1
|
Wang P, Song Y, Zhang K, Tian M, He L. Efficient donor-σ-acceptor emitters with strengthened intramolecular charge-transfer and their use for high-efficiency organic light-emitting diodes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 332:125827. [PMID: 39908972 DOI: 10.1016/j.saa.2025.125827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/20/2025] [Accepted: 01/30/2025] [Indexed: 02/07/2025]
Abstract
Thermally-activated delayed fluorescence (TADF) materials have emerged as next-generation emitters for organic light-emitting diodes (OLEDs). The donor-σ-acceptor molecule is a promising paradigm for developing TADF, but its radiative decay rate (kr,s) and photoluminescent efficiency (ФPL) require large improvements, due to weak intramolecular charge-transfer (CT). Here, efficient donor-σ-acceptor emitters (1-3) with strengthened intramolecular CT are developed by directly linking the donor and acceptor with a short alkyl chain. 9,9-dimethyl-9,10-dihydroacridine and 2,4,6-triphenyl-1,3,5-triazine are employed as the donor and acceptor, respectively, and -CH2- (for 1), -CH2CH2- (for 2) and -CH2CH2CH2- (for 3) are employed as the σ-linkers. The chemical structures of 1-3 have been verified by X-ray crystallography. In dilute solution and lightly doped films, emitters 1-3 show considerably strong intramolecular CT, due to the σ-π hyperconjugation between the donor/acceptor and the alkyl σ-linker. In the 20 wt.% doped films, emitters 1-3 show green-blue TADF with combined intra- and inter-molecular CT, with high ФPLkr,s and reverse intersystem crossing rates up to 0.91, 8.5 × 106 s-1 and 2.6 × 106 s-1, respectively. OLEDs based on emitters 1-3 show green-blue emission with high external quantum efficiencies (EQEs) over 20 %. A hyperfluorescent OLED with emitter 3 as the sensitizer and a typical multiple resonance emitter (DtBuCzB) as the terminal emitter shows narrowband blue-green emission with a high EQE of 28.1 %.
Collapse
Affiliation(s)
- Pingping Wang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 430079 People's Republic of China
| | - Yongjun Song
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 430079 People's Republic of China
| | - Ke Zhang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 430079 People's Republic of China
| | - Mingxing Tian
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 430079 People's Republic of China
| | - Lei He
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, College of Chemistry, Central China Normal University, Wuhan 430079 People's Republic of China.
| |
Collapse
|
2
|
Shen S, Pang Z, Gao H, Xie X, Lv X, Liu J, Wang Y. Intramolecular Hydrogen Bond Modulated the Formation of Exciplex for Highly Efficient Organic Light-Emitting Diodes. J Phys Chem Lett 2025; 16:4277-4284. [PMID: 40261815 DOI: 10.1021/acs.jpclett.5c00876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Although exciplexes with thermally activated delayed fluorescence (TADF) properties have been applied in high-efficiency organic electroluminescent devices, the development of exciplexes has been hindered due to the limited material systems and unclear formation mechanisms. Inspired by the unusual exciplex emission discovered in the pyridine solution of 2,12-di-tert-butyl-5,9-dithia-13b-boranaphtho[3,2,1-de]anthracene (TSBA) in this work, the formation mechanism of exciplexes based on two groups of pyridine-based derivative isomeric acceptors 26DCzPPy, 35DCzPPy and B2PyPB, B3PyPB and B4PyPB was explored accordingly. The difference in the position of the substituted pyridine in the isomeric acceptors can effectively regulate the formation of intramolecular N···H hydrogen bonds, which further affects their interaction with the electron-donating unit in TSBA through a conformational locking effect-induced topological rigidification of the molecule, ultimately determining the formation of the exciplex. Based on this mechanism, 35DCzPPy, B3PyPB and B4PyPB acceptors, combined with the TSBA donor, display TADF exciplex emission as expected. Among these, 35DCzPPy:TSBA shows the excellent TADF property with a high photoluminescent quantum yield reaching 78%, and the corresponding device achieves a high external quantum efficiency of 18.72% along with a small efficiency roll-off. An in-depth investigation into the influence mechanisms of intramolecular interactions on exciplex construction in this work will provide crucial theoretical guidance and design strategies for developing novel, highly efficient exciplex materials.
