1
|
Mollaheydaralimoazzen M, Sheikholeslam M, Poursamar SA, Farzan M, Farzan M, Rafienia M. 3D-printing of shear-thinning and self-healing gelatin/starch/halloysite-nanotube hydrogels for soft tissue engineering: An in vitro and in vivo assessment. Int J Biol Macromol 2025; 315:144502. [PMID: 40409625 DOI: 10.1016/j.ijbiomac.2025.144502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 05/03/2025] [Accepted: 05/20/2025] [Indexed: 05/25/2025]
Abstract
Shear-thinning and self-healing hydrogels are essential for various biomedical applications, specially 3D-printing. This study developed a novel shear-thinning and self-healing hydrogel based on gelatin, starch, and Halloysite-nanotubes (G-S-H) for 3D-printing soft tissues. Different G-S-H ratios and cross-linking reagents (i.e. EDC-NHS and glutaraldehyde) were employed to enhance mechanical properties and degradation rates. Characterization encompassed compression and rheological tests, degradation rates, zeta potential and Dynamic light scattering measurement, morphological analysis, and cytotoxicity assessment. The hydrogels demonstrated suitable stiffness resembling soft tissues and exhibited non-Newtonian behavior with distinct shear-thinning and self-healing properties. In vivo assessments of implanted scaffolds in rats revealed rapid degradation of the non-cross-linked scaffold subcutaneously, while the EDC-NHS scaffold showed prolonged degradation over 60 days, supporting tissue ingrowth into inter-filament spaces and filament pores. Histological analysis indicated initial acute inflammatory responses followed by transition to mild immune responses by day 60. The EDC-NHS-cross-linked scaffold supported higher vascularization and collagen deposition compared to the glutaraldehyde-cross-linked scaffold. Overall, the G-S-H hydrogels showed promise for 3D-printing applications in soft tissue engineering, offering optimal mechanical properties, degradation rate and biocompatibility for long-term tissue support. This study underscores the importance of scaffold composition in governing degradation rates, tissue integration, and biocompatibility in tissue engineering applications.
Collapse
Affiliation(s)
- Mohammadsadegh Mollaheydaralimoazzen
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammadali Sheikholeslam
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - S Ali Poursamar
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Biosensor Research Center, Isfahan University of Medical Sciences, 81744-176 Isfahan, Iran
| | - Mahour Farzan
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahan Farzan
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Rafienia
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Biosensor Research Center, Isfahan University of Medical Sciences, 81744-176 Isfahan, Iran.
| |
Collapse
|
2
|
Xu M, Xu K, Peng W, Ge J, Wang N, Yu G, Wu Y, Zeng J. Hydrogels in Endoscopic Submucosal Dissection for Gastrointestinal Cancers. Acta Biomater 2025:S1742-7061(25)00368-X. [PMID: 40409509 DOI: 10.1016/j.actbio.2025.05.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/23/2025] [Accepted: 05/20/2025] [Indexed: 05/25/2025]
Abstract
Endoscopic Submucosal Dissection (ESD) has emerged as a pivotal technique for the minimally invasive treatment of early gastrointestinal cancers, offering benefits such as reduced trauma, lower complication rates, and cost-effectiveness. Despite its advantages, the selection of optimal biomaterials for submucosal injection poses significant challenges. Current materials used in clinical settings often suffer from rapid diffusion, requiring multiple injections and potentially causing localized inflammation. These issues underscore the importance of identifying more effective submucosal injection materials to minimize postoperative complications and enhance patient outcomes. Recent advancements have highlighted the potential of hydrogels in this context, favored for their ability to maintain mucosal elevation longer and support wound healing. This review comprehensively examines the development and application of hydrogels in ESD, focusing on their physicochemical properties, biocompatibility, and the clinical implications of their use. These issues discuss various formulations of hydrogels, their mechanisms of action, and comparative analyses with traditional materials. Furthermore, the review explores ongoing innovations and future perspectives in hydrogel research, aiming to catalyze further advancements in ESD techniques. STATEMENT OF SIGNIFICANCE: This review critically examines hydrogel technologies in endoscopic submucosal dissection for gastrointestinal cancers, highlighting their role in improving procedural outcomes and patient recovery. It explores hydrogels' ability to enhance mucosal elevation, reduce complications, and accelerate healing, offering insights into their transformative potential in medical treatments. The findings emphasize the development of innovative materials that could significantly advance clinical practices in gastrointestinal cancer management.
Collapse
Affiliation(s)
- Mengdan Xu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China.
| | - Keyang Xu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China.
| | - Wei Peng
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
| | - Jianxian Ge
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China.
| | - Ning Wang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China.
| | - Guangqiu Yu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
| | - Yongyou Wu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
| | - Jianfeng Zeng
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China; Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
3
|
Wang Z, Zhang Z, He C, Wang Q. Advances in the application of hydrogel adhesives for wound closure and repair in abdominal digestive organs. Biomater Sci 2025; 13:2606-2627. [PMID: 40208243 DOI: 10.1039/d5bm00093a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
The abdominal cavity houses the majority of the digestive system organs, which frequently suffer from diseases with limited responsiveness to pharmacological treatments, such as bleeding, perforation, cancer, and mechanical obstruction. Invasive procedures, including endoscopy and surgery, are typically employed to manage these conditions. Currently, sutures and staplers remain the gold standard for internal wound closure. However, these methods inevitably cause secondary tissue damage. Unlike superficial organs such as the skin, the abdominal cavity presents a relatively confined environment where postoperative complications tend to be more severe. To achieve wound closure and repair, hydrogel adhesives have garnered attention due to their minimal invasiveness, robust sealing, and ease of application. Nonetheless, the application of hydrogel adhesives within the abdominal cavity faces several challenges, including adhesion in moist environments, selective adhesion, and resistance to acids and digestive enzymes. To date, there has been no comprehensive review focused on the use of hydrogel adhesives for wound closure in abdominal digestive organs. This review introduces the design principles of hydrogel adhesives tailored for abdominal organs and provides a detailed overview of recent advances in their applications for esophageal endoscopic submucosal dissection, gastric perforation, hepatic bleeding, pancreatic leakage, and intestinal anastomotic leakage. Additionally, the current challenges and future directions of hydrogel adhesives are discussed. This review aims to provide valuable insights for the development of next-generation hydrogel adhesives for wound closure and repair in abdominal digestive organs.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China.
| | - Zhen Zhang
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Chaoliang He
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Quan Wang
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
4
|
Kuddushi M, Vithalani H, Singh H, Dave H, Jain A, Pal A, Kumar S, Bhatia Z, Seshadri S, Dhanka M. Easily Injectable, Organic Solvent-Free Self-Assembled Hydrogel Platform for Endoscope Mediated Gastrointestinal Polypectomy. Adv Healthc Mater 2025; 14:e2403915. [PMID: 39988843 DOI: 10.1002/adhm.202403915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/31/2025] [Indexed: 02/25/2025]
Abstract
Endoscopic submucosal dissection (ESD) and endoscopic mucosal resection (ESR) are used to eliminate tiny, flat lesions in the gastrointestinal tract (GIT). A substantial submucosal cushion is required for effective dissection. Commonly used saline and hypertonic dextrose injections disperse quickly and do not offer significant elevation, whereas polymers such as gelatin and alginate are challenging to inject. In this study, a novel amphiphilic polyglycerol stearate-based hydrogel (PGSH) platform is demonstrated which could be administered via an endoscopic catheter to help create a stable submucosal elevation. PGSH is easy to inject across different needle gauges, shear-thinning, and forms a long-lasting submucosal cushion during ESD. This hydrogel can encapsulate hydrophilic drugs such as streptomycin, allowing controlled enzymatic and nonenzymatic release. Ex-vivo experiments on goat's GIT demonstrate that PGSH is smoothly injectable without clogging the catheter's needle, achieving the necessary submucosal elevation. Furthermore, ex-vivo blood studies demonstrate immediate clotting behavior while maintaining hemocompatibility. In-vivo, investigations in mice show that the hydrogel forms a biocompatible cushion of suitable height with a nontoxic organ profile that does not overexpress inflammatory cytokines. ESD studies in the porcine model suggest that PGSH has the potential to significantly improve treatment outcomes in the early endoscopic removal of gastrointestinal polyps.
Collapse
Affiliation(s)
- Muzammil Kuddushi
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India
| | - Hitasha Vithalani
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India
| | - Hemant Singh
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India
| | - Harshil Dave
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India
| | | | - Ankit Pal
- Muljibhai Patel Urological Hospital, Nadiad, Gujarat, India
| | - Sunny Kumar
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | - Zeel Bhatia
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | - Sriram Seshadri
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | - Mukesh Dhanka
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India
| |
Collapse
|
5
|
Dave H, Vithalani H, Singh H, Yadav I, Jain A, Pal A, Patidar N, Navale A, Dhanka M. Amphiphilic Gelator-Based Shear-Thinning Hydrogel for Minimally Invasive Delivery via Endoscopy Catheter to Remove Gastrointestinal Polyps. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405508. [PMID: 39506390 DOI: 10.1002/smll.202405508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/04/2024] [Indexed: 11/08/2024]
Abstract
Injectable polymeric hydrogels delivered via endoscopic catheter have emerged as promising submucosal agents, offering durable, long-lasting cushions to enhance the efficacy of endoscopic submucosal dissection (ESD) for the removal of small, flat polyps from the gastrointestinal tract (GIT). However, polymer-based injections do not meet the easy-injectability criteria via catheter because their high viscosity tends to clog the catheter needle. To the best of knowledge, for the first time, report the fabrication of an amphiphile-based small molecule hydrogel of diglycerol monostearate (DGMS) that self-assembles to form hydrogel (DGMSH) for delivery via an endoscopic catheter. Physicochemical characterization of the hydrogel reveals its fibrous morphology, shear-thinning behaviour, and easy injectability, along with its scalability and long shelf-life (6 months). Ex vivo studies on the goat's stomach and intestine demonstrate the ease of injectability through the catheters and the development of visible submucosal cushion depots with the desired height. Moreover, the hydrogel can encapsulate both hydrophobic and hydrophilic drugs/dyes. In vivo studies in small animals have found that the hydrogel depot is durable, biocompatible, non-immunogenic, and has a hemostatic effect. Endoscopic studies in the porcine model demonstrate a safe injection and endoscopic excision of GI polyps acting as a suitable agent for ESD.
