1
|
Su M, Peng T, Zhu Y, Li J. Nucleic Acid Covalent Tags. Chembiochem 2025; 26:e202400805. [PMID: 39572501 DOI: 10.1002/cbic.202400805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/20/2024] [Indexed: 03/05/2025]
Abstract
The selective and site-specific chemical labeling of proteins has emerged as a pivotal research area in chemical biology and cell biology. An effective protein labeling typically meets several criteria, including high specificity, rapid and robust conjugation under physiological conditions, operation at low concentrations with biocompatibility, and minimal perturbation of the protein function and activity. The conjugation of nucleic acids with proteins has garnered significant attention recently due to the rapid advancements in nucleic acid probe technologies, leveraging the programmable nature of nucleic acids alongside the multifaceted functionalities of proteins. It helps to convert protein-specific information into nucleic acid signals, facilitating upstream versatile recognition and downstream signal amplification for the target protein. This review critically evaluates the recent progress in nucleic acid-based protein labeling methodologies, with a specific focus on covalent labeling using aptamer tags, protein fusion tags or the technique of metabolic oligosaccharide engineering. The tags establish covalent linkages with target proteins through various modalities such as small molecules or metabolic glycan engineering. The insights presented in the review highlight promising avenues for the development of highly specific and versatile protein labeling techniques, which is essential for the improvement of protein-targeted detection and imaging across diverse biological contexts.
Collapse
Affiliation(s)
- Min Su
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Basic and Clinical Application of Functional Nucleic Acids, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Tao Peng
- School of Chemistry and Materials, University of Science and Technology of China, Hefei, 230026, China
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Basic and Clinical Application of Functional Nucleic Acids, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Yingdi Zhu
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Basic and Clinical Application of Functional Nucleic Acids, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Juan Li
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Basic and Clinical Application of Functional Nucleic Acids, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| |
Collapse
|
2
|
Fu Y, Zhang X, Wu L, Wu M, James TD, Zhang R. Bioorthogonally activated probes for precise fluorescence imaging. Chem Soc Rev 2025; 54:201-265. [PMID: 39555968 DOI: 10.1039/d3cs00883e] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Over the past two decades, bioorthogonal chemistry has undergone a remarkable development, challenging traditional assumptions in biology and medicine. Recent advancements in the design of probes tailored for bioorthogonal applications have met the increasing demand for precise imaging, facilitating the exploration of complex biological systems. These state-of-the-art probes enable highly sensitive, low background, in situ imaging of biological species and events within live organisms, achieving resolutions comparable to the size of the biomolecule under investigation. This review provides a comprehensive examination of various categories of bioorthogonally activated in situ fluorescent labels. It highlights the intricate design and benefits of bioorthogonal chemistry for precise in situ imaging, while also discussing future prospects in this rapidly evolving field.
Collapse
Affiliation(s)
- Youxin Fu
- College of Science, Nanjing Forestry University, Nanjing, 210037, P. R. China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Xing Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Luling Wu
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK.
| | - Miaomiao Wu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.
| |
Collapse
|
3
|
Zhu J, Miao C, Wang X. An ICT-PET Dual-Controlled Strategy for Improving Molecular Probe Sensitivity: Application to Photoactivatable Fluorescence Imaging and H2S Detection. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
4
|
Xiao M, Zhang YK, Li R, Li S, Wang D, An P. Photoactivatable Fluorogenic Azide-Alkyne Click Reaction: A Dual-Activation Fluorescent Probe. Chem Asian J 2022; 17:e202200634. [PMID: 35819362 DOI: 10.1002/asia.202200634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/01/2022] [Indexed: 11/12/2022]
Abstract
Aryl azide and diaryl tetrazole are both photoactive molecules, which can form nitrene and nitrile imine intermediates respectively by photolysis. Depending on the new finding that the azide can suppress the photolysis of tetrazole in the azide-tetrazole conjugated system, we developed aryl azide-tetrazole probes for the photoactivatable fluorogenic azide alkyne click (PFAAC) reaction, in which the aryl azide-tetrazole probes were not phoroactivatable fluorogenic itself, but the triazole products after click reaction were prefluorophore that can be activated by light. Therefore, in PFAAC chemistry, the fluorescent probes can be activated by two orthogonal events: azide-alkyne click reaction and light, which leads to spatiotemporal resolution and high signal-to-noise ratio. This PFAAC process was proved in vitro by copper catalyzed or strain-promoted azide-alkyne reactions and in live cells by spatiotemporally controlled organelle imaging. By incorporation a linker to the azide-tetrazole conjugate, this PFAAC chemistry could covalently label extra probes to the biomolecules and spatiotemporally detecting this process by photoinduced fluorescence.
Collapse
Affiliation(s)
| | | | | | | | - Di Wang
- Yunnan University, chemistry, CHINA
| | - Peng An
- Yunnan University, school of chemical science and technology, South Outer Ring Road, 650500, Kunming, CHINA
| |
Collapse
|
5
|
Xuan Y, Gao Y, Guan M, Zhang S. Application of "smart" multifunctional nanoprobes in tumor diagnosis and treatment. J Mater Chem B 2022; 10:3601-3613. [PMID: 35437560 DOI: 10.1039/d2tb00326k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cancer is one of the major diseases that pose a threat to human health and life, especially because it is difficult to diagnose and cure, and recurs easily. In recent years, the development of nanotechnology has provided researchers with new tools for cancer treatment. In particular, nanoprobes that facilitate integrated diagnosis and treatment, high-resolution imaging, and accurate tumor targeting provide new avenues for the early detection and treatment of cancer. This review focuses on the preparations and applications of two kinds of "smart" multifunctional nanoprobes: "Off-On" nanoprobes and "Charge-Reversal" nanoprobes. This review also briefly discusses their mechanisms of action, as they could provide new ideas for the further development of this field.
