1
|
Dhale SP, Ugemuge NS, Singh VS, Moharil SV. UVB emitting phosphors based on singly and co-doped Ce 3+, Gd 3+ in Li 4ZrF 8 phosphors. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125050. [PMID: 39222599 DOI: 10.1016/j.saa.2024.125050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/02/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Preparation of Li4ZrF8:Ce3+ and Li4ZrF8:Ce3+,Gd3+ phosphors is described. Data on luminescence characteristics are presented. Hydrothermal route was employed for the synthesis. Li4ZrF8 crystallizes in orthorhombic system with Pnma space group. Li atoms are distributed over two sites, both having same coordination of six. Zr is also similarly distributed over two 8 coordinated sites. Li4ZrF8:Ce3+ emits a broad band UVB light, while the emission of Li4ZrF8:Ce3+,Gd3+ is in form of a narrow line around 311 nm attributed to 6P7/2 → 8S7/2. Both phosphors exhibited a broad excitation spectrum with a peak at 253 nm. The excitation and emission properties are thus adequate enough to obtain UVB light sources using a conventional high pressure mercury vapour lamp or an ultraviolet LED.
Collapse
Affiliation(s)
- Shruti P Dhale
- Department of Physics, Anand Niketan College, Anandwan, Warora 442907, India.
| | - Nilesh S Ugemuge
- Department of Physics, Anand Niketan College, Anandwan, Warora 442907, India.
| | - Vartika S Singh
- Advanced Carbon Products and Metrology, CSIR-NPL, New Delhi 110012, India
| | - Sanjiv V Moharil
- Department of Physics, RTM Nagpur University, Nagpur 440033, India
| |
Collapse
|
2
|
Xu H, Li K, Dai M, Fu Z. Towards core-shell engineering for efficient luminescence and temperature sensing. J Colloid Interface Sci 2024; 673:249-257. [PMID: 38875790 DOI: 10.1016/j.jcis.2024.06.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
Research on the core-shell design of rare earth-doped nanoparticles has recently gained significant attention, particularly in exploring the synergistic effects of combining active and inert shell layers. In this study, we successfully synthesized 8 types of spherical core-shell Na-based nanoparticles to enhance the efficiency of core-shell design in upconversion luminescence and temperature sensing through the strategic arrangement of inert and active layers. The most effective upconversion luminescence was observed under 980 nm and 808 nm laser excitation using NaYF4 inert shell NaYF4:Yb3+, Er3+@ NaYF4 and NaYF4@ NaYF4:Yb3+, Nd3+ core-shell nanostructures. Moreover, the incorporation of the NaYbF4 active shell structure led to a significant increase in relative sensitivity in ratio luminescence thermometry. Notably, the NaYF4:Yb3+, Nd3+, Er3+@ NaYbF4 core-shell structure demonstrated the highest relative sensitivity of 1.12 %K-1. This research underscores the crucial role of inert shell layers in enhancing upconversion luminescence in core-shell structure design, while active layers play a key role in achieving high-sensitivity temperature detection capabilities.
Collapse
Affiliation(s)
- Hanyu Xu
- Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China
| | - Kejie Li
- Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China
| | - Mengmeng Dai
- Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China
| | - Zuoling Fu
- Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China.
| |
Collapse
|
3
|
Cao W, Liao Z, Chen H, Cui Y, Wang Z, Qian G. Lanthanide-Doped Nanoparticles Anchoring on Metal-Organic Frameworks with Thermally Enhanced Upconversion Luminescence for Sensitive Nanothermometers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58920-58930. [PMID: 39417328 DOI: 10.1021/acsami.4c15171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Nanothermometers can detect changes in the local temperature in living cells and in vivo, revealing fundamental biological properties. Despite the exploration of different temperature-responsive materials, the design and development of temperature-sensing probes with high brightness and high sensitivity remain a daunting challenge. Here, we employed the UiO-66 type metal-organic frameworks (MOFs) to anchor UNCPs on the surface of the MOFs for constructing MOF@UCNPs nanohybrids. The in situ composite method with MOFs leads to the coordination interaction between the ligands and the surface of UCNPs, enabling controlled composite formation between different MOFs and UCNPs. Remarkably, the surface interaction favors the anomalous thermo-enhanced luminescence, achieving a 35-fold enhancement of UiO-66@NaYF4:Yb/Tm at 413 K. Furthermore, these MOF@UCNPs nanohybrids with thermo-enhanced luminescence are developed as multifunctional biological probes for bioimaging and intracellular temperature sensing, demonstrating a high thermal sensitivity of 1.92% K-1 in the physiological temperature range. Based on these findings, temperature monitoring of the local position was successfully carried out by the designed MOF@UCNPs nanoprobes in vivo. These findings underscore the potential of MOF@UCNPs nanohybrids, opening up new avenues for the development of a multifunctional platform for biological analysis.