Collapse
Affiliation(s)
- Shaogang Shen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, and TIPC-CityU Joint Laboratory of Functional Materials and Device, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Pang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, and TIPC-CityU Joint Laboratory of Functional Materials and Device, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Honglei Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, and TIPC-CityU Joint Laboratory of Functional Materials and Device, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xin Xie
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, and TIPC-CityU Joint Laboratory of Functional Materials and Device, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyi Lv
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, and TIPC-CityU Joint Laboratory of Functional Materials and Device, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianjun Liu
- College of Physics and Optoelectronic Engineering, Ocean University of China, Qingdao 266100, China
- Engineering Research Center of Advanced Marine Physical Instruments and Equipment of Ministry of Education, Ocean University of China, Qingdao 266100, China
- Qingdao Key Laboratory of Optics and Optoelectronics, Ocean University of China, Qingdao 266100, China
| | - Ying Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, and TIPC-CityU Joint Laboratory of Functional Materials and Device, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Dos Santos JM, Hall D, Basumatary B, Bryden M, Chen D, Choudhary P, Comerford T, Crovini E, Danos A, De J, Diesing S, Fatahi M, Griffin M, Gupta AK, Hafeez H, Hämmerling L, Hanover E, Haug J, Heil T, Karthik D, Kumar S, Lee O, Li H, Lucas F, Mackenzie CFR, Mariko A, Matulaitis T, Millward F, Olivier Y, Qi Q, Samuel IDW, Sharma N, Si C, Spierling L, Sudhakar P, Sun D, Tankelevičiu Tė E, Duarte Tonet M, Wang J, Wang T, Wu S, Xu Y, Zhang L, Zysman-Colman E. The Golden Age of Thermally Activated Delayed Fluorescence Materials: Design and Exploitation. Chem Rev 2024; 124:13736-14110. [PMID: 39666979 DOI: 10.1021/acs.chemrev.3c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Since the seminal report by Adachi and co-workers in 2012, there has been a veritable explosion of interest in the design of thermally activated delayed fluorescence (TADF) compounds, particularly as emitters for organic light-emitting diodes (OLEDs). With rapid advancements and innovation in materials design, the efficiencies of TADF OLEDs for each of the primary color points as well as for white devices now rival those of state-of-the-art phosphorescent emitters. Beyond electroluminescent devices, TADF compounds have also found increasing utility and applications in numerous related fields, from photocatalysis, to sensing, to imaging and beyond. Following from our previous review in 2017 ( Adv. Mater. 2017, 1605444), we here comprehensively document subsequent advances made in TADF materials design and their uses from 2017-2022. Correlations highlighted between structure and properties as well as detailed comparisons and analyses should assist future TADF materials development. The necessarily broadened breadth and scope of this review attests to the bustling activity in this field. We note that the rapidly expanding and accelerating research activity in TADF material development is indicative of a field that has reached adolescence, with an exciting maturity still yet to come.