Collapse
Affiliation(s)
- Harshil Dave
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India
| | - Hitasha Vithalani
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India
| | - Hemant Singh
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India
| | - Indu Yadav
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India
| | - Abhinav Jain
- Gastro1 Hospital, Ahmedabad, Gujarat, 380060, India
| | - Ankit Pal
- Muljibhai Patel Urological Hospital, Nadiad, Gujarat, 38700, India
| | - Nishant Patidar
- Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, 391760, India
| | - Archana Navale
- Parul Institute of Pharmacy, Parul University, Vadodara, Gujarat, 391760, India
| | - Mukesh Dhanka
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India
| |
Collapse
|
6
|
Dave H, Vithalani H, Singh H, Yadav I, Jain A, Kumar S, Bhatia Z, Seshadri S, Hassan S, Dhanka M. Easily injectable gelatin-nonanal hydrogel for endoscopic resectioning of gastrointestinal polyps. Int J Biol Macromol 2024; 279:135405. [PMID: 39245110 DOI: 10.1016/j.ijbiomac.2024.135405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
The use of submucosal injection is crucial for satisfactory submucosal elevation in the early resection of flat polyps originating from the gastrointestinal tract (GIT). Injectable hydrogels derived from natural polypeptides are attractive candidates due to their excellent biocompatibility and easy gelation properties. However, most of the reported hydrogels are not the class of catheter delivery materials due to quick gelation, high inherent viscosity, and injection clogging. This study presents a novel injectable shear-thinning hydrogel platform of small molecules (nonanal) modified gelatin polymer, which offers a promising submucosal injection for effective removal of polyps from GIT. Physicochemical characterizations of hydrogel demonstrate the suitable features as an effective submucosal injection, including shear thinning property, self-assembly, methylene blue dye encapsulation, flow behavior, stability, syringeability (18 G, 21 G, and 24 G needles) and fibrous morphology. Ex vivo investigations of developed submucosal formulation on goat intestines demonstrate the enhanced visibility of cushions and the ability to produce stable, long-lasting cushions of about 8.07 mm up to ∼60 min of submucosal injection. The rapid blood clotting behavior of hydrogel was observed in about 120 s without compromising hemocompatibility with the hemolysis of about 3.77 % only. In vitro biocompatibility of the hydrogel was also verified using the HepG2 and nHDF cells. In vivo study depicts desirable biocompatibility, a non-toxic organ profile, and optimal cushion height in mice models. Studies established the foundation of novel submucosal fluid to improve the therapeutic outcomes of early resection for gastrointestinal polyps.
Collapse
Affiliation(s)
- Harshil Dave
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India
| | - Hitasha Vithalani
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India
| | - Hemant Singh
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India; Biological Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Indu Yadav
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India
| | | | - Sunny Kumar
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | - Zeel Bhatia
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | - Sriram Seshadri
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | - Shabir Hassan
- Biological Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Mukesh Dhanka
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India.
| |
Collapse
|
7
|
Choi W, Kohane DS. Hybrid Nanoparticle-Hydrogel Systems for Drug Delivery Depots and Other Biomedical Applications. ACS NANO 2024; 18:22780-22792. [PMID: 39140388 PMCID: PMC11926886 DOI: 10.1021/acsnano.4c06888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Hydrogel-based depots typically tend to remain where injected and have excellent biocompatibility but are relatively poor at controlling drug release. Nanoparticles (NPs) typically have the opposite properties. The smaller the NPs are, the more likely they are to leave the site of injection. Their biocompatibility is variable depending on the material but can be poor. However, NPs can be good at controlling drug release. In these and other properties, combining NPs and hydrogels can leverage their advantages and negate their disadvantages. This review highlights the rationale for hybrid NP-hydrogel systems in drug delivery, the basic methods of producing them, and examples where combining the two systems addressed specific problems.
Collapse
Affiliation(s)
- Wonmin Choi
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Daniel S Kohane
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
8
|
Wang P, Li R, Ma J, Zhang W, Shen H, Ren Y, Zhang X, Li S, Chi B. Facilitating safe and sustained submucosal lift through an endoscopically injectable shear-thinning carboxymethyl starch sodium hydrogel. Carbohydr Polym 2024; 336:122128. [PMID: 38670759 DOI: 10.1016/j.carbpol.2024.122128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/04/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
Traditional submucosal filling materials frequently show insufficient lifting height and duration during clinical procedures. Here, the anionic polysaccharide polymer sodium carboxymethyl starch and cationic Laponite to prepare a hydrogel with excellent shear-thinning ability through physical cross-linking, so that it can achieve continuous improvement of the mucosal cushion through endoscopic injection. The results showed that the hydrogel (56.54 kPa) had a lower injection pressure compared to MucoUp (68.56 kPa). The height of submucosal lifting height produced by hydrogel was higher than MucoUp, and the height maintenance ability after 2 h was 3.20 times that of MucoUp. At the same time, the hydrogel also showed satisfactory degradability and biosafety, completely degrading within 200 h. The hemolysis rate is as low as 0.76 %, and the cell survival rate > 80 %. Subcutaneous implantation experiments confirmed that the hydrogel showed no obvious systemic toxicity. Animal experiments clearly demonstrated the in vivo feasibility of using hydrogels for submucosal uplift. Furthermore, successful endoscopic submucosal dissection was executed on a live pig stomach, affirming the capacity of hydrogel to safely and effectively facilitate submucosal dissection and mitigate adverse events, such as bleeding. These results indicate that shear-thinning hydrogels have a wide range applications as submucosal injection materials.
Collapse
Affiliation(s)
- Penghui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Ruixue Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Juping Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Wenjie Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Haifeng Shen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yanhan Ren
- University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Xun Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Shuang Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
9
|
Zhang Y, Miao D, Su M, Tang Y, Zhou M, Yu Y, Guo X, Wu D. Synergistic Drug-Loaded Shear-Thinning Star Polymer Hydrogel Facilitates Gastrointestinal Lesion Resection and Promotes Wound Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309586. [PMID: 38686448 PMCID: PMC11234439 DOI: 10.1002/advs.202309586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/14/2024] [Indexed: 05/02/2024]
Abstract
Easy injection, long-lasting barrier, and drug loading are the critical properties of submucosal injection materials for endoscopic surgery. However, conventional injectable polymers face challenges in simultaneously attaining these properties due to the inherent conflict between injectability and in situ stability. Here, a multi-arm star polymer hydrogel (denoted as βCP hydrogel) with long-lasting submucosal barrier (exceeding 120 min), rapid hemostasis, and sustained antibacterial properties is successfully developed by grafting poly(oligo(ethylene glycol) methyl ether methacrylate) (PEGMA) side-chains from β-CD via atom transfer radical polymerization (ATRP). During the onset of shearing, βCP hydrogel experiences the unwinding of polymer side-chains between neighboring star polymers, which facilitates the process of endoscopic injectability. After submucosal injection, βCP hydrogel undergoes the winding of polymer side-chains, thereby establishing a long-lasting barrier cushion. Meanwhile, owing to its distinctive structures with a hydrophobic inner cavity and an outer layer of hydrophilic polymer side-chains, βCP hydrogel enables simultaneous loading and on-demand release of diverse categories of drugs. This unique performance can adapt to the diverse demands during different stages of wound healing in a porcine endoscopic surgery model. These results indicate an appealing prospect for new application of star polymers as a good submucosal injection material in endoscopic treatments.
Collapse
Affiliation(s)
- Yue Zhang
- PCFM LabSchool of ChemistrySun Yat‐sen UniversityGuangzhou510006P. R. China
| | - Dongtian Miao
- PCFM LabSchool of ChemistrySun Yat‐sen UniversityGuangzhou510006P. R. China
| | - Mingli Su
- Department of General Surgery (Endoscopic Surgery)Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesBiomedical Innovation CenterKey Laboratory of Human Microbiome and Chronic Diseases (Sun Yat‐sen University)Ministry of EducationGuangzhou510655P. R. China
- The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655P. R. China
| | - Yinxiang Tang
- PCFM LabSchool of ChemistrySun Yat‐sen UniversityGuangzhou510006P. R. China
| | - Minghong Zhou
- Medical Research InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080P. R. China
| | - Yang Yu
- Department of General Surgery (Colorectal Surgery)Guangdong Institute of GastroenterologyBiomedical Innovation CenterGuangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655P. R. China
| | - Xuefeng Guo
- Department of General Surgery (Endoscopic Surgery)Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesBiomedical Innovation CenterKey Laboratory of Human Microbiome and Chronic Diseases (Sun Yat‐sen University)Ministry of EducationGuangzhou510655P. R. China
- The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655P. R. China
| | - Dingcai Wu
- PCFM LabSchool of ChemistrySun Yat‐sen UniversityGuangzhou510006P. R. China
| |
Collapse
|
10
|
Brunchi CE, Morariu S. Laponite ®-From Dispersion to Gel-Structure, Properties, and Applications. Molecules 2024; 29:2823. [PMID: 38930887 PMCID: PMC11206873 DOI: 10.3390/molecules29122823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Laponite® (LAP) is an intensively studied synthetic clay due to the versatility given by its layered structure, which makes it usable in various applications. This review describes the multifaceted properties and applications of LAP in aqueous dispersions and gel systems. The first sections of the review discuss the LAP structure and the interactions between clay discs in an aqueous medium under different conditions (such as ionic strength, pH, temperature, and the addition of polymers) in order to understand the function of clay in tailoring the properties of the designed material. Additionally, the review explores the aging phenomenon characteristic of LAP aqueous dispersions as well as the development of shake-gels by incorporating LAP. The second part shows the most recent studies on materials containing LAP with possible applicability in the drilling industry, cosmetics or care products industry, and biomedical fields. By elucidating the remarkable versatility and ease of integration of LAP into various matrices, this review underscores its significance as a key ingredient for the creation of next-generation materials with tailored functionalities.
Collapse
Affiliation(s)
| | - Simona Morariu
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania;
| |
Collapse
|
11
|
Muñoz Taboada G, Dahis D, Dosta P, Edelman E, Artzi N. Sprayable Hydrogel Sealant for Gastrointestinal Wound Shielding. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311798. [PMID: 38421085 DOI: 10.1002/adma.202311798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/13/2024] [Indexed: 03/02/2024]
Abstract
Naturally occurring internal bleeding, such as in stomach ulcers, and complications following interventions, such as polyp resection post-colonoscopy, may result in delayed (5-7 days) post-operative adverse events-such as bleeding, intestinal wall perforation, and leakage. Current solutions for controlling intra- and post-procedural complications are limited in effectiveness. Hemostatic powders only provide a temporary solution due to their short-term adhesion to GI mucosal tissues (less than 48 h). In this study, a sprayable adhesive hydrogel for facile application and sustained adhesion to GI lesions is developed using clinically available endoscopes. Upon spraying, the biomaterial (based on polyethyleneimine-modified Pluronic micelles precursor and oxidized dextran) instantly gels upon contact with the tissue, forming an adhesive shield. In vitro and in vivo studies in guinea pigs, rabbits, and pig models confirm the safety and efficacy of this biomaterial in colonic and acidic stomach lesions. The authors' findings highlight that this family of hydrogels ensures prolonged tissue protection (3-7 days), facilitates wound healing, and minimizes the risk of delayed complications. Overall, this technology offers a readily adoptable approach for gastrointestinal wound management.
Collapse
Affiliation(s)
- Gonzalo Muñoz Taboada
- BioDevek, Boston, MA, 02134, USA
- Institut Químic de Sarrià, Univeritat Ramon Llull, Barcelona, 08017, Spain
| | | | - Pere Dosta
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Wyss Institute for Biologically-Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Elazer Edelman
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Natalie Artzi
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Wyss Institute for Biologically-Inspired Engineering, Harvard University, Boston, MA, 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02139, USA
| |
Collapse
|
12
|
Xu R, Yang X, Yi T, Tan T, Li Z, Feng X, Rao J, Zhou P, Hu H, Zhan Y. Injectable temperature-sensitive hydrogel facilitating endoscopic submucosal dissection. Front Bioeng Biotechnol 2024; 12:1395731. [PMID: 38742205 PMCID: PMC11089129 DOI: 10.3389/fbioe.2024.1395731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/10/2024] [Indexed: 05/16/2024] Open
Abstract
Purpose: Early gastrointestinal tumors can be removed by endoscopic procedures. Endoscopic mucosal dissection (ESD) requires submucosal fluid injection to provide mucosal elevation and prevent intraoperative perforation. However, the clinically applied normal saline mucosal elevation height is low for a short time, which often requires multiple intraoperative injections that increase the inconvenience and procedure time. In addition, recently researched submucosal injection materials (SIM) suffer from complex preparation, poor economy, and poor biocompatibility. Therefore, there is an urgent need for a new type of SIM that can provide long, safe and effective mucosal elevation in support of the endoscopic procedures. Methods: The FS hydrogel is based on polyethylene-polypropylene glycol (F-127) mixed with sodium alginate (SA). The different physicochemical properties of FS hydrogels were characterized through various experiments. Afterward, various biosafety assessments were carried out. Finally, the performance of FS hydrogels was evaluated by in vitro submucosal injection and in vivo swine ESD. Results: The experimental results show that the FS hydrogel is liquid at room temperature, making it easy to inject, and when injected under the mucosa, it undergoes temperature-induced cross-linking, transforming from a liquid to a solid state to provide long-lasting mucosal augmentation. At the same time, the FS hydrogel exhibits controllable gelation, stability, and biocompatibility. The results of in vitro submucosal injections and in vivo ESD procedures showed that FS achieves high mucosal augmentation and provides good submucosal cushioning in the long term. Conclusion: In summary, the F-127/SA hydrogel is simple to synthesize, cost-effective, safe, easy to store, and able to assist ESD well from the perspective of practical clinical problems, indicating that the FS hydrogel can be an ideal potent submucosal injection substitution.
