide general guidelines for the theoretical modelling of host–guest binding.
Collapse
|
6
|
Sun Z, Zheng L, Zhang ZY, Cong Y, Wang M, Wang X, Yang J, Liu Z, Huai Z. Molecular Modelling of Ionic Liquids: Situations When Charge Scaling Seems Insufficient. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020800. [PMID: 36677859 PMCID: PMC9865557 DOI: 10.3390/molecules28020800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Charge scaling as an effective solution to the experiment-computation disagreement in molecular modelling of ionic liquids (ILs) could bring the computational results close to the experimental reference for various thermodynamic properties. According to the large-scale benchmark calculations of mass density, solvation, and water-ILs transfer-free energies in our series of papers, the charge-scaling factor of 0.8 serves as a near-optimal option generally applicable to most ILs, although a system-dependent parameter adjustment could be attempted for further improved performance. However, there are situations in which such a charge-scaling treatment would fail. Namely, charge scaling cannot really affect the simulation outcome, or minimally perturbs the results that are still far from the experimental value. In such situations, the vdW radius as an additional adjustable parameter is commonly tuned to minimize the experiment-calculation deviation. In the current work, considering two ILs from the quinuclidinium family, we investigate the impacts of this vdW-scaling treatment on the mass density and the solvation/partition thermodynamics in a fashion similar to our previous charge-scaling works, i.e., scanning the vdW-scaling factor and computing physical properties under these parameter sets. It is observed that the mass density exhibits a linear response to the vdW-scaling factor with slopes close to -1.8 g/mL. By further investigating a set of physiochemically relevant temperatures between 288 K and 348 K, we confirm the robustness of the vdW-scaling treatment in the estimation of bulk properties. The best vdW-scaling parameter for mass density would worsen the computation of solvation/partition thermodynamics, and a marginal decrease in the vdW-scaling factor is considered as an intermediate option balancing the reproductions of bulk properties and solvation thermodynamics. These observations could be understood in a way similar to the charge-scaling situation. i.e., overfitting some properties (e.g., mass density) would degrade the accuracy of the other properties (e.g., solvation free energies). Following this principle, the general guideline for applying this vdW-tuning protocol is by using values between the density-derived choice and the solvation/partition-derived solution. The charge and current vdW scaling treatments cover commonly encountered ILs, completing the protocol for accurate modelling of ILs with fixed-charge force fields.
Collapse
Affiliation(s)
- Zhaoxi Sun
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Correspondence: (Z.S.); (X.W.); (Z.H.)
| | - Lei Zheng
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Zuo-Yuan Zhang
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yalong Cong
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Mao Wang
- NCS Testing Technology Co., Ltd., No. 13, Gaoliangqiao Xiejie, Beijing 100081, China
| | - Xiaohui Wang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing Leto Laboratories Co., Ltd., Beijing 100083, China
- Correspondence: (Z.S.); (X.W.); (Z.H.)
| | - Jingjing Yang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhirong Liu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhe Huai
- XtalPi-AI Research Center, 7F, Tower A, Dongsheng Building, No.8, Zhongguancun East Road, Beijing 100083, China
- Correspondence: (Z.S.); (X.W.); (Z.H.)
| |
Collapse
|
7
|
Molecular modelling of ionic liquids: Physical properties of species with extremely long aliphatic chains from a near-optimal regime. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Liu X, Zheng L, Qin C, Zhang JZH, Sun Z. Comprehensive evaluation of end-point free energy techniques in carboxylated-pillar[6]arene host-guest binding: I. Standard procedure. J Comput Aided Mol Des 2022; 36:735-752. [PMID: 36136209 DOI: 10.1007/s10822-022-00475-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
Despite the massive application of end-point free energy methods in protein-ligand and protein-protein interactions, computational understandings about their performance in relatively simple and prototypical host-guest systems are limited. In this work, we present a comprehensive benchmark calculation with standard end-point free energy techniques in a recent host-guest dataset containing 13 host-guest pairs involving the carboxylated-pillar[6]arene host. We first assess the charge schemes for solutes by comparing the charge-produced electrostatics with many ab initio references, in order to obtain a preliminary albeit detailed view of the charge quality. Then, we focus on four modelling details of end-point free energy calculations, including the docking procedure for the generation of initial condition, the charge scheme for host and guest molecules, the water model used in explicit-solvent sampling, and the end-point methods for free energy estimation. The binding thermodynamics obtained with different modelling schemes are compared with experimental references, and some practical guidelines on maximizing the performance of end-point methods in practical host-guest systems are summarized. Further, we compare our simulation outcome with predictions in the grand challenge and discuss further developments to improve the prediction quality of end-point free energy methods. Overall, unlike the widely acknowledged applicability in protein-ligand binding, the standard end-point calculations cannot produce useful outcomes in host-guest binding and thus are not recommended unless alterations are performed.