Collapse
Affiliation(s)
- John Marques Dos Santos
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - David Hall
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Biju Basumatary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Megan Bryden
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dongyang Chen
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Praveen Choudhary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Thomas Comerford
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ettore Crovini
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Andrew Danos
- Department of Physics, Durham University, Durham DH1 3LE, UK
| | - Joydip De
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Stefan Diesing
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Mahni Fatahi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Máire Griffin
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Abhishek Kumar Gupta
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Hassan Hafeez
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Lea Hämmerling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Emily Hanover
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Janine Haug
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Tabea Heil
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Durai Karthik
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Shiv Kumar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Oliver Lee
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Haoyang Li
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Fabien Lucas
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | | | - Aminata Mariko
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tomas Matulaitis
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Francis Millward
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yoann Olivier
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, Université de Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Quan Qi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Nidhi Sharma
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Changfeng Si
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Leander Spierling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Pagidi Sudhakar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dianming Sun
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Eglė Tankelevičiu Tė
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Michele Duarte Tonet
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Jingxiang Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tao Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Sen Wu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yan Xu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Le Zhang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| |
Collapse
|
4
|
Zhang HY, Zhang M, Zhuo H, Yang HY, Han B, Zheng YH, Wang H, Lin H, Tao SL, Zheng CJ, Zhang XH. Unraveling non-radiative decay channels of exciplexes to construct efficient red emitters for organic light-emitting diodes. Chem Sci 2024:d4sc03667k. [PMID: 39184301 PMCID: PMC11342127 DOI: 10.1039/d4sc03667k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
Exciplex emitters naturally have thermally activated delayed fluorescence characteristics due to their spatially separated molecular orbitals. However, the intermolecular charge transfer potentially induces diverse non-radiative decay channels, severely hindering the construction of efficient red exciplexes. Thus, a thorough comprehension of this energy loss is of paramount importance. Herein, different factors, including molecular rigidity, donor-acceptor interactions and donor-donor/acceptor-acceptor interactions, that impact the non-radiative decay were systematically investigated using contrasting exciplex emitters. The exciplex with rigid components and intermolecular hydrogen bonds showed a photoluminescence quantum yield of 84.1% and a singlet non-radiative decay rate of 1.98 × 106 s-1 at an optimized mixing ratio, respectively, achieving a 3.3-fold increase and a 70% decrease compared to the comparison group. In the electroluminescent device, a maximum external quantum efficiency of 23.8% was achieved with an emission peak of 608 nm, which represents the state-of-the-art organic light-emitting diodes using exciplex emitters. Accordingly, a new strategy is finally proposed, exploiting system rigidification to construct efficient red exciplex emitters that suppress non-radiative decay.
Collapse
Affiliation(s)
- Heng-Yuan Zhang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China Chengdu 611731 P. R. China
| | - Ming Zhang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China Chengdu 611731 P. R. China
| | - Hao Zhuo
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China Chengdu 611731 P. R. China
| | - Hao-Yu Yang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China Chengdu 611731 P. R. China
| | - Bo Han
- Chengdu University of Traditional Chinese Medicine, State Key Laboratory Southwestern Chinese Medicine Resources Chengdu 611137 P. R. China
| | - Yong-Hao Zheng
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China Chengdu 611731 P. R. China
| | - Hui Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University Suzhou 215123 P. R. China
| | - Hui Lin