Collapse
Affiliation(s)
- Ruifen Xu
- Anesthesiology Department, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
| | - Xiaoyu Yang
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, China
| | - Tong Yi
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, China
| | - Tao Tan
- University of Shanghai for Science and Technology, Shanghai, China
- Endoscopy Center and Endoscopy Research Institute, Shanghai Collaborative Innovation Center of Endoscopy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhongqi Li
- Endoscopy Center and Endoscopy Research Institute, Shanghai Collaborative Innovation Center of Endoscopy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xuyang Feng
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jing Rao
- Anesthesiology Department, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
| | - Pinghong Zhou
- Endoscopy Center and Endoscopy Research Institute, Shanghai Collaborative Innovation Center of Endoscopy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Hu
- Endoscopy Center and Endoscopy Research Institute, Shanghai Collaborative Innovation Center of Endoscopy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yonghua Zhan
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, China
| |
Collapse
|
13
|
Martorana A, Lenzuni M, Contardi M, Palumbo FS, Cataldo S, Pettignano A, Catania V, Schillaci D, Summa M, Athanassiou A, Fiorica C, Bertorelli R, Pitarresi G. Schiff Base-Based Hydrogel Embedded with In Situ Generated Silver Nanoparticles Capped by a Hyaluronic Acid-Diethylenetriamine Derivative for Wound Healing Application. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38603548 DOI: 10.1021/acsami.4c00657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
In this study, hydrogels were produced using a Schiff base reaction between two hyaluronic acid derivatives: one containing aldehyde groups (HA-Ald) and the other holding a diethylenetriamine with terminal amino groups (HA-DETA). The DETA portion promotes the in situ growth, complexation, and stabilization of silver nanoparticles (AgNPs), eliminating the need for external reducing agents. The reaction between HA-DETA and HA-Ald leads to the formation of imine bonds, which results in dynamically pH-responsive cross-linking. While the DETA capping ability helped in embedding the AgNPs, the on/off pH environmental responsivity of the hydrogel allows for a controlled and on-demand release of the drug, mainly when bacterial infections cause pH variation of the wound bed. The injectable hydrogels resulted in being highly compatible in contact with blood red cells, fibroblasts, and keratinocytes and capable of having a proliferative effect on an in vitro wound scratch model. The pH-responsive hydrogels showed proper antibacterial activity againstPseudomonas aeruginosaandStaphylococcus aureus, common bacterial strains presented in wound infections. Finally, in vivo wound model studies demonstrated an overall speeding up in the wound healing rate and advanced wound conditions in the experimental group treated with the hydrogels compared to control samples.
Collapse
Affiliation(s)
- Annalisa Martorana
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Martina Lenzuni
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Marco Contardi
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Department of Earth and Environmental Sciences (DISAT), University of Milan-Bicocca, Piazza della Scienza, 20126 Milan, Italy
| | - Fabio S Palumbo
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Salvatore Cataldo
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle scienze, Ed. 17, 90128 Palermo, Italy
| | - Alberto Pettignano
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle scienze, Ed. 17, 90128 Palermo, Italy
| | - Valentina Catania
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy
| | - Domenico Schillaci
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Maria Summa
- Translational Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | | | - Calogero Fiorica
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Rosalia Bertorelli
- Translational Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Giovanna Pitarresi
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| |
Collapse
|
14
|
Abstract
Bioadhesives have emerged as transformative and versatile tools in healthcare, offering the ability to attach tissues with ease and minimal damage. These materials present numerous opportunities for tissue repair and biomedical device integration, creating a broad landscape of applications that have captivated clinical and scientific interest alike. However, fully unlocking their potential requires multifaceted design strategies involving optimal adhesion, suitable biological interactions, and efficient signal communication. In this Review, we delve into these pivotal aspects of bioadhesive design, highlight the latest advances in their biomedical applications, and identify potential opportunities that lie ahead for bioadhesives as multifunctional technology platforms.
Collapse
Affiliation(s)
- Sarah J Wu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
15
|
Guo H, Shen H, Ma J, Wang P, Yao Z, Zhang W, Tan X, Chi B. Versatile Injectable Carboxymethyl Chitosan Hydrogel for Immediate Hemostasis, Robust Tissue Adhesion Barrier, and Antibacterial Applications. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37922211 DOI: 10.1021/acsami.3c12027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Iatrogenic ulcers resulting from endoscopic submucosal dissection surgery remain a significant clinical concern due to the risk of uncontrolled bleeding. Herein, we have developed an injectable shear-thinning hydrogel cross-linked through electrostatic interactions and hydrogen bonding. The hydrogel underwent comprehensive characterization, focusing on rheological behavior, injectability, microstructure, film-forming capability, adhesion, swelling behavior, degradation kinetics, antibacterial efficacy, hemostatic performance, and biocompatibility. The incorporation of poly(vinyl alcohol) notably enhanced the internal structural stability and injection pressure, while the Laponite content influenced self-healing ability, modulus, and viscosity. Additionally, the hydrogel exhibited pH sensitivity, appropriate degradation, and swelling rates and displayed favorable film-forming and adhesion properties. Notably, it demonstrated excellent resistance against Escherichia coli and Staphylococcus aureus, highlighting its potential to create an optimal wound environment. In vivo studies further confirmed the hydrogel's exceptional hemostatic performance, positioning it as an optimal material for endoscopic submucosal dissection (ESD) surgery. Moreover, cell experiments and hemolysis tests revealed high biocompatibility, supporting their potential to facilitate the healing of iatrogenic ulcers post-ESD surgery. In conclusion, our hydrogels hold great promise as endoscopic treatment materials for ESD-induced ulcers given their outstanding properties.
Collapse
Affiliation(s)
- Hao Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Haifeng Shen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Juping Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Penghui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Zheng Yao
- China Tobacco Jiangsu Industrial Co., Ltd., Nanjing 210019, P. R. China
| | - Wenjie Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Xiaoyan Tan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
- National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
- National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
16
|
Li X, Li X, Xia T, Chen W, Shea KJ, Lu X. Remarkable sol-gel transition of PNIPAm-based nanogels via large steric hindrance of side-chains. MATERIALS HORIZONS 2023; 10:4452-4462. [PMID: 37503733 DOI: 10.1039/d3mh00892d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
While the block/graft/branched structures are widely studied to favor the reversible physical gelation, there are no reports regarding the steric hindrance-induced sol-gel transition of PNIPAm-based nanogels above their phase transition temperature (Tp). Generally, the introduction of hydrophobic components into poly (N-isopropylacrylamide) (PNIPAm)-based nanogels only led to collapse and lower viscosity instead of the sol-gel transition upon heating above the Tp. Herein, the results of temperature-variable 1HNMR and FTIR confirm that the introduction of hydrophobic N-tert-butylacrylamide (TBA) with the large steric hindrance of side groups of N-tert-butyl to form NIPAm/TBA copolymer nanogels can dramatically slow down the dehydration of all the hydrophobic alkyl groups, thus resulting in the formation of thermally induced sol-gel transition above the Tp. Furthermore, the N-acrylamido-L-phenylalanine (APhe) monomer composed of a strongly water absorbing carboxyl group and a phenyl group with larger steric hindrance is studied to form P(NIPAm/TBA/APhe) terpolymer nanogels which can self-assemble into colorful colloidal crystals. Surprisingly, owing to the synergistic effect between the water absorbing carboxyl group and the steric hindrance group on the same side group, these colloidal crystals can achieve sol-gel transition above Tp, forming a physically crosslinked colorful hydrogel. This work is expected to greatly advance the design, synthesis, and application of the sol-gel transition of PNIPAm-based nanogel systems.
Collapse
Affiliation(s)
- Xiaoxiao Li
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, People's Republic of China.
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Xueting Li
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, People's Republic of China.
- Fujian Nano-Micro Advanced Materials Sci. & Tech. Co. Ltd., Three Creation Park, Jinjiang, Fujian 362200, People's Republic of China
- Anhui Microdelivery Smart Microcapsule Sci. & Tech. Co. Ltd., Tongling, Anhui 244000, People's Republic of China
| | - Tingting Xia
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Wei Chen
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Kenneth J Shea
- Department of Chemistry, University of California, Irvine, California 92697, USA
| | - Xihua Lu
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, People's Republic of China.
- Fujian Nano-Micro Advanced Materials Sci. & Tech. Co. Ltd., Three Creation Park, Jinjiang, Fujian 362200, People's Republic of China
- Anhui Microdelivery Smart Microcapsule Sci. & Tech. Co. Ltd., Tongling, Anhui 244000, People's Republic of China
| |
Collapse
|
17
|
Yang Z, Chen L, Liu J, Zhuang H, Lin W, Li C, Zhao X. Short Peptide Nanofiber Biomaterials Ameliorate Local Hemostatic Capacity of Surgical Materials and Intraoperative Hemostatic Applications in Clinics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301849. [PMID: 36942893 DOI: 10.1002/adma.202301849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/12/2023] [Indexed: 06/18/2023]
Abstract
Short designer self-assembling peptide (dSAP) biomaterials are a new addition to the hemostat group. It may provide a diverse and robust toolbox for surgeons to integrate wound microenvironment with much safer and stronger hemostatic capacity than conventional materials and hemostatic agents. Especially in noncompressible torso hemorrhage (NCTH), diffuse mucosal surface bleeding, and internal medical bleeding (IMB), with respect to the optimal hemostatic formulation, dSAP biomaterials are the ingenious nanofiber alternatives to make bioactive neural scaffold, nasal packing, large mucosal surface coverage in gastrointestinal surgery (esophagus, gastric lesion, duodenum, and lower digestive tract), epicardiac cell-delivery carrier, transparent matrix barrier, and so on. Herein, in multiple surgical specialties, dSAP-biomaterial-based nano-hemostats achieve safe, effective, and immediate hemostasis, facile wound healing, and potentially reduce the risks in delayed bleeding, rebleeding, post-operative bleeding, or related complications. The biosafety in vivo, bleeding indications, tissue-sealing quality, surgical feasibility, and local usability are addressed comprehensively and sequentially and pursued to develop useful surgical techniques with better hemostatic performance. Here, the state of the art and all-round advancements of nano-hemostatic approaches in surgery are provided. Relevant critical insights will inspire exciting investigations on peptide nanotechnology, next-generation biomaterials, and better promising prospects in clinics.