Collapse
Affiliation(s)
- Xiao Liu
- School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai, 201620, China.
| | - Lei Zheng
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, 200062, China
| | - Chu Qin
- School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - John Z H Zhang
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, 200062, China.,School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.,Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.,Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Zhaoxi Sun
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
9
|
Sun Z, Zheng L, Wang K, Huai Z, Liu Z. Primary vs secondary: Directionalized guest coordination in β-cyclodextrin derivatives. Carbohydr Polym 2022; 297:120050. [DOI: 10.1016/j.carbpol.2022.120050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 02/01/2023]
|
10
|
Sun Z, Wang M, He Q, Liu Z. Molecular Modeling of Ionic Liquids: Force‐Field Validation and Thermodynamic Perspective from Large‐Scale Fast‐Growth Solvation Free Energy Calculations. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202200274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zhaoxi Sun
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Mao Wang
- NCS Testing Technology Co., Ltd. No. 13, Gaoliangqiao Xiejie Beijing 100081 China
| | - Qiaole He
- AI Department of Enzymaster (Ningbo) Bio‐Engineering Co., Ltd. North Century Avenue 333 Ningbo 315100 China
| | - Zhirong Liu
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| |
Collapse
|
11
|
Sun Z, He Q. Seeding the multi-dimensional nonequilibrium pulling for Hamiltonian variation: indirect nonequilibrium free energy simulations at QM levels. Phys Chem Chem Phys 2022; 24:8800-8819. [PMID: 35352744 DOI: 10.1039/d2cp00355d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The combination of free energy simulations in the alchemical and configurational spaces provides a feasible route to access the thermodynamic profiles under a computationally demanding target Hamiltonian. Normally, due to the significant differences between the computational cost of ab initio quantum mechanics (QM) calculations and those of semi-empirical quantum mechanics (SQM) and molecular mechanics (MM), this indirect method could be used to obtain the QM thermodynamics by combining the SQM or MM results and the SQM-to-QM or MM-to-QM corrections. In our previous work, a multi-dimensional nonequilibrium pulling framework for Hamiltonian variations was introduced based on bidirectional pulling and bidirectional reweighting. The method performs nonequilibrium free energy simulations in the configurational space to obtain the thermodynamic profile along the conformational change pathway under a selected computationally efficient Hamiltonian, and uses the nonequilibrium alchemical method to correct or perturb the thermodynamic profile to that under the target Hamiltonian. The BAR-based method is designed to achieve the best generality and transferability and thus leads to modest (∼20 fold) speedup. In this work, we explore the possibility of further accelerating the nonequilibrium free energy simulation by employing unidirectional pulling and using the selection criterion to obtain the initial configurations used to initiate nonequilibrium trajectories following the idea of adaptive steered molecular dynamics (ASMD). A single initial condition is used to seed the whole multi-dimensional nonequilibrium free energy simulation and the sampling is performed fully in the nonequilibrium ensemble. Introducing very short ps-length equilibrium sampling to grab more initial seeds could also be helpful. The ASMD scheme estimates the free energy difference with the unidirectional exponential average (EXP), but it does not follow exactly the requirements of the EXP estimator. Another deficiency of the seeding simulation is the inherently sequential or serial pulling due to the inter-segment dependency, which triggers some problems in the parallelizability of the simulation. Numerical tests are performed to grasp some insights and guidelines for using this selection-criterion-based ASMD scheme. The presented selection-criterion-based multi-dimensional ASMD scheme follows the same perturbation network of the BAR-based method, and thus could be used in various Hamiltonian-variation cases.