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China Chengdu 611731 P. R. China
| | - Si-Lu Tao
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China Chengdu 611731 P. R. China
| | - Cai-Jun Zheng
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China Chengdu 611731 P. R. China
| | - Xiao-Hong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University Suzhou 215123 P. R. China
| |
Collapse
|
5
|
Liu D, Yang GX, Chen Z, Xie W, Li D, Li W, Lin J, Nie X, Li Z, Liang B, Yang Z, Wang Z, Pu J, Sun G, Shen C, Li M, Su SJ. Highly Horizontal Oriented Tricomponent Exciplex Host with Multiple Reverse Intersystem Crossing Channels for High-Performance Narrowband Electroluminescence and Eye-Protection White Organic Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403584. [PMID: 38897229 DOI: 10.1002/adma.202403584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/14/2024] [Indexed: 06/21/2024]
Abstract
Despite multiple-resonance thermally activated delayed fluorescence (MR-TADF) emitters with small full-width at half maximum are attractive for wide color-gamut display and eye-protection lighting applications, their inefficient reverse intersystem crossing (RISC) process and long exciton lifetime induce serious efficiency roll-off, which significantly limits their development. Herein, a novel device concept of building highly efficient tricomponent exciplex with multiple RISC channels is proposed to realize reduced exciton quenching and enhanced upconversion of nonradiative triplet excitons, and subsequently used as a host for high-performance MR-TADF organic light-emitting diodes (OLEDs). Compared with traditional binary exciplex, the tricomponent exciplex exhibits obviously improved photoluminescence quantum yield, emitting dipole orientation and RISC rate constant, and a record-breaking external quantum efficiency (EQE) of 30.4% is achieved for tricomponent exciplex p-PhBCzPh: PO-T2T: DspiroAc-TRZ (50: 20: 30) based OLED. Remarkably, maximum EQEs of 36.2% and 40.3% and ultralow efficiency roll-off with EQEs of 26.1% and 30.0% at 1000 cd m-2 are respectively achieved for its sky-blue and pure-green MR-TADF doped OLEDs. Additionally, the blue emission unit hosted by tricomponent exciplex is combined with an orange-red TADF emission unit to achieve a double-emission-layer blue-hazard-free warm white OLED with an EQEmax of 30.3% and stable electroluminescence spectra over a wide brightness range.
Collapse
Affiliation(s)
- Denghui Liu
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| | - Guo-Xi Yang
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| | - Zijian Chen
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| | - Wentao Xie
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| | - Deli Li
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| | - Wei Li
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| | - Jianying Lin
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| | - Xuewei Nie
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| | - Zhizhi Li
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| | | | - Zhihai Yang
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| | - Zhiheng Wang
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
- Ji Hua Laboratory, Foshan, 528200, P. R. China
| | - Junrong Pu
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| | - Guanwei Sun
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| | - Chenyang Shen
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| | - Mengke Li
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| | - Shi-Jian Su
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| |
Collapse
|
6
|
Guo Z, Kou Z, Xie X, Wang Y, Zhu X, Jin Q, Wang C. The influence of the doping concentration and reverse intersystem crossing on the efficiency of tricomponent organic light-emitting diodes with the thermally activated delayed fluorescence exciplex emitter. RSC Adv 2024; 14:19505-19511. [PMID: 38895526 PMCID: PMC11184578 DOI: 10.1039/d4ra02394c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
In this work, we fabricate a series of full-fluorescent organic light-emitting diodes (OLEDs) with the thermally activated delayed fluorescence (TADF) exciplex emitter in order to improve the efficiency through the reverse intersystem crossing (RISC) process. The TADF exciplex emitters are made up of a mixture of P-type materials (DMAC-DPS and mCBP) and n-type material (PO-T2T), among which DMAC-DPS also classes as a TADF material. The change in doping concentration will affect the intermolecular distance and the composition of TADF material and two kinds of exciplexes (DMAC-DPS:PO-T2T and mCBP:PO-T2T) in the luminescent layer (EML). Different materials and concentrations of doping not only add new RISC channels but also alter the original RISC channels, thereby affecting the performance of devices. It is beneficial for improving efficiency by increasing the proportion of independent TADF material and reducing the proportion of exciplex (DMAC-DPS:PO-T2T) in the EML, which can be controlled by doping. When the ratio of DMAC-DPS, PO-T2T and mCBP in the EML is 1 : 1 : 2, we achieve the optimal electro-optic performance in device A3, with maximum current efficiency, power efficiency, and luminance of 41.64 cd A-1, 43.42 lm W-1, and 23 080 cd m-2, respectively.