Collapse
Affiliation(s)
- Zehong Yang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
- Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lihong Chen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ji Liu
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hua Zhuang
- Department of Ultrasonography, West China Hospital of Sichuan University, No. 37 Guoxue Road, Wuhou District, Chengdu, Sichuan, 610041, China
| | - Wei Lin
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Women and Children Diseases of the Ministry of Education, Sichuan University, No. 17 People's South Road, Chengdu, Sichuan, 610041, China
| | - Changlong Li
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaojun Zhao
- Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
18
|
Lei XX, Hu JJ, Zou CY, Jiang YL, Zhao LM, Zhang XZ, Li YX, Peng AN, Song YT, Huang LP, Li-Ling J, Xie HQ. Multifunctional two-component in-situ hydrogel for esophageal submucosal dissection for mucosa uplift, postoperative wound closure and rapid healing. Bioact Mater 2023; 27:461-473. [PMID: 37152711 PMCID: PMC10160347 DOI: 10.1016/j.bioactmat.2023.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/29/2023] [Accepted: 04/16/2023] [Indexed: 05/09/2023] Open
Abstract
Endoscopic submucosal dissection (ESD) for gastrointestinal tumors and premalignant lesions needs submucosal fluid cushion (SFC) for mucosal uplift before dissection, and wound care including wound closure and rapid healing postoperatively. Current SFC materials as well as materials and/or methods for post-ESD wound care have single treatment effect and hold corresponding drawbacks, such as easy dispersion, short duration, weak hemostasis and insufficient repair function. Thus, designing materials that can serve as both SFC materials and wound care is highly desired, and remains a challenge. Herein, we report a two-component in-situ hydrogel prepared from maleimide-based oxidized sodium alginate and sulfhydryl carboxymethyl-chitosan, which gelated mainly based on "click" chemistry and Schiff base reaction. The hydrogels showed short gelation time, outstanding tissue adhesion, favorable hemostatic properties, and good biocompatibility. A rat subcutaneous ultrasound model confirmed the ability of suitable mucosal uplift height and durable maintenance time of AM solution. The in vivo/in vitro rabbit liver hemorrhage model demonstrated the effects of hydrogel in rapid hemostasis and prevention of delayed bleeding. The canine esophageal ESD model corroborated that the in-situ hydrogel provided good mucosal uplift and wound closure effects, and significantly accelerated wound healing with accelerating re-epithelization and ECM remodeling post-ESD. The two-component in-situ hydrogels exhibited great potential in gastrointestinal tract ESD.
Collapse
Affiliation(s)
- Xiong-Xin Lei
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Juan-Juan Hu
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chen-Yu Zou
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yan-Lin Jiang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Long-Mei Zhao
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiu-Zhen Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ya-Xing Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - An-Ni Peng
- Institute of Biomedical Engineering and Informatics, Ilmenau University of Technology, Gustav-Kirchh Off Str. 2, 98693, Ilmenau, Germany
| | - Yu-Ting Song
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Li-Ping Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jesse Li-Ling
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Medical Genetics, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hui-Qi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
19
|
Sangitra SN, Pujala RK. Effect of small amounts of akaganeite (β-FeOOH) nanorods on the gelation, phase behaviour and injectability of thermoresponsive Pluronic F127. SOFT MATTER 2023; 19:5869-5879. [PMID: 37401782 DOI: 10.1039/d3sm00451a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Pluronic F127 (PF127) is a copolymer with an amphiphilic nature and can self-assemble to form micelles and, beyond 20% (w/v), form a thermoresponsive physical gel state. However, they are mechanically weak and easily dissolve in physiological environments, which limits their use in load-bearing in specific biomedical applications. Therefore, we propose a pluronic-based hydrogel with enhanced stability by incorporating small amounts of paramagnetic nanorods, akaganeite (β-FeOOH) nanorods (NRs) of aspect ratio ∼7, with PF127. Due to their weak magnetic properties, β-FeOOH NRs have been used as a precursor for preparing stable iron-oxide states (e.g., hematite and magnetite), and the studies on β-FeOOH NRs to be used as a primary component in hydrogels are at the nascent stage. Here we report a method to synthesize β-FeOOH NRs on a gram scale using a simple sol-gel process and characterize the NRs with various techniques. A phase diagram and thermoresponsive behaviour based on rheological experiments and visual observations are proposed for 20% (w/v) PF127 with low concentrations (0.1-1.0% (w/v)) of β-FeOOH NRs. We observe a unique non-monotonous behaviour in the gel network represented by various rheological parameters like storage modulus, yield stress, fragility, high-frequency modulus plateau, and characteristic relaxation time as a function of nanorod concentration. A plausible physical mechanism is proposed to fundamentally understand the observed phase behaviour in the composite gels. These gels show thermoresponsiveness and enhanced injectability, and could find applications in tissue engineering and drug delivery.
Collapse
Affiliation(s)
- Surya Narayana Sangitra
- Soft and Active Matter group, Department of Physics, Indian Institute of Science Education and Research (IISER), Tirupati, Andhra Pradesh, 517507, India.
| | - Ravi Kumar Pujala
- Soft and Active Matter group, Department of Physics, Indian Institute of Science Education and Research (IISER), Tirupati, Andhra Pradesh, 517507, India.
- Centre for Atomic, Molecular and Optical Sciences & Technologies (CAMOST), Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, 517507, India
| |
Collapse
|
20
|
Chen Z, Ding J, Wu C, Wei D, Sun J, Fan H, Guo Z. A review of hydrogels used in endoscopic submucosal dissection for intraoperative submucosal cushions and postoperative management. Regen Biomater 2023; 10:rbad064. [PMID: 37501677 PMCID: PMC10368804 DOI: 10.1093/rb/rbad064] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 07/29/2023] Open
Abstract
Endoscopic submucosal dissection (ESD) has been clinically proved to have prominent advantages in the treatment of early gastrointestinal cancers over traditional surgery, including less trauma, fewer complications, a quicker recovery and lower costs. During the procedure of ESD, appropriate and multifunctional submucosal injected materials (SIMs) as submucosal cushions play an important role, however, even with many advances in design strategies of SIMs over the past decades, the performance of the submucosal cushions with postoperative management function seems to be still unsatisfactory. In this review, we gave a brief historical recount about the clinical development of SIMs, then some common applications of hydrogels used as SIMs in ESD were summarized, while an account of the universal challenges during ESD procedure was also outlined. Going one step further, some cutting-edge functional strategies of hydrogels for novel applications in ESD were exhibited. Finally, we concluded the advantages of hydrogels as SIMs for ESD as well as the treatment dilemma clinicians faced when it comes to deeply infiltrated lesions, some technical perspectives about linking the clinical demand with commercial supply were also proposed. Encompassing the basic elements of SIMs used in ESD surgery and the corresponding postoperative management requirements, this review could be a good reference for relevant practitioners in expanding the research horizon and improving the well-being index of patients.
Collapse
Affiliation(s)
| | | | - Chengheng Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610064, China
- Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu, Sichuan 610064, China
| | - Dan Wei
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610064, China
| | - Jing Sun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610064, China
| | | | | |
Collapse
|
21
|
Chung H, An S, Han SY, Jeon J, Cho S, Lee YC. Endoscopically injectable and self-crosslinkable hydrogel-mediated stem cell transplantation for alleviating esophageal stricture after endoscopic submucosal dissection. Bioeng Transl Med 2023; 8:e10521. [PMID: 37206239 PMCID: PMC10189443 DOI: 10.1002/btm2.10521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/17/2023] [Accepted: 03/29/2023] [Indexed: 05/21/2023] Open
Abstract
Esophageal stricture after extensive endoscopic submucosal dissection impairs the quality of life of patients with superficial esophageal carcinoma. Beyond the limitations of conventional treatments including endoscopic balloon dilatation and the application of oral/topical corticosteroids, several cell therapies have been recently attempted. However, such methods are still limited in clinical situations and existing setups, and the efficacies are less in some cases since the transplanted cells hardly remain at the resection site for a long time due to swallowing and peristalsis of the esophagus. Thus, a cell transplantation platform directly applicable with clinically established equipment and enabling stable retention of transplanted cells can be a promising therapeutic option for better clinical outcomes. Inspired by ascidians that rapidly self-regenerate, this study demonstrates endoscopically injectable and self-crosslinkable hyaluronate that allows both endoscopic injection in a liquid state and self-crosslinking as an in situ-forming scaffold for stem cell therapy. The pre-gel solution may compatibly be applied with endoscopic tubes and needles of small diameters, based on the improved injectability compared to the previously reported endoscopically injectable hydrogel system. The hydrogel can be formed via self-crosslinking under in vivo oxidative environment, while also exhibiting superior biocompatibility. Finally, the mixture containing adipose-derived stem cells and the hydrogel can significantly alleviate esophageal stricture after endoscopic submucosal dissection (75% of circumference, 5 cm in length) in a porcine model through paracrine effects of the stem cell in the hydrogel, which modulate regenerative processes. The stricture rates on Day 21 were 79.5% ± 2.0%, 62.8% ± 1.7%, and 37.9% ± 2.9% in the control, stem cell only, and stem cell-hydrogel groups, respectively (p < 0.05). Therefore, this endoscopically injectable hydrogel-based therapeutic cell delivery system can serve as a promising platform for cell therapies in various clinically relevant situations.
Collapse
Affiliation(s)
- Hyunsoo Chung
- Department of Internal Medicine and Liver Research InstituteSeoul National University College of MedicineSeoulRepublic of Korea
- Department of Medical Device DevelopmentSeoul National University College of MedicineSeoulRepublic of Korea
- Yonsei University Graduate School of MedicineSeoulRepublic of Korea
| | - Soohwan An
- Department of BiotechnologyYonsei UniversitySeoulRepublic of Korea
| | - Seung Yeop Han
- Department of BiotechnologyYonsei UniversitySeoulRepublic of Korea
| | - Jihoon Jeon
- Department of BiotechnologyYonsei UniversitySeoulRepublic of Korea
| | - Seung‐Woo Cho
- Department of BiotechnologyYonsei UniversitySeoulRepublic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS)SeoulRepublic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME)Advanced Science Institute, Yonsei UniversitySeoulRepublic of Korea
| | - Yong Chan Lee
- Yonsei University Graduate School of MedicineSeoulRepublic of Korea
- Department of Internal MedicineYonsei University College of MedicineSeoulRepublic of Korea
| |
Collapse
|
22
|
Ji J, Cheng J, Chen C, Lu Y, Chen X, Zhang F. Pirfenidone-loaded hyaluronic acid methacryloyl hydrogel for preventing epidural adhesions after laminectomy. Drug Deliv Transl Res 2023; 13:770-781. [PMID: 36182993 DOI: 10.1007/s13346-022-01236-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2022] [Indexed: 02/04/2023]
Abstract
It is inevitable that scar formation occurs between the spinal dura and surrounding tissues after laminectomy. While extensive epidural fibrosis, which results in limited nerve root activity and severe pain, is the main cause of postoperative failed-back surgery syndrome. Novel biomaterial loading effective drugs based on reasonable design are eagerly needed for the safe and effective prevention of epidural adhesions. We filtrated a suitable dose of pirfenidone (PFD) to load hyaluronic acid methacryloyl (HAMA) hydrogel in vitro. And then, we compare PFD-loaded HAMA hydrogel with only using PFD or HAMA hydrogels after laminectomy by in vivo studies in rats. We describe a safe and efficient anti-adhesive PFD-loaded HAMA hydrogel that prevents epidural fibrosis through the stable and sustained release of PFD. It was shown that the PFD-loaded HAMA hydrogel effectively inhibited cell penetration and suppressed collagen I/III expression. Thus, it effectively prevented the formation of adhesions through pharmacological and physical processes. The PFD-loaded HAMA hydrogel can effectively prevent adhesion formation in both pharmacological and physical barrier effects.