Collapse
Affiliation(s)
- Zhaoxi Sun
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Institute of Theoretical and Computational Chemistry, Peking University, Beijing 100871, China.
| | - Qiaole He
- AI Department of Enzymaster (Ningbo) Bio-Engineering Co., Ltd, North Century Avenue 333, 315100 Ningbo, China
| |
Collapse
|
12
|
Li M, Liu X, Zhang S, Liang S, Zhang Q, Chen J. Deciphering binding mechanism of inhibitors to SARS-COV-2 main protease through multiple replica accelerated molecular dynamics simulations and free energy landscapes. Phys Chem Chem Phys 2022; 24:22129-22143. [DOI: 10.1039/d2cp03446h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The pneumonia outbreak caused by the SARS-CoV-2 virus poses a serious threat to human health and the world economy. Development of safe and highly effective antiviral drugs is of great...
Collapse
|
13
|
Sun Z, Huai Z, He Q, Liu Z. A General Picture of Cucurbit[8]uril Host-Guest Binding. J Chem Inf Model 2021; 61:6107-6134. [PMID: 34818004 DOI: 10.1021/acs.jcim.1c01208] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Describing, understanding, and designing complex interaction networks within macromolecular systems remain challenging in modern chemical research. Host-guest systems, despite their relative simplicity in both the structural feature and interaction patterns, still pose problems in theoretical modeling. The barrel-shaped supramolecular container cucurbit[8]uril (CB8) shows promising functionalities in various areas, e.g., catalysis and molecular recognition. It can stably coordinate a series of structurally diverse guests with high affinities. In this work, we examine the binding of seven commonly abused drugs to the CB8 host, aiming at providing a general picture of CB8-guest binding. Extensive sampling of the configurational space of these host-guest systems is performed, and the binding pathway and interaction patterns of CB8-guest complexes are investigated. A thorough comparison of widely used fixed-charge models for drug-like molecules is presented. Iterative refitting of the atomic charges suggests significant conformation dependence of charge generation. The initial model generated at the original conformation could be inaccurate for new conformations explored during conformational search, and the newly fitted charge set improves the prediction-experiment correlation significantly. Our investigations of the configurational space of CB8-drug complexes suggest that the host-guest interactions are more complex than expected. Despite the structural simplicities of these molecules, the conformational fluctuations of the host and the guest molecules and orientations of functional groups lead to the existence of an ensemble of binding modes. The insights of the binding thermodynamics, performance of fixed-charge models, and binding patterns of the CB8-guest systems are useful for studying and elucidating the binding mechanism of other host-guest complexes.
Collapse
Affiliation(s)
- Zhaoxi Sun
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhe Huai
- XtalPi-AI Research Center (XARC), 9F, Tower A, Dongsheng Building, No. 8, Zhongguancun East Road, Haidian District, Beijing 100083, P.R. China
| | - Qiaole He
- AI Department of Enzymaster (Ningbo) Bio-Engineering Co., Ltd., North Century Avenue 333, Ningbo 315100, China
| | - Zhirong Liu
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
14
|
Wang X. Conformational Fluctuations in GTP-Bound K-Ras: A Metadynamics Perspective with Harmonic Linear Discriminant Analysis. J Chem Inf Model 2021; 61:5212-5222. [PMID: 34570515 DOI: 10.1021/acs.jcim.1c00844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biomacromolecules often undergo significant conformational rearrangements during function. In proteins, these motions typically consist in nontrivial, concerted rearrangement of multiple flexible regions. Mechanistic, thermodynamics, and kinetic predictions can be obtained via molecular dynamics simulations, provided that the simulation time is at least comparable to the relevant time scale of the process of interest. Because of the substantial computational cost, however, plain MD simulations often have difficulty in obtaining sufficient statistics for converged estimates, requiring the use of more-advanced techniques. Central in many enhanced sampling methods is the definition of a small set of relevant degrees of freedom (collective variables) that are able to describe the transitions between different metastable states of the system. The harmonic linear discriminant analysis (HLDA) has been shown to be useful for constructing low-dimensional collective variables in various complex systems. Here, we apply HLDA to study the free-energy landscape of a monomeric protein around its native state. More precisely, we study the K-Ras protein bound to GTP, focusing on two flexible loops and on the region associated with oncogenic mutations. We perform microsecond-long biased simulations on the wild type and on G12C, G12D, G12 V mutants, describe the resulting free-energy landscapes, and compare our predictions with previous experimental and computational studies. The fast interconversion between open and closed macroscopic states and their similar thermodynamic stabilities are observed. The mutation-induced effects include the alternations of the relative stabilities of different conformational states and the introduction of many microscopic metastable states. Together, our results demonstrate the applicability of the HLDA-based protocol for the conformational sampling of multiple flexible regions in folded proteins.
Collapse
Affiliation(s)
- Xiaohui Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|