1
|
Mottola S, Viscusi G, Tohamy HAS, El-Sakhawy M, Gorrasi G, De Marco I. Application of electrospun N-doped carbon dots loaded cellulose acetate membranes as cationic dyes adsorbent. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122714. [PMID: 39383756 DOI: 10.1016/j.jenvman.2024.122714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/30/2024] [Accepted: 09/28/2024] [Indexed: 10/11/2024]
Abstract
This work aims to apply carbon quantum dots (CQDs) from agriculture cellulosic waste (agro wastes), produced via an economically and eco-friendly single-step method, to be used into cellulose acetate composite microfibrous membranes as an innovative solution specifically designed to adsorb methylene blue (MB) and other cationic dyes that are present in various water effluents. Batch adsorption tests were conducted, with variations in contact time (1-24 h), initial MB concentration (25-300 ppm), and adsorbent doses (1-20 g/L). The maximum adsorption capacity of the membrane was 198 mg/g with an initial concentration of 300 ppm at 298 K. Thermodynamic parameters showed that the process is endothermic. Equilibrium experimental data for MB adsorption onto electrospun adsorbent were fitted using different isothermal models, with the Freundlich model showing the best fit. The pseudo-second-order model accurately described the kinetic data with high reliability (R2 > 0.99), and the calculated adsorption capacity was very close to the experimental data. N-CQDs loaded membranes were also tested for removing methyl violet and rhodamine B, demonstrating remarkably high dye removal efficiency. The underlying adsorption mechanism was also reported. Finally, it is worth mentioning that composite adsorbents can be efficiently applied to actual industrial cases because of the possibility of reusing them, opening the route to the fabrication of novel and highly performant adsorbents. These findings underscore N-CQDs' effectiveness in enhancing pollutant removal efficiency from wastewater, highlighting their environmental benefits and promoting a more sustainable approach to water treatment. Therefore, the prepared adsorbent, showing excellent adsorption performance, places them among adsorbents for practical applications in wastewater purification.
Collapse
Affiliation(s)
- Stefania Mottola
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy; Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Gianluca Viscusi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy; Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Hebat-Allah S Tohamy
- Cellulose & Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza P.O. 12622, Egypt
| | - Mohamed El-Sakhawy
- Cellulose & Paper Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza P.O. 12622, Egypt
| | - Giuliana Gorrasi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy; Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Iolanda De Marco
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy; Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy.
| |
Collapse
|
2
|
Taheri M. Advances in Nanohybrid Membranes for Dye Reduction: A Comprehensive Review. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2300052. [PMID: 38223886 PMCID: PMC10784202 DOI: 10.1002/gch2.202300052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/18/2023] [Indexed: 01/16/2024]
Abstract
Separating valuable materials such as dyes from wastewater using membranes and returning them to the production line is a desirable environmental and economical procedure. However, sometimes, besides filtration, adsorption, and separation processes, pollutant destruction also can be suitable using photocatalytic membranes. The art of producing nanohybrid materials in contrast with nanocomposites encompasses nanomaterial synthesis as a new product with different properties from raw materials for nanohybrids versus the composition of nanomaterials for nanocomposites. According to the findings of this research, confirming proper synthesis of nanohybrid is one challenge that can be overcome by different analyses, other researchers' reports, and the theoretical assessment of physical or chemical reactions. The application of organic-inorganic nanomaterials and frameworks is another challenge that is discussed in the present work. According to the findings, Nanohybrid Membranes (NHMs) can achieve 100% decolorization, but cannot eliminate salts and dyes, although the removal efficiency is notable for some salts, especially divalent salts. Hydrophilicity, antifouling properties, flux, pressure, costs, usage frequency, and mechanical, chemical, and thermal stabilities of NHMs should be considered.