Collapse
Affiliation(s)
- Jiawei Ji
- Department of Spine Surgery, Affiliated Hospital and Medical School of Nantong University, Nantong University, Jiangsu Province, 226001, Nantong, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jiaqi Cheng
- Department of Spine Surgery, Affiliated Hospital and Medical School of Nantong University, Nantong University, Jiangsu Province, 226001, Nantong, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Cheng Chen
- Department of Spine Surgery, Affiliated Hospital and Medical School of Nantong University, Nantong University, Jiangsu Province, 226001, Nantong, China
| | - Yang Lu
- Department of Spine Surgery, Affiliated Hospital and Medical School of Nantong University, Nantong University, Jiangsu Province, 226001, Nantong, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xiaoqing Chen
- Department of Spine Surgery, Affiliated Hospital and Medical School of Nantong University, Nantong University, Jiangsu Province, 226001, Nantong, China.
| | - Feng Zhang
- Department of Spine Surgery, Affiliated Hospital and Medical School of Nantong University, Nantong University, Jiangsu Province, 226001, Nantong, China.
| |
Collapse
|
23
|
Mecwan M, Haghniaz R, Najafabadi AH, Mandal K, Jucaud V, John JV, Khademhosseini A. Thermoresponsive shear-thinning hydrogel (T-STH) hemostats for minimally invasive treatment of external hemorrhages. Biomater Sci 2023; 11:949-963. [PMID: 36537259 DOI: 10.1039/d2bm01559e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hemorrhage is the leading cause of death following battlefield injuries. Although several hemostats are commercially available, they do not meet all the necessary requirements to stop bleeding in combat injuries. Here, we engineer thermoresponsive shear-thinning hydrogels (T-STH) composed of a thermoresponsive polymer, poly(N-isopropyl acrylamide) (p(NIPAM)), and hemostatic silicate nanodisks, LAPONITE®, as minimally invasive injectable hemostatic agents. Our T-STH is a physiologically stable hydrogel that can be easily injected through a syringe and needle and exhibits rapid mechanical recovery. Additionally, it demonstrates temperature-dependent blood coagulation owing to the phase transition of p(NIPAM). It decreases in vitro blood clotting times over 50% at physiological temperatures compared to room temperature. Furthermore, it significantly prevents blood loss in an ex vivo bleeding model at different blood flow rates (1 mL min-1 and 5 mL min-1) by forming a wound plug. More importantly, our T-STH is comparable to a commercially available hemostat, Floseal, in terms of blood loss and blood clotting time in an in vivo rat liver bleeding model. Furthermore, once the hemorrhage is stabilized, our T-STH can be easily removed using a cold saline wash without any rebleeding or leaving any residues. Taken together, our T-STH can be used as a first aid hemostat to treat external hemorrhages in emergency situations.
Collapse
Affiliation(s)
- Marvin Mecwan
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA.
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA.
| | | | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA.
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA.
| | - Johnson V John
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA.
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA.
| |
Collapse
|
24
|
Wang QQ, Tan C, Qin G, Yao SK. Promising Clinical Applications of Hydrogels Associated With Precise Cancer Treatment: A Review. Technol Cancer Res Treat 2023; 22:15330338221150322. [PMID: 36604973 PMCID: PMC9829993 DOI: 10.1177/15330338221150322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 01/07/2023] Open
Abstract
Gastrointestinal cancer is one of the most malignant tumors with high morbidity and mortality, especially colorectal cancer, which has become the second leading cause of cancer-related deaths worldwide. Targeted drug treatment and precise endoscopic resection can significantly improve the overall survival rate and greatly extend the life span. Promising biomedical applications of hydrogels would represent hopeful therapeutic alternatives for patients with different kinds of diseases, particularly providing precise therapy for cancer patients. Although the intersection field of material science and biomedical science has made tremendous advances, major challenges remain. In this review, the application of hydrogel-based technology in cancer precision medicine is the focus of attention, which is the development trend of multidisciplinary cooperation in the future. First, we provide the current clinical landscape of hydrogel applications, and then we highlight precision oncology, including personalized drug treatment and accurate endoscopic intervention. Finally, we discuss major challenges for their clinical translation that have not yet been overcome and future perspectives on cancer precision medicine.
Collapse
Affiliation(s)
- Qian-qian Wang
- Peking University China-Japan Friendship School of Clinical
Medicine, Beijing, China
| | - Chang Tan
- Peking University China-Japan Friendship School of Clinical
Medicine, Beijing, China
| | - Geng Qin
- Department of Gastroenterology, China-Japan Friendship
Hospital, Beijing, China
| | - Shu-kun Yao
- Department of Gastroenterology, China-Japan Friendship
Hospital, Beijing, China
| |
Collapse
|
25
|
Piezoelectric MoS2 Nanoflowers (NF's) for Targeted Cancer Therapy by Gelatin-based Shear Thinning Hydrogels. In vitro and In vivo trials. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Feng W, Wang Z. Shear-thinning and self-healing chitosan-graphene oxide hydrogel for hemostasis and wound healing. Carbohydr Polym 2022; 294:119824. [PMID: 35868773 DOI: 10.1016/j.carbpol.2022.119824] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/31/2022] [Accepted: 06/30/2022] [Indexed: 01/12/2023]
Abstract
Hydrogels with injectability, self-healing ability and adhesiveness have great potential for hemostasis and full-thickness skin wound repair, which are usually fabricated by multistep chemical synthesis and the use of organic solvents and catalyst. Herein, we report an injectable and self-healing hydrogel facilely prepared through one-pot heating of chitosan and graphene oxide mixture solution, without any pollutant and waste generated. The dynamic reversible breakage and recombination of noncovalent bonds between chitosan and graphene oxide endows the hydrogel injectability and self-healing ability. In addition, the mechanical and rheological properties of the hydrogels can be controlled by varying the dosage of graphene oxide. Meanwhile, hydrogels exhibited good adhesiveness and hemocompatibility. Finally, in vivo experiments in a rat liver bleeding model and full-thickness skin defect model verified the outstanding hemostatic and wound healing capability of the hydrogels, indicating the promising future for use as wound dressing.
Collapse
Affiliation(s)
- Wenjun Feng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310027, China
| | - Zhengke Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang Province 310027, China.
| |
Collapse
|
27
|
A shear-thinning, ROS-scavenging hydrogel combined with dental pulp stem cells promotes spinal cord repair by inhibiting ferroptosis. Bioact Mater 2022; 22:274-290. [PMID: 36263097 PMCID: PMC9556860 DOI: 10.1016/j.bioactmat.2022.09.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/08/2022] [Accepted: 09/18/2022] [Indexed: 11/16/2022] Open
Abstract
Spinal cord injury (SCI) is a serious clinical disease. Due to the deformability and fragility of the spinal cord, overly rigid hydrogels cannot be used to treat SCI. Hence, we used TPA and Laponite to develop a hydrogel with shear-thinning ability. This hydrogel exhibits good deformation, allowing it to match the physical properties of the spinal cord; additionally, this hydrogel scavenges ROS well, allowing it to inhibit the lipid peroxidation caused by ferroptosis. According to the in vivo studies, the TPA@Laponite hydrogel could synergistically inhibit ferroptosis by improving vascular function and regulating iron metabolism. In addition, dental pulp stem cells (DPSCs) were introduced into the TPA@Laponite hydrogel to regulate the ratios of excitatory and inhibitory synapses. It was shown that this combination biomaterial effectively reduced muscle spasms and promoted recovery from SCI.
Collapse
|
28
|
Baidya A, Haghniaz R, Tom G, Edalati M, Kaneko N, Alizadeh P, Tavafoghi M, Khademhosseini A, Sheikhi A. A Cohesive Shear-Thinning Biomaterial for Catheter-Based Minimally Invasive Therapeutics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42852-42863. [PMID: 36121372 DOI: 10.1021/acsami.2c08799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Shear-thinning hydrogels are suitable biomaterials for catheter-based minimally invasive therapies; however, the tradeoff between injectability and mechanical integrity has limited their applications, particularly at high external shear stress such as that during endovascular procedures. Extensive molecular crosslinking often results in stiff, hard-to-inject hydrogels that may block catheters, whereas weak crosslinking renders hydrogels mechanically weak and susceptible to shear-induced fragmentation. Thus, controlling molecular interactions is necessary to improve the cohesion of catheter-deployable hydrogels. To address this material design challenge, we have developed an easily injectable, nonhemolytic, and noncytotoxic shear-thinning hydrogel with significantly enhanced cohesion via controlling noncovalent interactions. We show that enhancing the electrostatic interactions between weakly bound biopolymers (gelatin) and nanoparticles (silicate nanoplatelets) using a highly charged polycation at an optimum concentration increases cohesion without compromising injectability, whereas introducing excessive charge to the system leads to phase separation and loss of function. The cohesive biomaterial is successfully injected with a neuroendovascular catheter and retained without fragmentation in patient-derived three-dimensionally printed cerebral aneurysm models under a physiologically relevant pulsatile fluid flow, which would otherwise be impossible using the noncohesive hydrogel counterpart. This work sheds light on how charge-driven molecular and colloidal interactions in shear-thinning physical hydrogels improve cohesion, enabling complex minimally invasive procedures under flow, which may open new opportunities for developing the next generation of injectable biomaterials.
Collapse
Affiliation(s)
- Avijit Baidya
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
| | - Reihaneh Haghniaz
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California 90024, United States
| | - Gregory Tom
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
| | - Masoud Edalati
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
| | - Naoki Kaneko
- Division of Interventional Neuroradiology, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Parvin Alizadeh
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
| | - Maryam Tavafoghi
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
| | - Ali Khademhosseini
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California 90024, United States
| | - Amir Sheikhi
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
29
|
Sun Y, Lou W, Feng H, Su W, Lv S. A microexplosive shockwave-based drug delivery microsystem for treating hard-to-reach areas in the human body. MICROSYSTEMS & NANOENGINEERING 2022; 8:106. [PMID: 36164485 PMCID: PMC9508092 DOI: 10.1038/s41378-022-00441-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 06/16/2023]
Abstract
Implantable drug-delivery microsystems have the capacity to locally meet therapeutic requirements by maximizing local drug efficacy and minimizing potential side effects. The internal organs of the human body including the esophagus, gastrointestinal tract, and respiratory tract, with anfractuos contours, all manifest with endoluminal lesions often located in a curved or zigzag area. The ability of localized drug delivery for these organs using existing therapeutic modalities is limited. Spraying a drug onto these areas and using the adhesion and water absorption properties of the drug powder to attach to lesion areas can provide effective treatment. This study aimed to report the development and application of microsystems based on microshockwave delivery of drugs. The devices comprised a warhead-like shell with a powder placed at the head of the device and a flexible rod that could be inserted at the tail. These devices had the capacity to deposit drugs on mucous membranes in curved or zigzag areas of organs in the body. The explosive impact characteristics of the device during drug delivery were analyzed by numerical simulation. In the experiment of drug delivery in pig intestines, we described the biosafety and drug delivery capacity of the system. We anticipate that such microsystems could be applied to a range of endoluminal diseases in curved or zigzag regions of the human body while maximizing the on-target effects of drugs.