Collapse
Affiliation(s)
- Wenqian Cao
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310030, China
| | - Zhengluan Liao
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310030, China
| | - Hongxu Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310030, China
| | - Yuanjing Cui
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310030, China
| | - Zhiyu Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310030, China
| | - Guodong Qian
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310030, China
| |
Collapse
|
4
|
Huang J, Yan L, Liu S, Tao L, Zhou B. Expanding the toolbox of photon upconversion for emerging frontier applications. MATERIALS HORIZONS 2022; 9:1167-1195. [PMID: 35084000 DOI: 10.1039/d1mh01654g] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photon upconversion in lanthanide-based materials has recently shown compelling advantages in a wide range of fields due to their exceptional anti-Stokes luminescence performances and physicochemical properties. In particular, the latest breakthroughs in the optical manipulation of photon upconversion, such as the precise tuning of switchable emission profiles and lifetimes, open up new opportunities for diverse frontier applications from biological imaging to therapy, nanophotonics and three-dimensional displays. A summary and discussion on the recent progress can provide new insights into the fundamental understanding of luminescence mechanisms and also help to inspire new upconversion concepts and promote their frontier applications. Herein, we present a review on the state-of-the-art progress of lanthanide-based upconversion materials, focusing on the newly emerging approaches to the smart control of upconversion in aspects of light intensity, colors, and lifetimes, as well as new concepts. The emerging scientific and technological discoveries based on the well-designed upconversion materials are highlighted and discussed, along with the challenges and future perspectives. This review will contribute to the understanding of the fundamental research of photon upconversion and further promote the development of new classes of efficient upconversion materials towards diversities of frontier applications in the future.
Collapse
Affiliation(s)
- Jinshu Huang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China.
| | - Long Yan
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China.
| | - Songbin Liu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China.
| | - Lili Tao
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
| | - Bo Zhou
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
5
|
Li G, Xue Y, Mao Q, Pei L, He H, Liu M, Chu L, Zhong J. Synergistic luminescent thermometer using co-doped Ca 2GdSbO 6:Mn 4+/(Eu 3+ or Sm 3+) phosphors. Dalton Trans 2022; 51:4685-4694. [PMID: 35224599 DOI: 10.1039/d2dt00005a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Luminescent thermometers provide a non-contact method of probing temperature with high sensitivity and response speed at the nanoscale. Synergistic photoluminescence from different activators can realize high sensitivity for luminescent thermometers by finely selecting ions with specific crystallographic sites. Herein, the more temperature-sensitive Mn4+ and the less-sensitive Eu3+ (or Sm3+) activators are co-doped into a Ca2GdSbO6 matrix to form an effective thermometer, where Mn4+ and Eu3+ (or Sm3+) ions occupy the Sb5+ and Gd3+ sites, respectively. The co-doping of Eu3+ ions or Sm3+ ions leads to lattice expansion of Ca2GdSbO6 matrix and a tuned narrow emission from deep-red to orangish-red. According to the ratio of luminescence intensity, the maximal Sa and Sr values are 0.19 K-0 (347 K) and 1.38% K-( (420 K) for Ca2GdSbO6:Mn4+/Eu3+ probe and 0.26 K-p (363 K) and 1.55% K-( (430 K) for Ca2GdSbO6:Mn4+/Sm3+ probe thermometers, respectively. In addition, thermometers based on Mn4+ emission lifetimes can provide the highest relative sensitivity of 1.47% K-s at 425 K. Thus, the highly-temperature-sensitive Ca2GdSbO6:Mn4+/(Eu3+ or Sm3+) phosphor is a promising candidate for practical luminescence thermometers.