Collapse
Affiliation(s)
- Mahsa Taheri
- Civil and Environmental Engineering DepartmentAmirkabir University of Technology (AUT)Hafez Ave.Tehran15875‐4413Iran
| |
Collapse
|
3
|
Sasikumar R, Sharma P, Jaiswal AK. Alginate and β-lactoglobulin matrix as wall materials for encapsulation of polyphenols to improve efficiency and stability. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2022. [DOI: 10.1515/ijfe-2022-0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract
The present study aimed at developing novel encapsulate materials of calcium-alginate and β-lactoglobulin complex for polyphenols using the jet-flow nozzle vibration method. Encapsulated microbeads were characterized using SEM, FTIR, DSC, and MSI. The encapsulation efficiency of the microbeads varied depending upon the coating material in the range of 74.17–84.87%. Calcium-alginate-β-lactoglobulin microbeads (CABM) exhibited a smooth surface and uniform shape with an average particle size of 1053.73 nm. CABM also showed better thermal and storage stabilities as compared to calcium alginate microbeads. The CABM resulted in excellent target release of polyphenols (84%) in the intestine, which was more than 3-fold the bio-accessibility offered by free polyphenol powder. Further study on individual phenolic acids after simulated in-vitro digestion (SIVD), photo-oxidative and osmotic stress revealed that CABM significantly retained a higher amount of polyphenols and exhibited improved antioxidant capacity after SIVD environment, and may have high industrial application for nutraceutical production.
Collapse
Affiliation(s)
- Raju Sasikumar
- Department of Agribusiness Management and Food Technology , North-Eastern Hill University (NEHU), Tura Campus , Chasingre-794002 , Tura , WGH , Meghalaya , India
| | - Paras Sharma
- Department of Food Technology, Mizoram University , Aizawl-796004 , Mizoram , India
| | - Amit K. Jaiswal
- School of Food Science and Environmental Health , Technological University Dublin–City Campus , Central Quad, Grangegorman , Dublin D07 ADY7 , Ireland
| |
Collapse
|
4
|
Ma X, Men J, Gao T, Liu W, Wang X, Lou T. Electrospinning nanofibrous sodium alginate/β‐cyclodextrin composite membranes for methylene blue adsorption. STARCH-STARKE 2022. [DOI: 10.1002/star.202200068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xiaolong Ma
- Department of Chemical Engineering Qingdao University Qingdao 266071 China
| | - Jinxin Men
- Department of Chemical Engineering Qingdao University Qingdao 266071 China
| | - Tong Gao
- Department of Chemical Engineering Qingdao University Qingdao 266071 China
| | - Wenxia Liu
- Department of Chemical Engineering Qingdao University Qingdao 266071 China
| | - Xuejun Wang
- Department of Chemical Engineering Qingdao University Qingdao 266071 China
| | - Tao Lou
- Department of Chemical Engineering Qingdao University Qingdao 266071 China
| |
Collapse
|
5
|
Schoeller J, Itel F, Wuertz-Kozak K, Fortunato G, Rossi RM. pH-Responsive Electrospun Nanofibers and Their Applications. POLYM REV 2021. [DOI: 10.1080/15583724.2021.1939372] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jean Schoeller
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St.Gallen, Switzerland
- Department of Health Science and Technology, ETH Zürich, Zürich, Switzerland
| | - Fabian Itel
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St.Gallen, Switzerland
| | - Karin Wuertz-Kozak
- Department of Health Science and Technology, ETH Zürich, Zürich, Switzerland
- Department of Biomedical Engineering, Rochester Institute of Technology (RIT), Rochester, New York, USA
| | - Giuseppino Fortunato
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St.Gallen, Switzerland
| | - René M. Rossi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St.Gallen, Switzerland
- Department of Health Science and Technology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
6
|
Thamer BM, Aldalbahi A, Moydeen A M, Rahaman M, El-Newehy MH. Modified Electrospun Polymeric Nanofibers and Their Nanocomposites as Nanoadsorbents for Toxic Dye Removal from Contaminated Waters: A Review. Polymers (Basel) 2020; 13:E20. [PMID: 33374681 PMCID: PMC7793529 DOI: 10.3390/polym13010020] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 11/30/2022] Open
Abstract
Electrospun polymer nanofibers (EPNFs) as one-dimensional nanostructures are characterized by a high surface area-to-volume ratio, high porosity, large number of adsorption sites and high adsorption capacity. These properties nominate them to be used as an effective adsorbent for the removal of water pollutants such as heavy metals, dyes and other pollutants. Organic dyes are considered one of the most hazardous water pollutants due to their toxic effects even at very low concentrations. To overcome this problem, the adsorption technique has proven its high effectiveness towards the removal of such pollutants from aqueous systems. The use of the adsorption technique depends mainly on the properties, efficacy, cost and reusability of the adsorbent. So, the use of EPNFs as adsorbents for dye removal has received increasing attention due to their unique properties, adsorption efficiency and reusability. Moreover, the adsorption efficiency and stability of EPNFs in aqueous media can be improved via their surface modification. This review provides a relevant literature survey over the last two decades on the fabrication and surface modification of EPNFs by an electrospinning technique and their use of adsorbents for the removal of various toxic dyes from contaminated water. Factors affecting the adsorption capacity of EPNFs, the best adsorption conditions and adsorption mechanism of dyes onto the surface of various types of modified EPNFs are also discussed. Finally, the adsorption capacity, isotherm and kinetic models for describing the adsorption of dyes using modified and composite EPNFs are discussed.