Collapse
Affiliation(s)
- Zhenyong Guo
- College of Science, University of Shanghai for Science and Technology Shanghai China
| | - Zhiqi Kou
- College of Science, University of Shanghai for Science and Technology Shanghai China
| | - Xiangqiong Xie
- College of Science, University of Shanghai for Science and Technology Shanghai China
| | - Yanbo Wang
- College of Science, University of Shanghai for Science and Technology Shanghai China
| | - Xinyu Zhu
- College of Science, University of Shanghai for Science and Technology Shanghai China
| | - Qixuan Jin
- College of Science, University of Shanghai for Science and Technology Shanghai China
| | - Chenchen Wang
- College of Science, University of Shanghai for Science and Technology Shanghai China
| |
Collapse
|
7
|
Yang J, Ma YX, Zong Y, Sun M, Wang Y, Zhang RL, Feng J, Wang CZ, Zhuo SP, Zhou J, Shi YL, Chen SH, Wang XD, Lin HT. Precise Synthesis of Organic Cocrystal Alloys with Full-Spectrum Emission Characteristics for the Stepless Color Changing Display. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307129. [PMID: 38126615 DOI: 10.1002/smll.202307129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/17/2023] [Indexed: 12/23/2023]
Abstract
Organic luminescent materials are indispensable in optoelectronic displays and solid-state luminescence applications. Compared with single-component, multi-component crystalline materials can improve optoelectronic characteristics. This work forms a series of full-spectrum tunable luminescent charge-transfer (CT) cocrystals ranging from 400 to 800 nm through intermolecular collaborative self-assembly. What is even more interesting is that o-TCP-Cor(x)-Pe(1-x), p-TCP-Cor(x)-Pe(1-x), and o-TCP-AN(x)-TP(1-x) alloys are prepared based on cocrystals by doping strategies, which correspondingly achieve the stepless color change from blue (CIE [0.22, 0.44]) to green (CIE [0.16, 0.14]), from green (CIE [0.27, 0.56]) to orange (CIE [0.58, 0.42]), from yellow (CIE [0.40, 0.57]) to red (CIE [0.65, 0.35]). The work provides an efficient method for precisely synthesizing new luminescent organic semiconductor materials and lays a solid foundation for developing advanced organic solid-state displays.
Collapse
Affiliation(s)
- Jing Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255000, P. R. China
| | - Ying-Xin Ma
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255000, P. R. China
| | - Yi Zong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Mao Sun
- School of resources and environmental engineering, Shandong University of Technology, Zibo, Shandong, 255000, P. R. China
| | - Yun Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255000, P. R. China
| | - Ren-Long Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255000, P. R. China
| | - Jin Feng
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255000, P. R. China
| | - Chuan-Zeng Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255000, P. R. China
| | - Shu-Ping Zhuo
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255000, P. R. China
| | - Jin Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255000, P. R. China
| | - Ying-Li Shi
- Department of Electrical and Electronic Engineering, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, P. R. China
| | - Shu-Hai Chen
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255000, P. R. China
| | - Xue-Dong Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Hong-Tao Lin
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255000, P. R. China
| |
Collapse
|
8
|
Cao HT, Hou PF, Yu WJ, Gao Y, Li B, Feng QY, Zhang H, Wang SS, Su ZM, Xie LH. Enhanced Efficiency of Exciplex Emission from a 9-Phenylfluorene Derivative. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7236-7246. [PMID: 36700822 DOI: 10.1021/acsami.2c22266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The exciplex-thermally activated delayed fluorescence (exciplex-TADF) system is an excellent candidate for the fabrication of high-efficiency organic light-emitting diodes (OLEDs) because of its more easily achieved small singlet-triplet energy splitting (ΔEST) and doping control. However, exciplex-TADF is still faced with the problems of low external quantum efficiency (ηext) and unclear effect of structure modification in electron acceptors. Herein, we provide a steric hindrance increase strategy to obtain high-efficiency exciplex emissions. Through introducing a 9-phenylfluorene group into N-ethylcarbazole of the dicyano-substituted 9-phenylfluorene, an electron acceptor material with increased steric hindrance is obtained, which helps the exciplex harvest a larger driving force and higher emission efficiencies. Encouragingly, the obtained OLED displays a maximum ηext of 25.8%, which is one of the best efficiency values among reported exciplex-OLEDs, simultaneously possessing excellent current efficiency of 83.6 cd A-1 and power efficiency of 93.7 lm W-1. It is expected that this work will offer a new avenue for designing electron acceptors for highly efficient exciplex emissions.