Collapse
Affiliation(s)
- Guixian Li
- Center of Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Yu Xue
- Center of Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Qinan Mao
- Center of Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Lang Pei
- Center of Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Hong He
- Center of Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Meijiao Liu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Liang Chu
- New Energy Technology Engineering Laboratory of Jiangsu Province, School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Jiasong Zhong
- Center of Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.
| |
Collapse
|
6
|
Pan X, Ren J, Zeng J, Liu M, Fang Z, Ju Q. Unravelling phase and morphology evolution of NaYbF 4 upconversion nanoparticles via modulating reaction parameters. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00877g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The phase and morphology evolutions of NaYbF4 upconversion nanocrystals have been systemically explored through modulating the experiment parameters in a canonical high-temperature co-precipitation method.
Collapse
Affiliation(s)
- Xuechun Pan
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Jilou Ren
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Jianfeng Zeng
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Mingyue Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Zhenlan Fang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Qiang Ju
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China
| |
Collapse
|
7
|
Fu H, Hu C, Liu J, Zhang Q, Xu JY, Jiang GJ, Liu M. An overview of boosting lanthanide upconversion luminescence through chemical methods and physical strategies. CrystEngComm 2022. [DOI: 10.1039/d2ce01206e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lanthanide-doped upconversion nanoparticles have attracted extensive research interest due to their promising applications in various fields.
Collapse
Affiliation(s)
- Huhui Fu
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 200235, China
| | - Changhe Hu
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 200235, China
| | - Jie Liu
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 200235, China
| | - Qi Zhang
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 200235, China
| | - J. Y. Xu
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 200235, China
| | - G. J. Jiang
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 200235, China
| | - M. Liu
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 200235, China
| |
Collapse
|
8
|
Luminescent lanthanide nanocomposites in thermometry: Chemistry of dopant ions and host matrices. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214040] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Fu H, Ma Y, Liu Y, Hong M. Local-structure-dependent luminescence in lanthanide-doped inorganic nanocrystals for biological applications. Chem Commun (Camb) 2021; 57:2970-2981. [DOI: 10.1039/d0cc07699f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This feature article overviews the recent advances in the local-structure-dependent luminescence in lanthanide-doped inorganic nanocrystals for various biological applications.
Collapse
Affiliation(s)
- Huhui Fu
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Yuhan Ma
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Yongsheng Liu
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Maochun Hong
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| |
Collapse
|
10
|
Fu H, Feng R, Jiang F, Liu Y, Hong M. Exploring the surface-to-volume ratio in ultrasmall nanocrystals using the optical probe of Eu 3+ ion. Chem Commun (Camb) 2020; 56:14725-14728. [PMID: 33174885 DOI: 10.1039/d0cc06543a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrate fine control of the nanocrystal size of ultrasmall Eu3+-doped Sc2O3 nanocrystals within an extremely small nanometer scale from 2.6 to 9.7 nm, thereby enabling us to thoroughly investigate the size-dependent surface-to-volume ratio in these ultrasmall NCs using an optical probe of the red-emitting Eu3+ ion for the first time.
Collapse
Affiliation(s)
- Huhui Fu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | - Rui Feng
- Testing Center, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Feilong Jiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | - Yongsheng Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | - Maochun Hong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| |
Collapse
|
11
|
Suta M, Meijerink A. A Theoretical Framework for Ratiometric Single Ion Luminescent Thermometers—Thermodynamic and Kinetic Guidelines for Optimized Performance. ADVANCED THEORY AND SIMULATIONS 2020. [DOI: 10.1002/adts.202000176] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Markus Suta
- Condensed Matter and Interfaces Debye Institute for Nanomaterials Science Department of Chemistry, Utrecht University Princetonplein 1 Utrecht 3584 CC The Netherlands
| | - Andries Meijerink
- Condensed Matter and Interfaces Debye Institute for Nanomaterials Science Department of Chemistry, Utrecht University Princetonplein 1 Utrecht 3584 CC The Netherlands
| |
Collapse
|