Collapse
Affiliation(s)
| | - Ali Aldalbahi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (B.M.T.); (M.M.A.); (M.R.); (M.H.E.-N.)
| | | | | | | |
Collapse
|
7
|
Zhou M, Yang T, Hu W, He X, Xie J, Wang P, Jia K, Liu X. Scalable Fabrication of Metallopolymeric Superstructures for Highly Efficient Removal of Methylene Blue. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1001. [PMID: 31336751 PMCID: PMC6669677 DOI: 10.3390/nano9071001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 01/07/2023]
Abstract
Metallopolymeric superstructures (MPS) are hybrid functional materials that find wide applications in environmental, energy, catalytic and biomedical-related scenarios, while their fabrication usually suffers from the complicated polymerization between monomeric ligands and metal ions. In this work, we have developed a facile one-step protocol to fabricate metallopolymeric superstructures with different morphology including nanospheres, nanocubes, nanorods, and nanostars for environmental remediation application. Specifically, we have firstly synthesized the amphiphilic block copolymers (BCP) bearing hydrophobic aromatic backbone and hydrophilic pendent carboxylic/sulfonic groups, which have been subsequently transformed into MPS via the metal ions mediated self-assembly in mixed solution of dimethylformamide (DMF) and H2O. Based on SEM, FTIR, XRD and XPS characterization, we have revealed that the fine morphology and condensed structures of MPS can be modulated via the metal ions and BCP concentration, and the obtained MPS can be employed as efficient adsorbents for the removal of methylene blue with maximum adsorption capacity approaching 936.13 mg/g.
Collapse
Affiliation(s)
- Meirong Zhou
- Research Branch of Advanced Functional Materials, School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Tianyu Yang
- Research Branch of Advanced Functional Materials, School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Weibin Hu
- Research Branch of Advanced Functional Materials, School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xiaohong He
- Research Branch of Advanced Functional Materials, School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Junni Xie
- Research Branch of Advanced Functional Materials, School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Pan Wang
- Research Branch of Advanced Functional Materials, School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Kun Jia
- Research Branch of Advanced Functional Materials, School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Xiaobo Liu
- Research Branch of Advanced Functional Materials, School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
8
|
Rezaei B, Shoushtari AM, Rabiee M, Uzun L, Turner APF, Cheung Mak W. Multifactorial modeling and optimization of solution and electrospinning parameters to generate superfine polystyrene nanofibers. ADVANCES IN POLYMER TECHNOLOGY 2018. [DOI: 10.1002/adv.21947] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Babak Rezaei
- Nanotechnology Institute; Amirkabir University of Technology; Tehran Iran
| | | | - Mohammad Rabiee
- Biomaterials Group; Biomedical Engineering Department; Amirkabir University of Technology; Tehran Iran
| | - Lokman Uzun
- Department of Physics, Chemistry and Biology (IFM); Biosensors & Bioelectronics Centre; Linköping University; Linköping Sweden
| | - Anthony P. F. Turner
- Department of Physics, Chemistry and Biology (IFM); Biosensors & Bioelectronics Centre; Linköping University; Linköping Sweden
| | - Wing Cheung Mak
- Department of Physics, Chemistry and Biology (IFM); Biosensors & Bioelectronics Centre; Linköping University; Linköping Sweden
| |
Collapse
|