Collapse
Affiliation(s)
- Hong-Tao Cao
- Center for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P.R. China
| | - Peng-Fei Hou
- Center for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P.R. China
| | - Wen-Jing Yu
- Center for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P.R. China
| | - Ying Gao
- Institute of Biomass Functional Materials Interdisciplinary Studies, Jilin Engineering Normal University, 3050 Kaixuan Road, Changchun 130052, P.R. China
| | - Bo Li
- Center for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P.R. China
| | - Quan-You Feng
- Center for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P.R. China
| | - He Zhang
- Center for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P.R. China
| | - Sha-Sha Wang
- Center for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P.R. China
| | - Zhong-Min Su
- College of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, P.R. China
| | - Ling-Hai Xie
- Center for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P.R. China
| |
Collapse
|
9
|
Chen L, Chang Y, Shi S, Wang S, Wang L. Solution-processed white OLEDs with power efficiency over 90 lm W -1 by triplet exciton management with a high triplet energy level interfacial exciplex host and a high reverse intersystem crossing rate blue TADF emitter. MATERIALS HORIZONS 2022; 9:1299-1308. [PMID: 35195631 DOI: 10.1039/d1mh02060a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Solution-processed white organic light-emitting diodes (WOLEDs) have shown much lower device efficiency than their vacuum-deposited counterparts, due to the lack of triplet exciton management in a single-emissive-layer device structure, which will induce triplet-triplet annihilation (TTA) and triplet-polaron annihilation (TPA). Here, two kinds of solution-processed WOLEDs, including thermally activated delayed fluorescence (TADF)/phosphorescence hybrid WOLEDs and all-TADF WOLEDs, with high power efficiency are developed by using a high triplet energy level (T1) interfacial exciplex as a host and a high reverse intersystem crossing (RISC) rate TADF emitter as a blue dopant for triplet exciton management. The interfacial exciplex host with high T1 can ensure that triplet excitons transfer from the host to the blue emitter, and the blue TADF emitter with high RISC rate (1.15 × 107 s-1) can rapidly upconvert triplet excitons to singlet ones to avoid TTA and TPA. The solution-processed TADF/phosphorescence hybrid and all-TADF WOLEDs exhibit maximum external quantum efficiencies of 31.1% and 27.3%, together with maximum power efficiencies of 93.5 and 70.4 lm W-1, respectively, which are the record efficiencies for solution-processed WOLEDs, and quite comparable to those of most vacuum-deposited counterparts.
Collapse
Affiliation(s)
- Liang Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yufei Chang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Song Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Shumeng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
10
|
Shi YZ, Wu H, Wang K, Yu J, Ou XM, Zhang XH. Recent progress in thermally activated delayed fluorescence emitters for nondoped organic light-emitting diodes. Chem Sci 2022; 13:3625-3651. [PMID: 35432901 PMCID: PMC8966661 DOI: 10.1039/d1sc07180g] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/21/2022] [Indexed: 11/25/2022] Open
Abstract
Nondoped organic light-emitting diodes (OLEDs) have drawn immense attention due to their merits of process simplicity, reduced fabrication cost, etc. To realize high-performance nondoped OLEDs, all electrogenerated excitons should be fully utilized. The thermally activated delayed fluorescence (TADF) mechanism can theoretically realize 100% internal quantum efficiency (IQE) through an effective upconversion process from nonradiative triplet excitons to radiative singlet ones. Nevertheless, exciton quenching, especially related to triplet excitons, is generally very serious in TADF-based nondoped OLEDs, significantly hindering the pace of development. Enormous efforts have been devoted to alleviating the annoying exciton quenching process, and a number of TADF materials for highly efficient nondoped devices have been reported. In this review, we mainly discuss the mechanism, exciton leaking channels, and reported molecular design strategies of TADF emitters for nondoped devices. We further classify their molecular structures depending on the functional A groups and offer an outlook on their future prospects. It is anticipated that this review can entice researchers to recognize the importance of TADF-based nondoped OLEDs and provide a possible guide for their future development.
