2
|
Lakshmy KS, Lal D, Nair A, Babu A, Das H, Govind N, Dmitrenko M, Kuzminova A, Korniak A, Penkova A, Tharayil A, Thomas S. Pervaporation as a Successful Tool in the Treatment of Industrial Liquid Mixtures. Polymers (Basel) 2022; 14:polym14081604. [PMID: 35458354 PMCID: PMC9029804 DOI: 10.3390/polym14081604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/02/2022] [Accepted: 04/08/2022] [Indexed: 02/01/2023] Open
Abstract
Pervaporation is one of the most active topics in membrane research, and it has time and again proven to be an essential component for chemical separation. It has been employed in the removal of impurities from raw materials, separation of products and by-products after reaction, and separation of pollutants from water. Given the global problem of water pollution, this approach is efficient in removing hazardous substances from water bodies. Conventional processes are based on thermodynamic equilibria involving a phase transition such as distillation and liquid-liquid extraction. These techniques have a relatively low efficacy and nowadays they are not recommended because it is not sustainable in terms of energy consumption and/or waste generation. Pervaporation emerged in the 1980s and is now becoming a popular membrane separation technology because of its intrinsic features such as low energy requirements, cheap separation costs, and good quality product output. The focus of this review is on current developments in pervaporation, mass transport in membranes, material selection, fabrication and characterization techniques, and applications of various membranes in the separation of chemicals from water.
Collapse
Affiliation(s)
- Kadavil Subhash Lakshmy
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Devika Lal
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Anandu Nair
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Allan Babu
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Haritha Das
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Neethu Govind
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| | - Mariia Dmitrenko
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.K.); (A.K.)
| | - Anna Kuzminova
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.K.); (A.K.)
| | - Aleksandra Korniak
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.K.); (A.K.)
| | - Anastasia Penkova
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (M.D.); (A.K.); (A.K.)
- Correspondence: (A.P.); (A.T.)
| | - Abhimanyu Tharayil
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
- Correspondence: (A.P.); (A.T.)
| | - Sabu Thomas
- School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, Kerala, India; (K.S.L.); (D.L.); (A.N.); (A.B.); (H.D.); (N.G.); (S.T.)
| |
Collapse
|
3
|
Wolanin J, Giraud J, Payre C, Benoit M, Antonelli C, Quemener D, Tahiri I, Vandamme M, Zanotti JM, Plazanet M. Oedometric-like setup for the study of water transport in porous media by quasi-elastic neutron scattering. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:024106. [PMID: 33648089 DOI: 10.1063/5.0030297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
In comparison to condensed matter, soft matter is subject to several interplaying effects (surface heterogeneities and swelling effect) that influence transport at the nanoscale. In consequence, transport in soft and compliant materials is coupled to adsorption and deformation phenomena. The permeance of the material, i.e., the response of the material to a pressure gradient, is dependent on the temperature, the chemical potential, and the external constraint. Therefore, the characterization of water dynamics in soft porous materials, which we address here, becomes much more complex. In this paper, the development of an original setup for scattering measurements of a radiation in the transmitted geometry in oedometric conditions is described. A specially designed cell enables a uniaxial compression of the investigated material, PIM-1 (Polymers of Intrinsic Microporosity), in the direction perpendicular to the applied hydraulic pressure gradient (up to 120 bars). High pressure boosting of the circulating water is performed with a commercially available high-pressure pump Karcher. This particular setup is adapted to the quasi-elastic neutron scattering technique, which enables us to probe diffusion and relaxation phenomena with characteristic times of 10-9 s-10-12 s. Moreover, it can easily be modified for other scattering techniques.
Collapse
Affiliation(s)
- Julie Wolanin
- University Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | - Jérôme Giraud
- University Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | - Claude Payre
- Institut Laue-Langevin, 71 Av. des Martyrs, 38042 Grenoble, France
| | - Marianne Benoit
- Institut Européen des Membranes, IEM-UMR 5635, University Montpellier, ENSCM, CNRS, 34090 Montpellier, France
| | - Claire Antonelli
- Institut Européen des Membranes, IEM-UMR 5635, University Montpellier, ENSCM, CNRS, 34090 Montpellier, France
| | - Damien Quemener
- Institut Européen des Membranes, IEM-UMR 5635, University Montpellier, ENSCM, CNRS, 34090 Montpellier, France
| | - Iliass Tahiri
- Laboratoire Navier, Ecole des Ponts ParisTech, University Gustave Eiffel, CNRS, 77420 Marne-la-Vallée, France
| | - Matthieu Vandamme
- Laboratoire Navier, Ecole des Ponts ParisTech, University Gustave Eiffel, CNRS, 77420 Marne-la-Vallée, France
| | - Jean-Marc Zanotti
- Laboratoire Léon Brillouin, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Marie Plazanet
- University Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| |
Collapse
|
4
|
Ye H, Zhang C, Huo C, Zhao B, Zhou Y, Wu Y, Shi S. Advances in the Application of Polymers of Intrinsic Microporosity in Liquid Separation and Purification: Membrane Separation and Adsorption Separation. POLYM REV 2020. [DOI: 10.1080/15583724.2020.1821059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Hong Ye
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Caili Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
| | - Chaowei Huo
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, China
| | - Bingyu Zhao
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, China
| | - Yuanhao Zhou
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, China
| | - Yichen Wu
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, China
| | - Shengpeng Shi
- Beijing Research Institute of Chemical Industry, Beijing, China
| |
Collapse
|
5
|
El Aboudi I, Mdarhri A, Lame O, Brosseau C, Nourdine A, Fabrègue D, Bonnefont G. Analyzing the microstructure and mechanical properties of polytetrafluoroethylene fabricated by field-assisted sintering. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Kirk RA, Putintseva M, Volkov A, Budd PM. The potential of polymers of intrinsic microporosity (PIMs) and PIM/graphene composites for pervaporation membranes. ACTA ACUST UNITED AC 2019. [DOI: 10.1186/s42480-019-0018-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|