Collapse
Affiliation(s)
- Yi Sun
- Science and Technology on Electromechanical Dynamic Control Laboratory, School of Mechatronical Engineering, Beijing Institute of technology, Beijing, China
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing, China
| | - Wenzhong Lou
- Science and Technology on Electromechanical Dynamic Control Laboratory, School of Mechatronical Engineering, Beijing Institute of technology, Beijing, China
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing, China
| | - Hengzhen Feng
- Science and Technology on Electromechanical Dynamic Control Laboratory, School of Mechatronical Engineering, Beijing Institute of technology, Beijing, China
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing, China
| | - Wenting Su
- Science and Technology on Electromechanical Dynamic Control Laboratory, School of Mechatronical Engineering, Beijing Institute of technology, Beijing, China
| | - Sining Lv
- Science and Technology on Electromechanical Dynamic Control Laboratory, School of Mechatronical Engineering, Beijing Institute of technology, Beijing, China
| |
Collapse
|
30
|
Wong JHM, Tan RPT, Chang JJ, Chan BQY, Zhao X, Cheng JJW, Yu Y, Boo YJ, Lin Q, Ow V, Su X, Lim JYC, Loh XJ, Xue K. Injectable Hybrid-Crosslinked Hydrogels as Fatigue-Resistant and Shape-Stable Skin Depots. Biomacromolecules 2022; 23:3698-3712. [PMID: 35998618 DOI: 10.1021/acs.biomac.2c00574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Injectable hydrogels have gained considerable attention, but they are typically mechanically weak and subject to repeated physiological stresses in the body. Herein, we prepared polyurethane diacrylate (EPC-DA) hydrogels, which are injectable and can be photocrosslinked into fatigue-resistant implants. The mechanical properties can be tuned by changing photocrosslinking conditions, and the hybrid-crosslinked EPC-DA hydrogels exhibited high stability and sustained release properties. In contrast to common injectable hydrogels, EPC-DA hydrogels exhibited excellent antifatigue properties with >90% recovery during cyclic compression tests and showed shape stability after application of force and immersion in an aqueous buffer for 35 days. The EPC-DA hydrogel formed a shape-stable hydrogel depot in an ex vivo porcine skin model, with establishment of a temporary soft gel before in situ fixing by UV crosslinking. Hybrid crosslinking using injectable polymeric micelles or nanoparticles may be a general strategy for producing hydrogel implants resistant to physiological stresses.
Collapse
Affiliation(s)
- Joey Hui Min Wong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138 634, Singapore
| | - Rebekah Pei Ting Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138 634, Singapore
| | - Jun Jie Chang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138 634, Singapore
| | - Benjamin Qi Yu Chan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138 634, Singapore
| | - Xinxin Zhao
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Jayce Jian Wei Cheng
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138 634, Singapore
| | - Yong Yu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138 634, Singapore
| | - Yi Jian Boo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138 634, Singapore
| | - Qianyu Lin
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138 634, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore (NUS), 21 Lower Kent Ridge Rd, Singapore 119077, Singapore
| | - Valerie Ow
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138 634, Singapore
| | - Xinyi Su
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Jason Y C Lim
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138 634, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138 634, Singapore.,Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore.,School of Materials Science and Engineering, Nanyang Technological University 50 Nanyang Avenue, #01-30 General Office, Block N4.1, Singapore 639798, Singapore
| | - Kun Xue
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138 634, Singapore
| |
Collapse
|
31
|
Wang Z, Zhang Y, Yin Y, Liu J, Li P, Zhao Y, Bai D, Zhao H, Han X, Chen Q. High-Strength and Injectable Supramolecular Hydrogel Self-Assembled by Monomeric Nucleoside for Tooth-Extraction Wound Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108300. [PMID: 35066934 DOI: 10.1002/adma.202108300] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/18/2022] [Indexed: 02/05/2023]
Abstract
Hydrogels with high mechanical strength and injectability have attracted extensive attention in biomedical and tissue engineering. However, endowing a hydrogel with both properties is challenging because they are generally inversely related. In this work, by constructing a multi-hydrogen-bonding system, a high-strength and injectable supramolecular hydrogel is successfully fabricated. It is constructed by the self-assembly of a monomeric nucleoside molecular gelator (2-amino-2'-fluoro-2'-deoxyadenosine (2-FA)) with distilled water/phosphate buffered saline as solvent. Its storage modulus reaches 1 MPa at a concentration of 5.0 wt%, which is the strongest supramolecular hydrogel comprising an ultralow-molecular-weight (MW < 300) gelator. Furthermore, it exhibits excellent shear-thinning injectability, and completes the sol-gel transition in seconds after injection at 37 °C. The multi-hydrogen-bonding system is essentially based on the synergistic interactions between the double NH2 groups, water molecules, and 2'-F atoms. Furthermore, the 2-FA hydrogel exhibits excellent biocompatibility and antibacterial activity. When applied to rat molar extraction sockets, compared to natural healing and the commercial hemorrhage agent gelatin sponge, the 2-FA hydrogel exhibits faster degradation and induces less osteoclastic activity and inflammatory infiltration, resulting in more complete bone healing. In summary, this study provides ideas for proposing a multifunctional, high-strength, and injectable supramolecular hydrogel for various biomedical engineering applications.
Collapse
Affiliation(s)
- Zheng Wang
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med‐X Center for Materials West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Yanan Zhang
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med‐X Center for Materials West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Yijia Yin
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med‐X Center for Materials West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Jiang Liu
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med‐X Center for Materials West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Peiran Li
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med‐X Center for Materials West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Yuxi Zhao
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med‐X Center for Materials West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Ding Bai
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med‐X Center for Materials West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Hang Zhao
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med‐X Center for Materials West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Xianglong Han
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med‐X Center for Materials West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med‐X Center for Materials West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| |
Collapse
|
32
|
Chu JN, Traverso G. Foundations of gastrointestinal-based drug delivery and future developments. Nat Rev Gastroenterol Hepatol 2022; 19:219-238. [PMID: 34785786 PMCID: PMC12053541 DOI: 10.1038/s41575-021-00539-w] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/07/2021] [Indexed: 12/12/2022]
Abstract
Gastrointestinal-based drug delivery is considered the preferred mode of drug administration owing to its convenience for patients, which improves adherence. However, unique characteristics of the gastrointestinal tract (such as the digestive environment and constraints on transport across the gastrointestinal mucosa) limit the absorption of drugs. As a result, many medications, in particular biologics, still exist only or predominantly in injectable form. In this Review, we examine the fundamentals of gastrointestinal drug delivery to inform clinicians and pharmaceutical scientists. We discuss general principles, including the challenges that need to be overcome for successful drug formulation, and describe the unique features to consider for each gastrointestinal compartment when designing drug formulations for topical and systemic applications. We then discuss emerging technologies that seek to address remaining obstacles to successful gastrointestinal-based drug delivery.
Collapse
Affiliation(s)
- Jacqueline N Chu
- Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Giovanni Traverso
- Massachusetts Institute of Technology, Cambridge, MA, USA.
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
33
|
Martinez RM, Oseliero Filho PL, Gerbelli BB, Magalhães WV, Velasco MVR, da Silva Lannes SC, de Oliveira CLP, Rosado C, Baby AR. Influence of the Mixtures of Vegetable Oil and Vitamin E over the Microstructure and Rheology of Organogels. Gels 2022; 8:gels8010036. [PMID: 35049573 PMCID: PMC8774424 DOI: 10.3390/gels8010036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/22/2021] [Accepted: 01/02/2022] [Indexed: 02/06/2023] Open
Abstract
Candelilla wax (CW) and 12-hydroxystearic acid (12HSA) are classic solid-fiber-matrix organogelators. Despite the high number of studies using those ingredients in oily systems, there is scarce literature using a mixture of oil and antioxidants. Vitamin E (VE) is an important candidate for its lipophilicity and several applications on pharmaceutical, cosmetics, and food industries. In this work, we investigated the influences of mixtures between vegetable oil (VO) and VE on the microstructures and rheological properties of CW and 12HSA organogels. A weak gel (G′′/G′ > 0.1) with a shear-thinning behavior was observed for all samples. The presence of VE impacted the gel strength and the phase transition temperatures in a dose-dependent pattern. Larger and denser packed crystals were seen for 12HSA samples, while smaller and more dispersed structures were obtained for CW organogels. The results obtained in this work allowed the correlation of the structural and mechanical properties of the organogels, which plays an important role in the physical-chemical characteristics of these materials.
Collapse
Affiliation(s)
- Renata Miliani Martinez
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil;
- Correspondence: (R.M.M.); (A.R.B.)
| | | | - Barbara Bianca Gerbelli
- Center of Natural and Human Sciences, Federal University of ABC, Santo André 09210-170, Brazil;
| | | | - Maria Valéria Robles Velasco
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil;
| | - Suzana Caetano da Silva Lannes
- Department of Biochemical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil;
| | | | - Catarina Rosado
- CBIOS—Universidade Lusófona’s Research Center for Biosciences and Health Technologies, 1749-024 Lisbon, Portugal;
| | - André Rolim Baby
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil;
- Correspondence: (R.M.M.); (A.R.B.)
| |
Collapse
|
34
|
Stem cell-laden hydrogel bioink for generation of high resolution and fidelity engineered tissues with complex geometries. Bioact Mater 2021; 15:185-193. [PMID: 35386348 PMCID: PMC8940765 DOI: 10.1016/j.bioactmat.2021.11.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/30/2022] Open
|
35
|
Tang Y, Hu M, Tang F, Huang R, Wang H, Wu D, Lan P. Easily-injectable shear-thinning hydrogel provides long-lasting submucosal barrier for gastrointestinal endoscopic surgery. Bioact Mater 2021; 15:44-52. [PMID: 35386335 PMCID: PMC8940951 DOI: 10.1016/j.bioactmat.2021.11.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/22/2022] Open
Abstract
Submucosal injection material has shown protective effect against gastrointestinal injury during endoscopic surgery in clinic. However, the protective ability of existing submucosal injection material is strictly limited by their difficult injectability and short barrier time. Herein, we report a shear-thinning gellan gum hydrogel that simultaneously has easy injectability and long-lasting barrier function, together with good hemostatic property and biocompatibility. Shear-thinning property endows our gellan gum hydrogel with excellent endoscopic injection performance, and the injection pressure of our gellan gum hydrogel is much lower than that of the small molecule solution (50 wt% dextrose) when injected through the endoscopic needle. More importantly, our gellan gum hydrogel shows much stronger barrier retention ability than normal saline and sodium hyaluronate solution in the ex vivo and in vivo models. Furthermore, our epinephrine-containing gellan gum hydrogel has a satisfactory hemostatic effect in the mucosal lesion resection model of pig. These results indicate an appealing application prospect for gellan gum hydrogel utilizing as a submucosal injection material in endoscopic surgery. Submucosal injection materials are widely used in endoscopic surgery to protect against gastrointestinal injury. Gellan gum hydrogel with shear-thinning character is a novel submucosal injection material. Gellan gum hydrogel simultaneously has easy injectability and long-lasting barrier performance in vivo. Epinephrine-containing gellan gum hydrogel has a satisfactory hemostatic effect.