Collapse
Affiliation(s)
- Yi-Zhong Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University 199 Ren'ai Road Suzhou Jiangsu 215123 PR China
| | - Hao Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University 199 Ren'ai Road Suzhou Jiangsu 215123 PR China
| | - Kai Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University 199 Ren'ai Road Suzhou Jiangsu 215123 PR China
| | - Jia Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University 199 Ren'ai Road Suzhou Jiangsu 215123 PR China
| | - Xue-Mei Ou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University 199 Ren'ai Road Suzhou Jiangsu 215123 PR China
| | - Xiao-Hong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University 199 Ren'ai Road Suzhou Jiangsu 215123 PR China
| |
Collapse
|
11
|
Zhang M, Zheng CJ, Lin H, Tao SL. Thermally activated delayed fluorescence exciplex emitters for high-performance organic light-emitting diodes. MATERIALS HORIZONS 2021; 8:401-425. [PMID: 34821262 DOI: 10.1039/d0mh01245a] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Owing to their natural thermally activated delayed fluorescence (TADF) characteristics, the development of exciplex emitters for organic light-emitting diodes (OLEDs) has witnessed booming progress in recent years. Formed between electron-donating and electron-accepting molecules, exciplexes with intermolecular charge transfer processes have unique advantages compared with unimolecular TADF materials, offering a new way to develop high-performance TADF emitters. In this review, a comprehensive overview of TADF exciplex emitters is presented with a focus on the relationship between the constituents of exciplexes and their electroluminescence performance. We summarize and discuss the latest and most significant developments of TADF exciplex emitters. Notably, the design principles of efficient TADF exciplex emitters are systematically categorized into three systems within this review. These progressive achievements of TADF exciplex emitters point out future challenges to trigger more research endeavors in this growing field.
Collapse
Affiliation(s)
- Ming Zhang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China.
| | | | | | | |
Collapse
|
12
|
Exciplex energy transfer through spacer: White electroluminescence with enhanced stability based on cyan intermolecular and orange intramolecular thermally activated delayed fluorescence. J Adv Res 2020; 24:379-389. [PMID: 32477608 PMCID: PMC7248288 DOI: 10.1016/j.jare.2020.04.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/09/2020] [Accepted: 04/26/2020] [Indexed: 11/23/2022] Open
Abstract
Capability of exciplex energy transfer through a spacer was investigated using three exciplex-forming solid mixtures which contained the well-known electron accepting 2,4,6-tris[3-(diphenylphosphinyl)phenyl]-1,3,5-triazine and appropriately designed bipolar cyanocarbazolyl-based derivatives functionalized by attachment of carbazolyl, acridanyl or phenyl units. These novel cyanocarbazolyl-based derivatives were used as both the spacer and exciplex-forming donor. Efficient organic light-emitting diodes with electroluminescence in cyan-yellow region and maximum external quantum efficiency of up to 7.7% were fabricated owing to efficient thermally activated fluorescence (TADF) of the newly discovered exciplexes. An approach of exciton separation by the spacer between the studied exciplexes and selected orange TADF emitter was proposed for the fabrication of white electroluminescent devices with prolonged lifetime comparing to that of single-color exciplex-based devices. Exciplex-forming systems were tested for exciton separation between inter- and intramolecular TADF. Exciplex energy transfer through a spacer was observed on relatively long distance for one system due to the energy resonance between triplet levels of the exciplex and spacer. First time observed here exciplex energy transfer through a spacer can be useful for both improvement of device stability and obtaining of white electroluminescence.
Collapse
|