Collapse
Affiliation(s)
- Yang Xuan
- Key Laboratory of Biotechnology and Resource Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| | - Yating Gao
- Key Laboratory of Biotechnology and Resource Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| | - Meng Guan
- Key Laboratory of Biotechnology and Resource Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Resource Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| |
Collapse
|
6
|
Zhou J, Li J, Zhang KY, Liu S, Zhao Q. Phosphorescent iridium(III) complexes as lifetime-based biological sensors for photoluminescence lifetime imaging microscopy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214334] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Tian Y, Yang H, Li X, Wang Y, Teng Y, Yin D. Design of Nitroso-Modified Naphthylene-Based Fluorophores as Photoactivatable Bioorthogonal Turn-On Probes. Org Lett 2021; 23:3782-3787. [PMID: 33900776 DOI: 10.1021/acs.orglett.1c01226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We reported a series of nitroso-modified naphthylene-based fluorophores as novel bioorthogonal fluorescence turn-on probes. The cycloadducts from nitroso-diene Diels-Alder reaction could be either photochemically or spontaneously transformed into highly fluorescent rearrangement products with remarkable photophysical properties including significant fluorescence enhancement, large Stokes shift, high fluorescence quantum yield, superior photostability, and distinct solvatochromic effect. This strategy is suitable for selective labeling of diene-modified proteins and visualizing specific organelles in live mammalian cells under no-wash conditions.
Collapse
Affiliation(s)
- Yulin Tian
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Hong Yang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Xiang Li
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Yongcheng Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Yu Teng
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Dali Yin
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, China
| |
Collapse
|
8
|
Insight into Fluorescence Imaging and Bioorthogonal Reactions in Biological Analysis. Top Curr Chem (Cham) 2021; 379:10. [DOI: 10.1007/s41061-020-00323-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
|
9
|
Zhao Q, Guo G, Zhu W, Zhu L, Da Y, Han Y, Xu H, Wu S, Cheng Y, Zhou Y, Cai X, Jiang X. Suzuki Cross-Coupling Reaction with Genetically Encoded Fluorosulfates for Fluorogenic Protein Labeling. Chemistry 2020; 26:15938-15943. [PMID: 32776653 DOI: 10.1002/chem.202002037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/24/2020] [Indexed: 11/09/2022]
Abstract
A palladium-catalyzed cross-coupling reaction with aryl halide functionalities has recently emerged as a valuable tool for protein modification. Herein, a new fluorogenic modification methodology for proteins, with genetically encoded fluorosulfate-l-tyrosine, which exhibits high efficiency and biocompatibility in bacterial cells as well as in aqueous medium, is described. Furthermore, the cross-coupling of 4-cyanophenylboronic acid on green fluorescent protein was shown to possess a unique fluorogenic property, which could open up the possibility of a responsive "off/on" switch with great potential to enable spectroscopic imaging of proteins with minimal background noise. Taken together, a convenient and efficient catalytic system has been developed that may provide broad utilities in protein visualization and live-cell imaging.
Collapse
Affiliation(s)
- Qian Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Guoying Guo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Weiwei Zhu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Liping Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P.R. China
| | - Yifan Da
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Ying Han
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Hongjiao Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Shuohan Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Yaping Cheng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Yani Zhou
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, P.R. China
| | - Xiaoqing Cai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Xianxing Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| |
Collapse
|
10
|
Zhou Y, Wong RCH, Dai G, Ng DKP. A bioorthogonally activatable photosensitiser for site-specific photodynamic therapy. Chem Commun (Camb) 2020; 56:1078-1081. [DOI: 10.1039/c9cc07938f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Inverse-electron-demand Diels–Alder reaction of a 1,2,4,5-tetrazine-substituted boron dipyrromethene with a biotin-conjugated trans-cyclooctene results in site-specific activation of the photoactivity of the former photosensitiser.
Collapse
Affiliation(s)
- Yimin Zhou
- Department of Chemistry
- The Chinese University of Hong Kong
- Shatin, N. T
- P. R. China
- Guangdong Key Laboratory of Nanomedicine
| | - Roy C. H. Wong
- Department of Chemistry
- The Chinese University of Hong Kong
- Shatin, N. T
- P. R. China
| | - Gaole Dai
- Department of Chemistry
- The Chinese University of Hong Kong
- Shatin, N. T
- P. R. China
| | - Dennis K. P. Ng
- Department of Chemistry
- The Chinese University of Hong Kong
- Shatin, N. T
- P. R. China
| |
Collapse
|
11
|
Wu Q, Zhang KY, Dai P, Zhu H, Wang Y, Song L, Wang L, Liu S, Zhao Q, Huang W. Bioorthogonal “Labeling after Recognition” Affording an FRET-Based Luminescent Probe for Detecting and Imaging Caspase-3 via Photoluminescence Lifetime Imaging. J Am Chem Soc 2019; 142:1057-1064. [DOI: 10.1021/jacs.9b12191] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Qi Wu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Kenneth Yin Zhang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Peiling Dai
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Hengyu Zhu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Yun Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Linna Song
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Ling Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Shujuan Liu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
- Xi’an Institute of Flexible Electronics (XIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, P. R. China
| |
Collapse
|