Collapse
|
36
|
Prasad NK, Shome R, Biswas G, Ghosh SS, Dalal A. Discerning the self-healing, shear-thinning characteristics and therapeutic efficacy of hydrogel drug carriers migrating through constricted microchannel resembling blood microcapillary. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
37
|
Madhavikutty AS, Ohta S, Chandel AKS, Qi P, Ito T. Analysis of Endoscopic Injectability and Post-Ejection Dripping of Yield Stress Fluids: Laponite, Carbopol and Xanthan Gum. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2021; 54:500-511. [DOI: 10.1252/jcej.21we018] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
| | - Seiichi Ohta
- Institute of Engineering Innovation, The University of Tokyo
| | | | - Pan Qi
- Center for Disease Biology and Integrative Medicine, The University of Tokyo
| | - Taichi Ito
- Center for Disease Biology and Integrative Medicine, The University of Tokyo
| |
Collapse
|
38
|
Cook K, Naguib N, Price CE, Katharios S, Kirsch J, Cortes K, Hohl K, O'Toole GA, Grinstaff MW. Temporary In Situ Hydrogel Dressings for Colon Polypectomies. ACS Biomater Sci Eng 2021; 7:4362-4370. [PMID: 34342427 DOI: 10.1021/acsbiomaterials.1c00549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Currently, no dressings are utilized after removal of polyps during a colonoscopy rendering these tissue sites susceptible to bleeding, sepsis, and perfusion. We report the design specifications, synthesis, and ex vivo evaluation of in situ polymerized hydrogels as colon wound dressings post polypectomy. The hydrogels exhibited varied properties to include moduli between 100 and 16 000 Pa, dissolution times between 4 h to 7 days or longer, swelling up to 200%, and adhesion to colon tissue from 0.1 to 0.4 N/cm2. The hydrogels displayed minimal cytotoxicity, prevented the migration/spread of bacteria, and exhibited rapid gelation, a requirement for application to the lumen of the colon via an endoscope. This work highlights the structure-property relationship of hydrogels prepared from N-hydroxysuccinimide functionalized PEG cross-linkers and hyperbranched polyethylenimines or 4-arm PEG-NH2 star polymers, and their potential as colon wound dressings.
Collapse
Affiliation(s)
- Katherine Cook
- Departments of Chemistry, Biomedical Engineering, and Medicine, Boston University, Boston, Massachusetts 02215, United States
| | - Nada Naguib
- Departments of Chemistry, Biomedical Engineering, and Medicine, Boston University, Boston, Massachusetts 02215, United States
| | - Courtney E Price
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, United States
| | - Stefan Katharios
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, United States
| | - Jack Kirsch
- Departments of Chemistry, Biomedical Engineering, and Medicine, Boston University, Boston, Massachusetts 02215, United States
| | - Kareen Cortes
- Departments of Chemistry, Biomedical Engineering, and Medicine, Boston University, Boston, Massachusetts 02215, United States
| | - Katherine Hohl
- Departments of Chemistry, Biomedical Engineering, and Medicine, Boston University, Boston, Massachusetts 02215, United States
| | - George A O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, United States
| | - Mark W Grinstaff
- Departments of Chemistry, Biomedical Engineering, and Medicine, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
39
|
Babaee S, Shi Y, Abbasalizadeh S, Tamang S, Hess K, Collins JE, Ishida K, Lopes A, Williams M, Albaghdadi M, Hayward AM, Traverso G. Kirigami-inspired stents for sustained local delivery of therapeutics. NATURE MATERIALS 2021; 20:1085-1092. [PMID: 34127823 DOI: 10.1038/s41563-021-01031-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Implantable drug depots have the capacity to locally meet therapeutic requirements by maximizing local drug efficacy and minimizing potential systemic side effects. Tubular organs including the gastrointestinal tract, respiratory tract and vasculature all manifest with endoluminal disease. The anatomic distribution of localized drug delivery for these organs using existing therapeutic modalities is limited. Application of local depots in a circumferential and extended longitudinal fashion could transform our capacity to offer effective treatment across a range of conditions. Here we report the development and application of a kirigami-based stent platform to achieve this. The stents comprise a stretchable snake-skin-inspired kirigami shell integrated with a fluidically driven linear soft actuator. They have the capacity to deposit drug depots circumferentially and longitudinally in the tubular mucosa of the gastrointestinal tract across millimetre to multi-centimetre length scales, as well as in the vasculature and large airways. We characterize the mechanics of kirigami stents for injection, and their capacity to engage tissue in a controlled manner and deposit degradable microparticles loaded with therapeutics by evaluating these systems ex vivo and in vivo in swine. We anticipate such systems could be applied for a range of endoluminal diseases by simplifying dosing regimens while maximizing drug on-target effects through the sustained release of therapeutics and minimizing systemic side effects.
Collapse
Affiliation(s)
- Sahab Babaee
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yichao Shi
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Saeed Abbasalizadeh
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Siddartha Tamang
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kaitlyn Hess
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joy E Collins
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Keiko Ishida
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Aaron Lopes
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael Williams
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mazen Albaghdadi
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alison M Hayward
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Giovanni Traverso
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
40
|
Cui S, Wei Y, Bian Q, Zhu Y, Chen X, Zhuang Y, Cai M, Tang J, Yu L, Ding J. Injectable Thermogel Generated by the "Block Blend" Strategy as a Biomaterial for Endoscopic Submucosal Dissection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19778-19792. [PMID: 33881817 DOI: 10.1021/acsami.1c03849] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Endoscopic submucosal dissection is an established method for the removal of early cancers and large lesions from the gastrointestinal tract but is faced with the risk of perforation. To decrease this risk, a submucosal fluid cushion (SFC) is needed clinically by submucosal injection of saline and so on to lift and separate the lesion from the muscular layer. Some materials have been tried as the SFC so far with disadvantages. Here, we proposed a thermogel generated by the "block blend" strategy as an SFC. This system was composed of two amphiphilic block copolymers in water, so it was called a "block blend". We synthesized two non-thermogellable copolymers poly(d,l-lactide-co-glycolide)-b-poly(ethylene glycol)-b-poly(d,l-lactide-co-glycolide) and blended them in water to achieve a sol-gel transition upon heating in both pure water and physiological saline. We explored the internal structure of the resultant thermogel with transmission electron microscopy, three-dimensional light scattering, 13C NMR, fluorescence resonance energy transfer, and rheological measurements, which indicated a percolated micelle network. The biosafety of the synthesized copolymer was preliminarily confirmed in vitro. The main necessary functions as an SFC, namely, injectability of a sol and the maintained mucosal elevation as a gel after injection, were verified ex vivo. This study has revealed the internal structure of the block blend thermogel and illustrated its potential application as a biomaterial. This work might be stimulating for investigations and applications of intelligent materials with both injectability and thermogellability of tunable phase-transition temperatures.
Collapse
Affiliation(s)
- Shuquan Cui
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Yiman Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Qiao Bian
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Yan Zhu
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Shanghai 200032, China
| | - Xiaobin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Yaping Zhuang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Mingyan Cai
- Endoscopy Center and Endoscopy Research Institute, Zhongshan Hospital, Shanghai 200032, China
| | - Jingyu Tang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
- Zhuhai Fudan Innovation Institute, Zhuhai, Guangdong 519000, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
- Zhuhai Fudan Innovation Institute, Zhuhai, Guangdong 519000, China
| |
Collapse
|
41
|
Kushan E, Senses E. Thermoresponsive and Injectable Composite Hydrogels of Cellulose Nanocrystals and Pluronic F127. ACS APPLIED BIO MATERIALS 2021; 4:3507-3517. [PMID: 35014435 DOI: 10.1021/acsabm.1c00046] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Thermoresponsive amphiphilic Pluronic F127 triblock copolymer solutions have been widely investigated in smart biomaterial applications due to the proximity of its critical gel temperature to human body temperature. Meanwhile, cellulose nanocrystals (CNCs) have quickly become the focus of many drug delivery and tissue engineering applications due to their biocompatibility, abundance, ability to conjugate with drug molecules, and superior rheological properties. Herein, we investigate the phase behavior and thermo-rheological properties of the composite hydrogels containing cellulose nanocrystals (up to 5% by weight) and the temperature responsive Pluronic F127. Our results revealed an unprecedented role of CNC network formation on micellization and gelation behavior of the triblock copolymer. Linear and nonlinear rheological analysis suggest that at low and moderate nanocrystal loadings (1-3% by weight), the composite gel remarkably becomes softer and deformable compared to the neat Pluronic F127 gels. The softening effect results from the disruption of the close packed micelles by the rodlike CNCs. At high concentrations, however, the nanocrystals form their own network and the micelles are trapped within the CNC meshes. As a result, the original (neat F127) hard-gel modulus is recovered at 4 to 5% nanocrystal loading, yet the composite gel is much more deformable (and tougher) in the presence of the CNC network. Our temperature sweep experiments show that the CNC addition up to 3% does not change the rapid thermal gelation of the F127 solutions; therefore, these composites are suitable for smart drug delivery systems. On the other hand, at higher CNC concentrations, abrupt viscosity transition is not observed, rather the composite gels smoothly thicken with temperature in contrast to thermal thinning of the aqueous neat CNC. Thus, they can be used as smartly adaptive biolubricants and bioviscostatic materials.
Collapse
Affiliation(s)
- Eren Kushan
- Chemical and Biological Engineering, Koc University, Sariyer, Istanbul 34450, Turkey
| | - Erkan Senses
- Chemical and Biological Engineering, Koc University, Sariyer, Istanbul 34450, Turkey
| |
Collapse
|
42
|
Hirose R, Yoshida T, Naito Y, Watanabe N, Hashimoto H, Sugino S, Bandou R, Daidoji T, Inoue K, Dohi O, Yoshida N, Nakaya T, Itoh Y. Differences between two sodium hyaluronate-based submucosal injection materials currently used in Japan based on viscosity analysis. Sci Rep 2021; 11:5693. [PMID: 33707637 PMCID: PMC7952736 DOI: 10.1038/s41598-021-85118-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/25/2021] [Indexed: 11/09/2022] Open
Abstract
In Japan, two 0.4% sodium hyaluronate (HA)-based submucosal injection materials (SIMs) are currently used in endoscopic submucosal dissection (ESD): MucoUp (HA-Mc) and Ksmart (HA-Ks). HA-Mc and HA-Ks have the same concentration and are, thus, construed by most endoscopists to have no difference. Nevertheless, visual observation conveys the impression that HA-Ks have a higher viscosity than HA-Mc, suggesting that HA-Ks performs better than HA-Mc. This study aimed to examine the differences between HA-Mc and HA-Ks. HA-Ks exhibited higher viscosity due to greater weight-average molecular weight compared with HA-Mc. HA-Ks had significantly greater submucosal elevation height (SEH) than HA-Mc; the SEH of HA-Ks-80% (80% dilution of HA-Ks) was the same as that of HA-Mc. The ESD procedure time was significantly shorter with HA-Ks than with HA-Mc (15.2 ± 4.1 vs. 19.5 ± 5.9; P = 0.049). The total injection volume for HA-Ks was significantly lower than that for HA-Mc (10.8 ± 3.6 vs. 14.4 ± 4.6; P = 0.045). However, no significant difference in these items was observed between HA-Mc and HA-Ks-80%. HA-Mc and HA-Ks were considered to be almost the same. Nonetheless, HA-Ks exhibited higher viscosity and SIM performance than HA-Mc. HA-Ks-80% had almost the same performance as HA-Mc. Thus, understanding SIM performance and characteristics requires a focus on the viscosity of SIMs.
Collapse
Affiliation(s)
- Ryohei Hirose
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
- Department of Infectious Diseases, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Takuma Yoshida
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yuji Naito
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Naoto Watanabe
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hikaru Hashimoto
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Satoshi Sugino
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Risa Bandou
- Department of Infectious Diseases, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomo Daidoji
- Department of Infectious Diseases, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ken Inoue
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Osamu Dohi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Naohisa Yoshida
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Takaaki Nakaya
- Department of Infectious Diseases, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshito Itoh
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
43
|
Hirose R, Nakaya T, Naito Y, Yoshida N, Itoh Y. Performance comparison between next-generation and shear-thinning hydrogel-based submucosal injection materials. Gastrointest Endosc 2021; 93:777-779.e4. [PMID: 33583533 DOI: 10.1016/j.gie.2020.10.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Ryohei Hirose
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan; Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takaaki Nakaya
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuji Naito
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naohisa Yoshida
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshito Itoh
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
44
|
Hirose R, Nakaya T, Naito Y, Yoshida T, Bandou R, Daidoji T, Inoue K, Dohi O, Yoshida N, Itoh Y. An innovative next-generation endoscopic submucosal injection material with a 2-step injection system (with video). Gastrointest Endosc 2021; 93:503-513.e5. [PMID: 32565186 DOI: 10.1016/j.gie.2020.06.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Next-generation submucosal injection materials (SIMs) with higher performance and flexibility than the current SIMs (eg, 0.4% sodium hyaluronate solution [HA]) are expected to improve the outcomes of endoscopic submucosal dissection (ESD) but are difficult to develop. We developed a next-generation SIM by devising a 2-solution-type SIM comprising 2.0% calcium chloride solution (Ca) and 0.4% sodium alginate solution (SA) and evaluated its performance. METHODS Viscoelasticity, submucosal elevation height, and injection pressure of HA, SA, and the next-generation SIM were measured. Outcomes of ESDs on pseudo-lesions in ex vivo porcine stomach/colon models were compared. RESULTS The dramatic increase in SA viscoelasticity with the addition of Ca facilitated the formation of highly viscous submucosal cushions that can be controlled by endoscopists. The submucosal elevation height of the next-generation SIM was significantly higher than that of HA or SA with the same injection pressure. The ESD procedure time using the next-generation SIM was significantly shorter than that using HA or SA (14.2 ± 6.1 vs 29.2 ± 9.1 minutes, P = .0004, or 14.2 ± 6.1 vs 29.1 ± 5.9 minutes, P <.0001). Furthermore, the total injection volume for the next-generation SIM was considerably lower than that for HA or SA (7.0 ± 0.9 vs 17.2 ± 3.4 mL, P <.0001, or 7.0 ± 0.9 vs 16.2 ± 2.9 mL, P <.0001). CONCLUSIONS We developed an ideal next-generation SIM that achieved high performance and high flexibility in ex vivo models. Our findings warrant further investigations in a patient population.
Collapse
Affiliation(s)
- Ryohei Hirose
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan; Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takaaki Nakaya
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuji Naito
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takuma Yoshida
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Risa Bandou
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomo Daidoji
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ken Inoue
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Osamu Dohi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naohisa Yoshida
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshito Itoh
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
45
|
Gao F, Jiao C, Yu B, Cong H, Shen Y. Preparation and biomedical application of injectable hydrogels. MATERIALS CHEMISTRY FRONTIERS 2021; 5:4912-4936. [DOI: 10.1039/d1qm00489a] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The preparation of multifunctional injectable hydrogels, as well as the classification of injectable hydrogels according to different functions, most summarize the applications of injectable hydrogels in different biomedical fields.
Collapse
Affiliation(s)
- Fengyuan Gao
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- College of Chemistry and Chemical Engineering
- Qingdao University
- Qingdao 266071
| | - Caicai Jiao
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- College of Chemistry and Chemical Engineering
- Qingdao University
- Qingdao 266071
| | - Bing Yu
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- College of Chemistry and Chemical Engineering
- Qingdao University
- Qingdao 266071
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- College of Chemistry and Chemical Engineering
- Qingdao University
- Qingdao 266071
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering
- College of Materials Science and Engineering
- College of Chemistry and Chemical Engineering
- Qingdao University
- Qingdao 266071
| |
Collapse
|
46
|
Yuan Q, Li L, Peng Y, Zhuang A, Wei W, Zhang D, Pang Y, Bi X. Biomimetic nanofibrous hybrid hydrogel membranes with sustained growth factor release for guided bone regeneration. Biomater Sci 2021; 9:1256-1271. [PMID: 33470265 DOI: 10.1039/d0bm01821j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A biomimetic nanofibrous membrane can immobilize growth factors or agents to obtain sustained release and prolonged effect in tissue engineering.
Collapse
Affiliation(s)
- Qingyue Yuan
- Department of Ophthalmology
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- China
| | - Lunhao Li
- Department of Ophthalmology
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- China
| | - Yiyu Peng
- Department of Ophthalmology
- the First Affiliated Hospital of Zhejiang University
- China
| | - Ai Zhuang
- Department of Ophthalmology
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- China
| | - Wei Wei
- Department of Ophthalmology
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- China
| | - Dandan Zhang
- Department of Ophthalmology
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- China
| | - Yan Pang
- Department of Ophthalmology
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- China
| | - Xiaoping Bi
- Department of Ophthalmology
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- China
| |
Collapse
|
47
|
Viscosity and degradation controlled injectable hydrogel for esophageal endoscopic submucosal dissection. Bioact Mater 2020; 6:1150-1162. [PMID: 33134608 PMCID: PMC7588753 DOI: 10.1016/j.bioactmat.2020.09.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/26/2020] [Accepted: 09/27/2020] [Indexed: 12/16/2022] Open
Abstract
Endoscopic submucosal dissection (ESD) is a common procedure to treat early and precancerous gastrointestinal lesions. Via submucosal injection, a liquid cushion is created to lift and separate the lesion and malignant part from the muscular layer where the formed indispensable space is convenient for endoscopic incision. Saline is a most common submucosal injection liquid, but the formed liquid pad lasts only a short time, and thus repeated injections increase the potential risk of adverse events. Hydrogels with high osmotic pressure and high viscosity are used as an alternate; however, with some drawbacks such as tissue damage, excessive injection resistance, and high cost. Here, we reported a nature derived hydrogel of gelatin-oxidized alginate (G-OALG). Based on the rheological analysis and compare to commercial endoscopic mucosal resection (EMR) solution (0.25% hyaluronic acid, HA), a designed G-OALG hydrogel of desired concentration and composition showed higher performances in controllable gelation and injectability, higher viscosity and more stable structures. The G-OALG gel also showed lower propulsion resistance than 0.25% HA in the injection force assessment under standard endoscopic instruments, which eased the surgical operation. In addition, the G-OALG hydrogel showed good in vivo degradability biocompatibility. By comparing the results acquired via ESD to normal saline, the G-OALG shows great histocompatibility and excellent endoscopic injectability, and enables create a longer-lasting submucosal cushion. All the features have been confirmed in the living both pig and rat models. The G-OALG could be a promising submucosal injection agent for esophageal ESD. Injectable gel with controlled viscosity. Injectable gel with controlled degradation. Making esophageal submucosal liquid cushion. Potential treatment for early esophageal cancer. Big animal in-situ imaging.
Collapse
|
48
|
Yoshida T, Hirose R, Naito Y, Inoue K, Dohi O, Yoshida N, Kamada K, Uchiyama K, Ishikawa T, Takagi T, Konishi H, Nakaya T, Itoh Y. Viscosity: An important factor in predicting the performance of submucosal injection materials. MATERIALS & DESIGN 2020; 195:109008. [DOI: 10.1016/j.matdes.2020.109008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2023]
|
49
|
Wang Y, Li L, Ma Y, Tang Y, Zhao Y, Li Z, Pu W, Huang B, Wen X, Cao X, Chen J, Chen W, Zhou Y, Zhang J. Multifunctional Supramolecular Hydrogel for Prevention of Epidural Adhesion after Laminectomy. ACS NANO 2020; 14:8202-8219. [PMID: 32520519 DOI: 10.1021/acsnano.0c01658] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Postoperative epidural adhesion remains a clinically challenging problem in spine surgery. Currently there are no effective and safe antifibrotic and antiadhesion biomaterials that have been specifically developed for this complication in clinical practice. Herein we designed and engineered an advanced antiadhesion hydrogel with multiple functionalities, including temperature-responsive gelation, self-healing, tissue adhesiveness, antioxidation, anti-inflammation, and antifibrosis. This multifunctional supramolecular hydrogel can be facilely constructed by integrating three functional modules, i.e., a thermosensitive triblock copolymer, poloxamer 407 (PX); a reactive oxygen species-eliminating and anti-inflammatory nanoparticle (TPCD NP); and an adhesion-enhancing compound, tannic acid (TA). The optimal formulation (PXNT) was hierarchically screened based on in vitro properties and in vivo activities. Therapeutically, local treatment with PXNT hydrogel effectively prevented epidural fibrosis and adhesion after laminectomy in both rats and rabbits. Of note, PXNT hydrogel showed more beneficial efficacy than different control thermosensitive hydrogels and a commercially available barrier product, Interceed. Mechanistically, PXNT hydrogel significantly attenuated local oxidative stress, inhibited inflammatory responses, and reduced fibrotic tissue formation. Moreover, treatment with PXNT hydrogel did not cause systemic adverse effects and neurological symptoms. Consequently, PXNT hydrogel is a highly promising biomaterial for preventing postlaminectomy epidural adhesion and adhesions after other surgeries.
Collapse
Affiliation(s)
- Yan Wang
- Department of Orthopaedic Surgery, Affiliated Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Lanlan Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Department of Chemistry, College of Basic Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yongchang Ma
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yong Tang
- Department of Orthopaedic Surgery, The 72 Hospital of Army, Huzhou 313000, China
| | - Yang Zhao
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zimeng Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Wendan Pu
- Department of Chemistry, College of Basic Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Bo Huang
- Department of Orthopaedic Surgery, Affiliated Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Xuan Wen
- Department of Orthopaedic Surgery, Affiliated Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Xiaojuan Cao
- Department of Orthopaedic Surgery, Affiliated Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Jiafei Chen
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Wei Chen
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yue Zhou
- Department of Orthopaedic Surgery, Affiliated Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
50
|
Ren P, Li J, Zhao L, Wang A, Wang M, Li J, Jian H, Li X, Yan X, Bai S. Dipeptide Self-assembled Hydrogels with Shear-Thinning and Instantaneous Self-healing Properties Determined by Peptide Sequences. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21433-21440. [PMID: 32319760 DOI: 10.1021/acsami.0c03038] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Dipeptide self-assembled hydrogels have potential biomedical applications because of their great biocompatibility, bioactivity, and tunable physicochemical properties, which can be modulated in the molecular level by design of amino acid sequences. Herein, a series of dipeptides (Fmoc-FL, -YL, -LL, and -YA) are designed to form shear-thinning hydrogels with self-healing and tunable mechanical properties by adjusting the synergetic effect of hydrophobic interactions (π-π stacking and hydrophobic effect) and hydrogen bonds of peptides through substitution of amino acid residues. The enhancement of hydrophobic interactions is a primary factor to promote mechanical rigidity of hydrogels, and strong hydrogen-bonding interactions between molecules contribute to the instantaneous self-healing property, which is supported by experimental studies (FTIR, CD, SEM, AFM, and rheology) and molecular dynamics simulations. The injectable dipeptide hydrogels were certified as an ideal endoscopic submucosal dissection filler to make operation convenient and secure in mice and living mini-pig's experiments with a longer duration time, higher stiffness, and lower inflammatory response than commercial clinical fillers.
Collapse
Affiliation(s)
- Peng Ren
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingtao Li
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Luyang Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Anhe Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Meiyue Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jieling Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Honglei Jian
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoou Li
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Shuo Bai
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|